JP2537784B2 - Operation control method for heat storage air conditioner - Google Patents

Operation control method for heat storage air conditioner

Info

Publication number
JP2537784B2
JP2537784B2 JP60279246A JP27924685A JP2537784B2 JP 2537784 B2 JP2537784 B2 JP 2537784B2 JP 60279246 A JP60279246 A JP 60279246A JP 27924685 A JP27924685 A JP 27924685A JP 2537784 B2 JP2537784 B2 JP 2537784B2
Authority
JP
Japan
Prior art keywords
load
heat storage
air temperature
heat
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60279246A
Other languages
Japanese (ja)
Other versions
JPS62141448A (en
Inventor
吉郎 酒井
隆司 柳原
祐二 坪田
利介 小野田
滋郎 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP60279246A priority Critical patent/JP2537784B2/en
Publication of JPS62141448A publication Critical patent/JPS62141448A/en
Application granted granted Critical
Publication of JP2537784B2 publication Critical patent/JP2537784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蓄熱冷暖房装置の運転制御方法に係り、特
に、空調負荷予測を取り入れて省エネルギー運転制御を
行うのに好適な、蓄熱冷暖房装置の運転制御方法に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to an operation control method for a heat storage cooling / heating device, and more particularly to a heat storage cooling / heating device suitable for performing energy saving operation control by incorporating an air conditioning load prediction. The present invention relates to an operation control method.

〔従来の技術〕[Conventional technology]

近年、電力需要の増大にともなって、電力負荷の昼夜
間格差あるいは時間的な集中が拡大する傾向にあり、電
力需要の平準化対策として有効な蓄熱式空調システムの
開発が重要な技術課題として進められている。
In recent years, as the demand for electric power has increased, the difference in the power load between day and night or the concentration over time has tended to expand, and the development of a heat storage air conditioning system that is effective as a measure for leveling the demand for power is an important technical issue. Has been.

例えば、日立評論VOL.66,No.6(1984−6月)P.17〜2
0には、小栗正裕ほかにより「ユニット式氷蓄熱冷暖房
システム」という技術レポートが掲載されている。
For example, Hitachi Review VOL.66, No.6 (1984-June) P.17-2
In 0, a technical report titled "Unit-type ice thermal storage cooling and heating system" is published by Masahiro Oguri and others.

特に最近は、スペース上の制約から充分な容量を持つ
蓄熱槽を建築することが困難であるため、空調負荷に対
して、蓄熱槽と、冷凍機等の熱源機器とを併用運転する
方式や、潜熱蓄熱方式が注目されている。
Particularly recently, it is difficult to construct a heat storage tank having a sufficient capacity due to space restrictions, so a method of operating a heat storage tank and a heat source device such as a refrigerator together for an air conditioning load, The latent heat storage method is drawing attention.

これらの蓄熱冷暖房装置の効率的な運転方法は、負荷
に見合った最小限の運転をすることであり、そのために
は、的確な負荷予測を運転制御に取り入れることが重要
な課題である。
An efficient operation method of these heat storage cooling / heating devices is to perform a minimum operation commensurate with the load, and for that purpose, it is an important issue to incorporate an accurate load prediction into the operation control.

従来、空調負荷予測を簡易に行うには、実負荷計測か
らの予測や、経験的な月単位の予測等が試みられている
が、コストや精度の点であまり実用的ではないのが実状
であった。
Conventionally, in order to easily predict the air conditioning load, predictions from actual load measurements and empirical monthly predictions have been tried, but in reality they are not very practical in terms of cost and accuracy. there were.

