JP2541240B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2541240B2
JP2541240B2 JP25843887A JP25843887A JP2541240B2 JP 2541240 B2 JP2541240 B2 JP 2541240B2 JP 25843887 A JP25843887 A JP 25843887A JP 25843887 A JP25843887 A JP 25843887A JP 2541240 B2 JP2541240 B2 JP 2541240B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
gate electrode
layer
semiconductor
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25843887A
Other languages
Japanese (ja)
Other versions
JPH01101671A (en
Inventor
和彦 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP25843887A priority Critical patent/JP2541240B2/en
Publication of JPH01101671A publication Critical patent/JPH01101671A/en
Application granted granted Critical
Publication of JP2541240B2 publication Critical patent/JP2541240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置に関し、特にAlGaAs/GaAs選択ド
ープ構造を有する電界効果トランジスタで代表されるヘ
テロ接合デバイス、すなわちHEMT(高移動度トランジス
タ)等の2次元電子ガス層を動作層とする半導体装置に
関する。
The present invention relates to a semiconductor device, and particularly to a heterojunction device represented by a field effect transistor having an AlGaAs / GaAs selective doping structure, that is, HEMT (High Mobility Transistor) and the like. And a semiconductor device using the two-dimensional electron gas layer as an operating layer.

[従来の技術] 従来、HEMT等の半導体装置においては、不純物無添加
のGaAs半導体層と不純物添加のAlGaAs混晶半導体層との
ヘテロ界面に形成される2次元電子ガス層を動作層とし
て利用するために、基板上に前記GaAs半導体層と前記Al
GaAs半導体層を交互に成長させることにより1層あるい
は多層の前記2次元電子ガス層を形成し、前記AlGaAs半
導体層各層中に埋め込まれた単一の、あるいは多数のゲ
ート電極により前記各2次元電子ガス層における走行キ
ャリアを制御する構造がとられていた。
[Prior Art] Conventionally, in a semiconductor device such as HEMT, a two-dimensional electron gas layer formed at a hetero interface between a GaAs semiconductor layer with no impurity added and an AlGaAs mixed crystal semiconductor layer with impurity added is used as an operating layer. In order to ensure that the GaAs semiconductor layer and the Al
One or more two-dimensional electron gas layers are formed by alternately growing GaAs semiconductor layers, and each two-dimensional electron is formed by a single or multiple gate electrodes embedded in each layer of the AlGaAs semiconductor layer. A structure for controlling traveling carriers in the gas layer has been adopted.

従来のHEMTにおいてゲート電極が半導体層に埋め込ま
れている構造の一例を第3図に示す。ゲート電極35を不
純物無添加のGaAs層32,34あるいは不純物添加のAlGaAs
層33に得め込むことによる効用は、第1にはソース抵抗
の改善であり、第2には前記GaAs層32,34と前記AlGaAs
層33を交互に基板31上で成長させることで多層の2次元
電子ガス層40を形成させている場合、該2次元電子ガス
層40をチャネルとして動作させる際には、単一あるいは
多数のゲート電極を埋め込む方法が有効であると考えら
れる点である。
FIG. 3 shows an example of a structure in which a gate electrode is embedded in a semiconductor layer in a conventional HEMT. The gate electrode 35 is formed of GaAs layers 32 and 34 without impurities or AlGaAs with impurities.
The effect obtained by incorporating in the layer 33 is firstly the improvement of the source resistance, and secondly, the GaAs layers 32 and 34 and the AlGaAs.
When a multilayer two-dimensional electron gas layer 40 is formed by alternately growing the layers 33 on the substrate 31, when operating the two-dimensional electron gas layer 40 as a channel, a single gate or a plurality of gates are used. The point is that the method of embedding the electrodes is considered to be effective.

[発明が解決しようとする問題点] しかし、上記従来の構造のトランジスタは、ゲート電
極35の各2次元電子ガス層40側に生じる空乏層の幅を変
化させることによって、該2次元電子ガス層40における
走行キャリアを制御するものであるから、かかるゲート
電極35のドレイン側あるいはソース側の半導体は本来不
要であるばかりか、ソースとゲートとの間あるいはドレ
インとゲートとの間の寄生容量として作用し、高周波特
性あるいは高速スイッチング特性に大きな欠点となる。
[Problems to be Solved by the Invention] However, in the transistor having the conventional structure described above, the width of the depletion layer generated on the side of each two-dimensional electron gas layer 40 of the gate electrode 35 is changed to change the width of the two-dimensional electron gas layer. Since it controls traveling carriers in 40, the semiconductor on the drain side or the source side of the gate electrode 35 is not essentially necessary and acts as a parasitic capacitance between the source and the gate or between the drain and the gate. However, this is a major drawback in high-frequency characteristics or high-speed switching characteristics.

本発明は、上記問題点に鑑みて創案されたもので、ゲ
ートとソースまたはドレインとの間の寄生容量を減少さ
せることができ、電界効果トランジスタの高周波特性あ
るいは高速スイッチング特性を改善した半導体装置を提
供することを目的とする。
The present invention has been made in view of the above problems, and provides a semiconductor device capable of reducing the parasitic capacitance between the gate and the source or the drain and improving the high frequency characteristics or the high speed switching characteristics of the field effect transistor. The purpose is to provide.

[問題点を解決するための手段] 本発明は、電子親和力に差のある相異なる半導体層間
の、電子親和力が大なる半導体層側に、前記半導体層間
のヘテロ界面沿いに形成された2次元電子ガス層を1層
または2層以上と、この2次元電子ガス層を流れる電流
を取出す合金電極とを有し、かつ前記半導体層に埋設さ
れた1個または2個以上のゲート電極を備えてなる半導
体装置において、ゲート電極のソース側側面およびドレ
イン側側面に前記半導体層よりも比誘電率の小なる絶縁
物で形成された側壁を備えてなることを特徴とする半導
体装置である。
[Means for Solving the Problems] The present invention provides a two-dimensional electron formed on a semiconductor layer side having a large electron affinity between different semiconductor layers having different electron affinities, along a hetero interface between the semiconductor layers. It has one or two or more gas layers and an alloy electrode for taking out a current flowing through the two-dimensional electron gas layer, and one or more gate electrodes embedded in the semiconductor layer. The semiconductor device is characterized in that the source side surface and the drain side surface of the gate electrode are provided with side walls formed of an insulator having a relative dielectric constant smaller than that of the semiconductor layer.

本発明において、半導体層よりも比誘電率の小なる絶
縁物としては、たとえば二酸化シリコンがあげられる。
In the present invention, examples of the insulator having a relative dielectric constant smaller than that of the semiconductor layer include silicon dioxide.

[作用] 本発明は、2次元電子ガス層を動作層とする埋め込み
ゲート電極を備えた電界効果トランジスタにおいて、前
記ソースとゲートとの間にあるいはドレインとゲートと
の間の寄生容量を減少させるためにゲート電極のソース
側の側面と、ゲート電極のドレイン側の側面に比誘電率
の小さな絶縁物で形成された側壁を設けることによって
動作の高周波化を図ったものである。
[Operation] The present invention reduces the parasitic capacitance between the source and the gate or between the drain and the gate in a field effect transistor having a buried gate electrode having a two-dimensional electron gas layer as an operating layer. In order to increase the frequency of the operation, the side surface of the gate electrode on the source side and the side surface of the gate electrode on the drain side are provided with side walls made of an insulator having a small relative dielectric constant.

従来は、埋め込まれたゲート電極のソース側およびド
レイン側の両側面における寄生容量がゲート電極と接し
ているGaAs層あるいはAlGaAs層の生み出すものとして無
視できぬ大きさであったが、本発明による電界効果トラ
ンジスタにおいてはゲート電極におけるソース側および
ドレイン側の側面に比誘電率の小さな絶縁物、たとえば
シリコン酸化膜が配置されているため、従来に比べ前記
寄生容量が大幅に改善される。GaAsおよびAlGaAsの比誘
電率は12.5〜13.0であるがSiO2の比誘電率は3.5〜4.0と
GaAsおよびAlGaAsのそれと比べてほぼ1/3以下の値を示
しており、電界効果トランジスタとしての高周波特性の
改善に大きく寄与する。
Conventionally, the parasitic capacitance on both the source side and the drain side of the buried gate electrode was not negligible as that produced by the GaAs layer or AlGaAs layer in contact with the gate electrode, but In the effect transistor, since the insulator having a small relative dielectric constant, such as a silicon oxide film, is arranged on the side surfaces of the gate electrode on the source side and the drain side, the parasitic capacitance is significantly improved as compared with the conventional case. The relative permittivity of GaAs and AlGaAs is 12.5 to 13.0, but the relative permittivity of SiO 2 is 3.5 to 4.0.
Compared with that of GaAs and AlGaAs, it shows a value that is about 1/3 or less, which greatly contributes to the improvement of high frequency characteristics as a field effect transistor.