例えば、特開昭49−83246号公報記載の空調予測制御
装置には、半年間のビルの空調負荷を解析した結果、ビ
ルの空調負荷ピーク値と、当日午前6時における外気エ
ンタルピーとの間に直線的相関関係があることを見出
し、上記エンタルピーから所要空調負荷を予測すること
が開示されている。
For example, in the air conditioning predictive control device disclosed in Japanese Patent Laid-Open No. 49-83246, as a result of analyzing the air conditioning load of the building for half a year, the peak value of the air conditioning load of the building and the outside air enthalpy at 6:00 am on that day It is disclosed that there is a linear correlation and the required air conditioning load is predicted from the above enthalpy.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記特開昭49−83246号公報記載の技術は、外気温度
と外気湿度から外気エンタルピーを算出すること、外気
エンタルピーと空調負荷との相関関係について開示され
ているが、週単位の年間外気温度データ、冷暖房最大日
積算負荷、内部発生熱による日積算内部発生負荷などを
考慮した精度の高い空調負荷予測を実現することについ
て配慮されていなかった。
The technique described in JP-A-49-83246 described above calculates the outside air enthalpy from the outside air temperature and the outside air humidity, and discloses the correlation between the outside air enthalpy and the air conditioning load, but the weekly annual outside air temperature data. No consideration was given to realizing a highly accurate air conditioning load prediction that takes into consideration the maximum daily integrated load of cooling and heating, the daily integrated internally generated load due to internally generated heat, and so on.

本発明は、前述の従来技術の実状に鑑みてなされたも
ので、安価でしかも比較的精度の高い年間空調負荷予測
を行い、熱源機器の効率的な運転,ピークシフト運転を
可能にする蓄熱冷暖房装置の運転制御方法を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional state of the art, and is a heat storage cooling and heating system that makes it possible to predict the yearly air conditioning load inexpensively and with relatively high accuracy, and to enable efficient operation of heat source equipment and peak shift operation. An object of the present invention is to provide an operation control method for a device.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る蓄熱冷暖房
装置の運転制御方法の構成は、熱源機器と、この熱源機
器および負荷側機器に接続する蓄熱槽と、これらを制御
する手段と、外気温度および蓄熱量を検知する各検知手
段とを備え、少なくとも外気温度データを基に所要空調
負荷を予測して熱源機器の運転制御を行う蓄熱冷暖房装
置の運転制御方法において、気象データをもとに予め設
定した週単位の年間外気温度データと、少なくとも、負
荷計算により求めた冷暖房最大日積算負荷および内部発
生熱による日積算内部発生負荷とを用い、冷房時期に
は、外気温度と、シーズン中はほぼ一定である内部発生
負荷を除いた日積算負荷とが比例的に相関し、暖房時期
には、外気温度と日積算負荷とが比例的に相関すること
から、前記年間外気温度データに従って年間の日積算負
荷予測を演算するとともに、実際に検知した外気温度と
予め設定した前記週単位の年間外気温度データとの差に
よって、前記日積算負荷予測を修正するようにして、熱
源機器の予測運転を行うようにしたものである。
In order to achieve the above object, the configuration of the operation control method of the heat storage cooling and heating device according to the present invention is a heat source device, a heat storage tank connected to the heat source device and the load side device, a means for controlling these, and the outside air temperature. And each detection means for detecting the amount of heat storage, at least in the operation control method of the heat storage cooling and heating device for predicting the required air conditioning load based on the outside air temperature data to control the operation of the heat source device, based on the meteorological data in advance. Using the set annual weekly outdoor air temperature data, and at least the maximum daily integrated load of cooling and heating obtained by load calculation and the daily integrated internally generated load due to internally generated heat, the outdoor air temperature during the cooling period and the The daily integrated load excluding the constant internally generated load is proportionally correlated, and the outside air temperature and the daily integrated load are proportionally correlated during the heating period. The daily integrated load forecast for the year is calculated according to the data, and the daily integrated load forecast is corrected by the difference between the actually detected outside air temperature and the preset annual outdoor air temperature data for the heat source device. The predicted driving is performed.

〔作用〕[Action]

本発明を開発した考え方と、上記技術手段による働き
とを合わせて説明する。
The concept of developing the present invention and the function of the above technical means will be described together.

冷房空調負荷の主な要素には、内部発生熱,輻射,伝
導熱,取入れ外気熱がある。内部発生熱は、内部機器や
人体からの発熱であり各シーズンを通してほぼ一定と考
えられる。また、輻射,伝導熱,取入れ外気熱は、外気
条件により変動するものである。したがって、全冷房負
荷から内部発生負荷を除いたものは、外気温度に相関し
ているといえる。
The main components of the cooling and air conditioning load are internally generated heat, radiant heat, conductive heat, and taken-in outside air heat. Internal heat is generated from internal equipment and human body and is considered to be almost constant throughout each season. Further, the radiant heat, the conductive heat, and the taken-in outside air heat vary depending on the outside air conditions. Therefore, it can be said that the value obtained by removing the internally generated load from the total cooling load correlates with the outside air temperature.