[実施例] 以下、図面を参照して、本発明の実施例を詳細に説明
する。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による電界効果トランジスタの一実施
例を示す縦断面図である、第1図において、1は半絶縁
物GaAs基板、2および4は不純物無添加GaAs半導体層、
3は不純物添加AlGaAs半導体層、5はゲート電極、6は
ソース電極、7はソース領域、8はドレイン電極、9は
ドレイン領域、10は2次元電子ガス層、11はSiO2側壁で
ある。本実施例に示す電界効果トランジスタは基本的に
は2層の不純物無添加のGaAs半導体層2,4の間に不純物
をドープしたAlGaAs半導体層3を挟み、該AlGaAs半導体
層3中にゲート電極5を埋設した構造をしている。この
構造においては2層のGaAs半導体層2,4とAlGaAs半導体
層3との界面に2次元電子ガス層10が形成される。該Al
GaAs半導体層3に埋め込まれたゲート電極5の周囲の空
乏層は動作電圧により上下方向に広がり、2層の前記2
次元電子ガス層10のキャリア蓄積状態を同時に制御す
る。従って、この埋め込みゲート電極構造は、従来のHE
MTに比べて制御可能な電流量を向上させる得ると共に、
高い相互コンダクタンスを得ることが可能となる。第1
図中で示すゲート電極5のソース側およびドレイン側の
側面に設けられたシリコン酸化膜の側壁11が本発明の絶
縁体側壁で、この側壁11の存在によりゲート・ソース間
の寄生容量およびゲート・ドレイン間の寄生容量の削減
が行われ、電界効果トランジスタとしての高周波特性お
よび高速スイッチング特性が改善される。
1 is a longitudinal sectional view showing an embodiment of a field effect transistor according to the present invention. In FIG. 1, 1 is a semi-insulating GaAs substrate, 2 and 4 are impurity-free GaAs semiconductor layers,
3 is an impurity-doped AlGaAs semiconductor layer, 5 is a gate electrode, 6 is a source electrode, 7 is a source region, 8 is a drain electrode, 9 is a drain region, 10 is a two-dimensional electron gas layer, and 11 is a SiO 2 side wall. In the field effect transistor shown in this embodiment, basically, an AlGaAs semiconductor layer 3 doped with an impurity is sandwiched between two layers of undoped GaAs semiconductor layers 2 and 4, and a gate electrode 5 is formed in the AlGaAs semiconductor layer 3. It has a buried structure. In this structure, a two-dimensional electron gas layer 10 is formed at the interface between the two GaAs semiconductor layers 2 and 4 and the AlGaAs semiconductor layer 3. The Al
The depletion layer around the gate electrode 5 embedded in the GaAs semiconductor layer 3 spreads vertically due to the operating voltage, and the two depletion layers
The carrier accumulation state of the three-dimensional electron gas layer 10 is simultaneously controlled. Therefore, this embedded gate electrode structure is
In addition to improving the controllable current amount compared to MT,
It becomes possible to obtain high transconductance. First
The sidewalls 11 of the silicon oxide film provided on the side surfaces on the source side and the drain side of the gate electrode 5 shown in the figure are insulator sidewalls of the present invention, and the presence of the sidewalls 11 causes parasitic capacitance between the gate and the source and the gate capacitance. The parasitic capacitance between the drains is reduced, and the high frequency characteristics and high speed switching characteristics of the field effect transistor are improved.

次に、上記側壁を備えた埋め込みゲート電極の製造工
程の一例を第2図(a)〜(d)の各図により説明す
る。各図は、半絶縁性GaAs基板21上に、例えば有機金属
化学堆積法により成長させた不純物無添加のGaAs半導体
層あるいは不純物添加のAlGaAs半導体層22にゲート電極
23を埋め込む場合を説明するものである。ゲート電極23
の材料としてはタングステンシリサイド等の金属あるい
は金属化合物を用い、スパッタあるいは電子ビーム蒸着
またはCVD法によって第2図(a)に示す如く、厚さ400
Åで付着させ、例えばプラズマエッチング法あるいはリ
フトオフ法によって金属幅が5000Å以下となるようにゲ
ート電極23を形成する。この金属幅がすなわちゲート長
に相当する。
Next, an example of a manufacturing process of the embedded gate electrode having the above-mentioned sidewall will be described with reference to FIGS. 2 (a) to 2 (d). Each figure shows a gate electrode on a semi-insulating GaAs substrate 21, for example, an undoped GaAs semiconductor layer or an doped AlGaAs semiconductor layer 22 grown by metal organic chemical vapor deposition.
The case of embedding 23 will be described. Gate electrode 23
As the material of the above, a metal such as tungsten silicide or a metal compound is used, and a thickness of 400 or less is obtained by sputtering, electron beam evaporation, or CVD method as shown in FIG.
The gate electrode 23 is attached by Å, and the metal width is set to 5000 Å or less by, for example, a plasma etching method or a lift-off method. This metal width corresponds to the gate length.

ゲート電極23を形成した後、CVD法により、第2図
(b)に示す如く、全面にシリコン酸化膜24を400Å程
度付着させ、CF4およびSF6の混合ガスによるMIE(Magne
tron Ion Etching)法によりゲート電極23の上面および
GaAs半導体層あるいはAlGaAs半導体層22表面が現れる直
前までシリコン酸化膜24のエッチングを行う。その後、
完全に表面が現れるまで過酸化水素と弗酸の混合液によ
りシリコン酸化膜24のエッチングを行う。
After forming the gate electrode 23 by CVD, as shown in FIG. 2 (b), the entire surface of the silicon oxide film 24 is deposited about 400 Å, MIE with a mixed gas of CF 4 and SF 6 (Magne
tron Ion Etching) method and the upper surface of the gate electrode 23 and
The silicon oxide film 24 is etched until just before the surface of the GaAs semiconductor layer or AlGaAs semiconductor layer 22 appears. afterwards,
The silicon oxide film 24 is etched with a mixed solution of hydrogen peroxide and hydrofluoric acid until the surface is completely exposed.

その結果第2図(c)に示されるようにゲート電極23
の両側にシリコン酸化膜24の側壁25が形成される。その
後はゲート電極形成前と同様に、有機金属化学堆積法に
よりGaAs半導体層あるいはAlGaAs半導体層22の成長を再
度行う。n+選択成長に関しての有機金属化学堆積法の有
効性および再現性は、例えば1984年第45回応用物理学会
14a−J−7で中村他により報告されており、また、金
属ゲート電極の埋め込み成長に関しては、特表昭56−50
0991号公報においてPBTの製造工程の中でCarl.O.Bozler
他によって詳しく報告されている。ゲート電極23の材料
としてはGaAsおよびエピタキシャル成長過程中用いられ
る他の製品に対して充分不活性であることからタングス
テンの有効性が指摘されている。しかしゲート電極23と
しては金属あるいはその化合物の代りにp型の不純物を
高濃度に添加した低抵抗のGaAsを用いても良い。
As a result, as shown in FIG. 2 (c), the gate electrode 23
Side walls 25 of the silicon oxide film 24 are formed on both sides of the. After that, the GaAs semiconductor layer or the AlGaAs semiconductor layer 22 is grown again by the metal organic chemical vapor deposition method as before the formation of the gate electrode. The effectiveness and reproducibility of metalorganic chemical vapor deposition for n + selective growth is described, for example, in the 1984 45th Japan Society of Applied Physics.
14a-J-7 reported by Nakamura et al., And regarding the buried growth of the metal gate electrode, see Table 56-50.
In the 0991 publication, in the manufacturing process of PBT, Carl.O.Bozler
Reported in detail by others. As the material of the gate electrode 23, tungsten is pointed out to be effective because it is sufficiently inert to GaAs and other products used during the epitaxial growth process. However, as the gate electrode 23, low-resistance GaAs to which p-type impurities are added at a high concentration instead of metal or its compound may be used.