一方、暖房空調負荷の主な要素は、伝導熱,取入れ外
気熱であり、これらの暖房負荷は外気温度に相関してい
るといえる。
On the other hand, the main elements of the heating and air conditioning load are conduction heat and intake outside air heat, and it can be said that these heating loads are correlated with the outside air temperature.

この事柄から、ある時間における外気温度を、マイク
ロコンピュータに入力されているデータから読み出した
り、温度センサで外気温度を計測したりすることによっ
て空調負荷を推測することが可能である。
From this matter, it is possible to estimate the air conditioning load by reading the outside air temperature at a certain time from the data input to the microcomputer or by measuring the outside air temperature with a temperature sensor.

そこで、本発明は、入手容易な気象データをもとにし
た情報と、マイクロコンピュータなどの簡便な情報処理
装置とにより、予め設定した週単位の年間外気温度、負
荷計算により求めた冷暖房最大日積算負荷および日積算
内部発生負荷を用い、冷房時期には外気温度と内部発生
負荷を除いた日積算負荷とが比例的に相関し、暖房時期
には外気温度と日積算負荷とが比例的に相関することか
ら年間の日積算負荷予測を演算し、さらに実際に検知し
た外気温度と前記週単位の年間外気温度データとの差に
よって前記日積算負荷予測を修正し、精度の高い熱源機
器の予測運転を可能にするものである。
Therefore, the present invention is based on easily available information based on weather data and a simple information processing device such as a microcomputer, and preset annual weekly outdoor air temperature, maximum daily cooling / heating integrated by load calculation. Load and daily accumulated internal generated load.Outdoor air temperature and daily accumulated load excluding internally generated load are proportionally correlated during cooling time, and outdoor air temperature and daily accumulated load are proportionally correlated during heating period. Therefore, the daily integrated load forecast for the year is calculated, and the daily integrated load forecast is corrected by the difference between the actually detected outside air temperature and the weekly annual outside air temperature data, and highly accurate predictive operation of the heat source device is performed. Is what makes it possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図を参照
して説明する。
An embodiment of the present invention will be described below with reference to FIGS.

まず、空調負荷予測運転制御を行う蓄熱冷暖房装置の
一例を第1図に示す。
First, FIG. 1 shows an example of a heat storage cooling / heating apparatus that performs air conditioning load prediction operation control.

第1図は、本発明の一実施例に係る蓄熱冷暖房装置の
略示構成図である。
FIG. 1 is a schematic configuration diagram of a heat storage cooling / heating apparatus according to an embodiment of the present invention.

第1図において、1は、熱の授受媒体である水を降温
または昇温させる冷凍機、2は、この冷凍機1から得ら
れる冷・温水により冷水蓄熱,温水蓄熱を行う蓄熱槽、
3は、前記冷凍機1と前記蓄熱槽2とを接続する水配管
に配設され、水を循環させるための一次冷温水ポンプ、
4は、これら各機器を制御するための制御盤、5,6は、
前記蓄熱槽2に貯えられている蓄熱量を検知する各種セ
ンサー、7は、外気温度を検知する温度センサー、8
は、負荷側の空気調和機、9は、この空気調和機8と前
記蓄熱槽2とを接続する水配管に配設され、水を循環さ
せるための二次冷温水ポンプである。
In FIG. 1, 1 is a refrigerator that lowers or raises the temperature of water that is a heat transfer medium, and 2 is a heat storage tank that stores cold water and hot water with cold / hot water obtained from the refrigerator 1,
3 is a primary cold / hot water pump that is arranged in a water pipe connecting the refrigerator 1 and the heat storage tank 2 to circulate water.
4 is a control panel for controlling each of these devices, 5 and 6 are
Various sensors for detecting the amount of heat stored in the heat storage tank 2, 7 is a temperature sensor for detecting the outside air temperature, 8
Is a load side air conditioner, and 9 is a secondary cold / hot water pump which is arranged in a water pipe connecting the air conditioner 8 and the heat storage tank 2 and circulates water.

このような構成の蓄熱冷暖房装置の動作を次に説明す
る。
The operation of the heat storage cooling / heating device having such a configuration will be described below.

蓄熱運転時は、冷凍機1と一次冷温水ポンプ3を運転
し、蓄熱槽2内の水を循環させながら、水を降温または
昇温し、蓄熱槽2内に蓄熱せしめる。
During the heat storage operation, the refrigerator 1 and the primary cold / hot water pump 3 are operated, and while the water in the heat storage tank 2 is circulated, the temperature of the water is lowered or the temperature is raised, and heat is stored in the heat storage tank 2.

空調運転時は、空気調和機8と二次冷温水ポンプ9を
運転し、蓄熱槽2内の水を循環させながら、蓄熱槽2内
に貯えられた熱量を消費する。ここで、負荷が大きな場
合は、前記蓄熱運転で蓄熱槽2内に貯えられた熱量では
不足するので、空気調和機8と二次冷温水ポンプ9を運
転して熱量を消費しながら同時に冷凍機1と一次冷温水
ポンプ3も運転し、蓄熱槽2への熱量の補充を行う。
During the air conditioning operation, the air conditioner 8 and the secondary cold / hot water pump 9 are operated to circulate the water in the heat storage tank 2 while consuming the amount of heat stored in the heat storage tank 2. Here, when the load is large, the amount of heat stored in the heat storage tank 2 in the heat storage operation is insufficient, so the air conditioner 8 and the secondary cold / hot water pump 9 are operated to consume the amount of heat and simultaneously cool the refrigerator. 1 and the primary cold / hot water pump 3 are also operated to replenish the heat storage tank 2 with the amount of heat.

このような蓄熱冷暖房装置の制御手順について説明す
る。
The control procedure of such a heat storage air conditioner will be described.

蓄熱運転の場合、蓄熱槽2の蓄熱量が予め設定してあ
る蓄熱量に達しているかいないかを判定し、達するまで
は、冷凍機1、一次冷温水ポンプ3を運転し、予め設定
してある蓄熱量に達したならば、冷凍機1、一次温水ポ
ンプ3は停止する。蓄熱量が設定値に達するまではその
運転を継続する。
In the case of the heat storage operation, it is determined whether or not the heat storage amount of the heat storage tank 2 has reached a preset heat storage amount, and until it reaches, the refrigerator 1 and the primary cold / hot water pump 3 are operated and preset. When a certain heat storage amount is reached, the refrigerator 1 and the primary hot water pump 3 are stopped. The operation is continued until the heat storage amount reaches the set value.

空調運転の場合、空調調和機8、二次冷温水ポンプ9
を運転する。このとき、空調負荷の予測を行い、蓄熱量
と空調負荷予測との比較から不足熱量を演算し、さらに
熱源機器容量すなわち冷凍機1の容量から、冷凍機1と
一次冷温水ポンプ3の運転時間割付けを行い、それに従
って冷凍機1と一次冷温水ポンプ3の運転,停止を行う
ものである。
In the case of air conditioning operation, air conditioner 8 and secondary cold / hot water pump 9
To drive. At this time, the air-conditioning load is predicted, the amount of insufficient heat is calculated from the comparison between the heat storage amount and the air-conditioning load prediction, and the operating timetable of the refrigerator 1 and the primary cold / hot water pump 3 is calculated from the heat source device capacity, that is, the capacity of the refrigerator 1. The refrigerating machine 1 and the primary cold / hot water pump 3 are operated / stopped in accordance with the attachment.

次に、以上説明した蓄熱冷暖房装置の運転制御に際
し、空調負荷予測運転を行うための制御装置の構成と制
御の手順を第2図および第3図を参照して説明する。
Next, in the operation control of the heat storage cooling / heating apparatus described above, the configuration of the control apparatus for performing the air conditioning load prediction operation and the control procedure will be described with reference to FIGS. 2 and 3.