以上の工程によりGaAs半導体層あるいはAlGaAs半導体
層22中にシリコン酸化膜24に挟まれた形でゲート電極23
を埋め込む操作が第2図(d)に示すような形状で完了
する。
Through the above steps, the gate electrode 23 is sandwiched between the silicon oxide film 24 in the GaAs semiconductor layer or AlGaAs semiconductor layer 22.
The operation of embedding is completed with the shape as shown in FIG.

なお、結晶系としてはGaAs/AlGaAs系を用いた事例を
示したが、この他にInGaAs/InAlAs系、InP/InGaAs系等
についても本発明を実施することは可能である。また、
本発明の実施例は特定の値を用いて説明したが、これは
理解を容易にするためであり、例えばゲート電極の蒸着
量が増加すれば、シリコン酸化膜側壁の量も比例して増
加させることは言うまでもなく、ゲート・ソース間およ
びゲート・ドレイン間の寄生容量を十分に削減するだけ
の量であれば良い。また、側壁として用いる材料も用い
られるそれぞれの半導体よりも比誘電率の小さい絶縁物
ならばシリコン酸化物に限らない。
Although the case where the GaAs / AlGaAs system is used as the crystal system has been shown, the present invention can be applied to other InGaAs / InAlAs systems, InP / InGaAs systems and the like. Also,
Although the embodiments of the present invention have been described using specific values, this is for the sake of easy understanding. For example, when the deposition amount of the gate electrode is increased, the amount of the silicon oxide film sidewall is also increased proportionally. Needless to say, it is sufficient if the parasitic capacitance between the gate and the source and between the gate and the drain is sufficiently reduced. The material used for the side wall is not limited to silicon oxide as long as it is an insulator having a relative dielectric constant smaller than that of each semiconductor used.