第2図は、第1図の蓄熱冷暖房装置の運転制御装置に
おける空調負荷予測制御部の構成を示すブロック図、第
3図は、対象負荷の外気温度と日積算負荷との相関を求
めるための手順を示す説明図である。
FIG. 2 is a block diagram showing the configuration of the air conditioning load prediction control unit in the operation control device of the heat storage cooling / heating device of FIG. 1, and FIG. 3 is for obtaining the correlation between the outside air temperature of the target load and the daily integrated load. It is explanatory drawing which shows a procedure.

第2図において、5,6は、先に第1図で示したように
蓄熱槽2に設けて蓄熱量を検知するための各種センサー
であり、例えば5は温度センサー、6は圧力センサーで
ある。
In FIG. 2, 5 and 6 are various sensors provided in the heat storage tank 2 to detect the heat storage amount, as shown in FIG. 1, for example, 5 is a temperature sensor, and 6 is a pressure sensor. .

7は、外気温度を検知する温度センサー、10は、演算
制御手段に係るマイクロコンピュータで、このマイクロ
コンピュータ10の枠内に示した各ブロックは、本実施例
におけるマイクロコンピュータ10の機能を表わしたもの
であり、11は電源部、12は記憶部、13は演算部、14は出
力部を示す。
Reference numeral 7 is a temperature sensor for detecting the outside air temperature, 10 is a microcomputer relating to arithmetic control means, and each block shown in the frame of the microcomputer 10 represents the function of the microcomputer 10 in this embodiment. 11 is a power supply unit, 12 is a storage unit, 13 is a calculation unit, and 14 is an output unit.

15は、先に第1図で説明した冷凍機1、一次冷温水ポ
ンプ3等の熱源機器である。
Reference numeral 15 is a heat source device such as the refrigerator 1 and the primary cold / hot water pump 3 described above with reference to FIG.

空調負荷を予測するためには、まず、気象データをも
とに予め設定した週単位の年間外気温度データを入力
し、次にこの外気温度データと日積算負荷との相関関係
を求める。
In order to predict the air-conditioning load, first, annual preset outdoor temperature data based on the weather data is input, and then the correlation between the outdoor temperature data and the daily integrated load is obtained.

その手順は以下のようになる。以下の説明における各
記号は、第3図に記した記号に対応している。
The procedure is as follows. Each symbol in the following description corresponds to the symbol shown in FIG.

第3図は、横軸に月をとり、縦軸に温度をとって年間
の温度推移を週単位で示したもので、階段状の実線は各
週単位における標準温度、冷房シーズンにおける破線は
日最高温度の週平均値、暖房シーズンにおける破線は日
最低気温の週平均値である。
In Fig. 3, the horizontal axis shows the month and the vertical axis shows the temperature, showing the annual temperature change in weekly units. The solid line in a staircase pattern is the standard temperature in each weekly unit, and the broken line in the cooling season is the daily maximum. The weekly average temperature, the broken line in the heating season is the weekly average of the daily minimum temperature.

1)基準時間10時間における年間の温度推移を週単位の
52分割で入力し、これを標準温度Tnとする。
1) Change the annual temperature change at a standard time of 10 hours in week units
Input in 52 divisions and use this as the standard temperature Tn.

2)冷房負荷計算に使う最高温度の日の基準時間10時に
おける温度をThとし、このときの最大冷房負荷をQcmax
とする。
2) Let Th be the temperature at 10 o'clock of the maximum temperature used for the cooling load calculation, and the maximum cooling load at this time is Qcmax.
And

3)暖房負荷計算に使う最低温度の日の基準時間10時に
おける温度をTlとし、このときの最大暖房負荷をQwmax
とする。
3) Let Tl be the temperature at the reference time of 10 o'clock of the lowest temperature used for heating load calculation, and the maximum heating load at this time is Qwmax
And

4)日最高気温が冷房開始温度(28℃程度)の日の基準
時間における温度をTcとし、このときの冷房負荷を内部
発生負荷Qciとする。
4) Let Tc be the temperature at the reference time on the day when the daily maximum temperature is the cooling start temperature (about 28 ° C), and the cooling load at this time is the internally generated load Qci.

したがって、冷房開始温度の日のTc以上の温度のとき
の冷房負荷は内部発生負荷Qciを最低負荷として、外気
温度に比例して増加する。換言すれば、冷房時には、外
気温度と、内部発生負荷を除く日積算負荷とが比例的に
相関する。
Therefore, the cooling load when the temperature is equal to or higher than Tc on the day of the cooling start temperature is increased in proportion to the outside air temperature with the internally generated load Qci as the minimum load. In other words, during cooling, the outside air temperature and the daily integrated load excluding the internally generated load are proportionally correlated.

5)日最低気温が暖房開始温度(18℃程度)の日の基準
時間における温度をTwとし、このときの暖房負荷を内部
発生負荷0とする。
5) Let Tw be the temperature at the reference time of the day when the daily minimum temperature is the heating start temperature (about 18 ° C), and the heating load at this time is the internally generated load 0.

したがって、暖房開始温度の日のTw以下の温度のとき
の暖房負荷は外気温度が下るにつれて増加する。換言す
れば、暖房時には、外気温度と日積算負荷とが比例的に
相関する。
Therefore, the heating load when the temperature is equal to or lower than the heating start temperature Tw on the day increases as the outside air temperature decreases. In other words, during heating, the outside air temperature and the daily integrated load are proportionally correlated.

このようにして、基準時間における外気温度と日積算
負荷の相関が決まり、これだけで年間の負荷予測が可能
であるが、本実施例では、予測確度を増すために、さら
に実際の外気状態をフイードバックさせている。すなわ
ち、基準時間10時に前記温度センサー7により外気温度
を検知し、空調負荷予測の演算式に加える。
In this way, the correlation between the outside air temperature at the reference time and the daily integrated load is determined, and it is possible to predict the annual load only with this, but in this embodiment, in order to increase the prediction accuracy, the actual outside air condition is further fed back. I am letting you. That is, the outside air temperature is detected by the temperature sensor 7 at the reference time 10 and added to the calculation formula of the air conditioning load prediction.

空調負荷予測演算式は次のとおりである。 The air-conditioning load prediction calculation formula is as follows.

第n週目の標準温度をTnとする。 The standard temperature at the nth week is Tn.

(A)冷房負荷 第n週目の冷房負荷Qc(n)は、 基準時間10時における外気温度計測値をtとし修正を行
うと、 各項に補正係数を与えてまとめると、 (B)暖房負荷 第n週目の暖房負荷Qw(n)は 基準時間10時における外気温度計測値をtとし修正を行
うと、 各項に補正係数を与えまとめると 演算に使われている各補正係数k1,k2,k3,k4は、マイク
ロコンピュータ10の記憶部12に予め入力しておく。
(A) Cooling load The cooling load Qc (n) at the nth week is When the outside air temperature measurement value at the reference time of 10 o'clock is corrected to t, When a correction coefficient is given to each term and summarized, (B) Heating load The heating load Qw (n) for the nth week is When the outside air temperature measurement value at the reference time of 10 o'clock is corrected to t, When a correction coefficient is given to each term and summarized The correction coefficients k 1 , k 2 , k 3 , k 4 used in the calculation are input in advance in the storage unit 12 of the microcomputer 10.

以上のようにして空調負荷の予測が行われ、さらに前
記蓄熱量の検知と記憶部12に入力されている前記熱源機
器容量のデータから、熱源機器15の運転時間割付けを演
算部13で行い、出力部14を介して熱源機器15の適正な空
調負荷予測運転が行われる。
The prediction of the air conditioning load is performed as described above, further, from the data of the heat source device capacity input to the detection and storage unit 12 of the heat storage amount, the operating time allocation of the heat source device 15 is performed by the operation unit 13, An appropriate air conditioning load prediction operation of the heat source device 15 is performed via the output unit 14.

本実施例の蓄熱冷暖房装置の運転制御方法によれば、
一般的な気象データと簡易なプログラムにより、安価で
比較的精度の高い空調負荷予測を行うことができ、蓄熱
冷暖房装置の過不足の少ない効率的な運転を行うことが
できる。
According to the operation control method of the heat storage air conditioner of the present embodiment,
By using general weather data and a simple program, it is possible to predict the air conditioning load inexpensively and with a relatively high degree of accuracy, and it is possible to perform efficient operation of the heat storage cooling / heating device with less excess and deficiency.