[発明の効果] 以上、説明したとおり、本発明によれば、2次元電子
ガス層をチャネルとして用い、かつその制御を半導体層
中に埋め込まれたゲート電極により行う電界効果トラン
ジスタにおいて、ゲート電極のソース側の側面およびド
レイン側の側面に比誘電率の小さな絶縁物で形成された
側壁を設けることにより、ゲートとソースとの間の容量
およびゲートとドレインとの間の寄生容量を減少させる
ことができ、電界効果トランジスタの高周波特性あるい
は高速スイッチング特性を改善した半導体装置を提供す
ることができる。
[Effects of the Invention] As described above, according to the present invention, in a field effect transistor in which a two-dimensional electron gas layer is used as a channel and its control is performed by a gate electrode embedded in a semiconductor layer, By providing sidewalls made of an insulator having a small relative dielectric constant on the side surface on the source side and the side surface on the drain side, it is possible to reduce the capacitance between the gate and the source and the parasitic capacitance between the gate and the drain. Therefore, it is possible to provide a semiconductor device in which the high frequency characteristics or the high speed switching characteristics of the field effect transistor are improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図
(a)〜(d)は本発明の一実施例の製造工程の説明
図、第3図は従来例の縦断面図である。 1,21,31……半絶縁性GaAs基板 2,4,32,34……不純物無添加GaAs半導体層 3,33……不純物添加AlGaAs半導体層 5,23,35,……ゲート電極 6,36……ソース電極、7,37……ソース領域 8,38……ドレイン電極、9,39……ドレイン領域 10,40……2次元電子ガス層 11,25……SiO2側壁、24……シリコン酸化膜
FIG. 1 is a vertical sectional view showing an embodiment of the present invention, FIGS. 2 (a) to (d) are explanatory views of a manufacturing process of the embodiment of the present invention, and FIG. 3 is a vertical sectional view of a conventional example. Is. 1,21,31 …… Semi-insulating GaAs substrate 2,4,32,34 …… Impurity-free GaAs semiconductor layer 3,33 …… Impurity-doped AlGaAs semiconductor layer 5,23,35 …… Gate electrode 6,36 ...... Source electrode, 7,37 …… Source region 8,38 …… Drain electrode, 9,39 …… Drain region 10,40 …… Two-dimensional electron gas layer 11,25 …… SiO 2 side wall, 24 …… Silicon Oxide film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子親和力に差のある相異なる半導体層間
の、電子親和力が大なる半導体層側に、前記半導体層間
のヘテロ界面沿いに形成された2次元電子ガス層を1層
または2層以上と、この2次元電子ガス層を流れる電流
を取出す合金電極とを有し、かつ前記半導体層に埋設さ
れた1個または2個以上のゲート電極を備えてなる半導
体装置において、ゲート電極のソース側側面およびドレ
イン側側面に前記半導体層よりも比誘電率の小なる絶縁
物で形成された側壁を備えてなることを特徴とする半導
体装置。
1. One or two or more two-dimensional electron gas layers formed along a hetero interface between semiconductor layers having different electron affinities on the side of a semiconductor layer having a large electron affinity between different semiconductor layers. And a alloy electrode for extracting a current flowing through the two-dimensional electron gas layer, and one or more gate electrodes embedded in the semiconductor layer, the source side of the gate electrode A semiconductor device comprising a side surface and a side surface on the drain side which are formed of an insulating material having a relative dielectric constant smaller than that of the semiconductor layer.
【請求項2】半導体層よりも比誘電率の小なる絶縁物が
二酸化シリコンである特許請求の範囲第1項記載の半導
体装置。
2. The semiconductor device according to claim 1, wherein the insulator whose relative dielectric constant is smaller than that of the semiconductor layer is silicon dioxide.
JP25843887A 1987-10-15 1987-10-15 Semiconductor device Expired - Lifetime JP2541240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25843887A JP2541240B2 (en) 1987-10-15 1987-10-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25843887A JP2541240B2 (en) 1987-10-15 1987-10-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01101671A JPH01101671A (en) 1989-04-19
JP2541240B2 true JP2541240B2 (en) 1996-10-09

Family

ID=17320205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25843887A Expired - Lifetime JP2541240B2 (en) 1987-10-15 1987-10-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2541240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071557B2 (en) 1999-09-01 2006-07-04 Micron Technology, Inc. Metallization structures for semiconductor device interconnects, methods for making same, and semiconductor devices including same

Also Published As

Publication number Publication date
JPH01101671A (en) 1989-04-19

Similar Documents

Publication Publication Date Title
EP0064370B1 (en) High electron mobility semiconductor device
EP0143656B1 (en) Compound semiconductor device and method of producing it
EP0257875B1 (en) Vertical enhancement-mode group iii-v compound misfets
EP0064829A2 (en) High electron mobility semiconductor device and process for producing the same
US4717685A (en) Method for producing a metal semiconductor field effect transistor
US5336626A (en) Method of manufacturing a MESFET with an epitaxial void
US5493136A (en) Field effect transistor and method of manufacturing the same
EP0449620B1 (en) Semiconductor devices having a silicon/silicon-germanium heterostructure and methods of making the same
US5212404A (en) Semiconductor device having a vertical channel of carriers
JP2541240B2 (en) Semiconductor device
EP0602671B1 (en) Heterojunction field effect transistor having an improved transistor characteristic
US5311045A (en) Field effect devices with ultra-short gates
EP0538792B1 (en) Multiple narrow-line-channel fet having improved noise characteristics
JP3069106B2 (en) Semiconductor device
JP3747391B2 (en) Compound semiconductor device and manufacturing method thereof
JPS63232374A (en) Semiconductor device
JPH02189978A (en) Fine wiring field effect transistor and manufacture thereof
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
JPH06310536A (en) Field-effect transistor and its manufacture
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JP3109097B2 (en) Method for manufacturing field effect transistor and etching method
JPH0429225B2 (en)
JPH0614551B2 (en) Thermionic emission type static induction transistor
JPH05206171A (en) Semiconductor device and manufacture thereof