なお、前述の実施例では、熱源機器として冷凍機を用
いた例を説明したが、本発明はこれに限るものではな
く、例えばヒートポンプ式チラーユニットなど蓄熱槽と
接続して用いる他の熱源機器の採用を防げない。
In addition, in the above-described embodiment, an example using a refrigerator as a heat source device has been described, but the present invention is not limited to this, for example, other heat source devices used by being connected to a heat storage tank such as a heat pump chiller unit. It cannot prevent adoption.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、安価でしかも精
度の高い実用的な年間空調負荷予測を行い、熱源機器の
効率的な運転,ピークシフト運転を可能にする蓄熱冷暖
房装置の運転制御方法を提供することができる。
As described above, according to the present invention, an operation control method for a heat storage cooling / heating device that makes it possible to perform a practical annual air-conditioning load prediction that is inexpensive and highly accurate, and that enables efficient operation of heat source equipment and peak shift operation. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る蓄熱冷暖房装置の略
示構成図、第2図は、第1図の蓄熱冷暖房装置の運転制
御装置における空調負荷予備制御部の構成を示すブロッ
ク図、第3図は、対象負荷の外気温度と日積算負荷との
相関を求めるための手順を示す説明図である。 1……冷凍機、2……蓄熱槽、3……一次冷温水ポン
プ、5……温度センサー、6……圧力センサー、7……
温度センサー、8……空気調和機、9……二次冷温水ポ
ンプ、10……マイクロコンピュータ、12……記憶部、13
……演算部、14……出力部、15……熱源機器。
FIG. 1 is a schematic configuration diagram of a heat storage cooling / heating apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a configuration of an air conditioning load preliminary control unit in an operation control device of the heat storage cooling / heating apparatus of FIG. FIG. 3 is an explanatory diagram showing a procedure for obtaining the correlation between the outside air temperature of the target load and the daily integrated load. 1 ... Refrigerator, 2 ... Heat storage tank, 3 ... Primary cold / hot water pump, 5 ... Temperature sensor, 6 ... Pressure sensor, 7 ...
Temperature sensor, 8 ... Air conditioner, 9 ... Secondary cold / hot water pump, 10 ... Microcomputer, 12 ... Storage unit, 13
…… Calculator, 14 …… Output, 15 …… Heat source equipment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳原 隆司 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 坪田 祐二 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 小野田 利介 土浦市神立町603番地 株式会社日立製 作所土浦工場内 (72)発明者 杉本 滋郎 土浦市神立町603番地 株式会社日立製 作所土浦工場内 (56)参考文献 特開 昭49−83246(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Yanagihara 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo TEPCO (72) Inventor Yuji Tsubota 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo TEPCO Incorporated (72) Inventor Ryosuke Onoda 603 Kintate-cho, Tsuchiura-shi In the Tsuchiura Plant, Hitachi Ltd. (72) Inventor Shirou Sugimoto 603 Kintate-cho, Tsuchiura-Inside the Hitachi Tsuchiura Plant (56) ) References JP-A-49-83246 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱源機器と、この熱源機器および負荷側機
器に接続する蓄熱槽と、これらを制御する手段と、外気
温度および蓄熱量を検知する検知手段とを備え、 少なくとも外気温度データを基に所要空調負荷を予測し
て熱源機器の運転制御を行う蓄熱冷暖房装置の運転制御
方法において、 気象データをもとに予め設定した週単位の年間外気温度
データと、少なくとも、負荷計算により求めた冷暖房最
大日積算負荷および内部発生熱による日積算内部発生負
荷とを用い、 冷房時期には、外気温度と、シーズン中はほぼ一定であ
る内部発生負荷を除いた日積算負荷とが比例的に相関
し、暖房時期には、外気温度と日積算負荷とが比例的に
相関することから、前記年間外気温度データに従って年
間の日積算負荷予測を演算するとともに、 実際に検知した外気温度と予め設定した前記週単位の年
間外気温度データとの差によって、前記日積算負荷予測
を修正するようにして、熱源機器の予測運転を行うこと
を特徴とする蓄熱冷暖房装置の運転制御方法。
1. A heat source device, a heat storage tank connected to the heat source device and the load side device, means for controlling these, and detection means for detecting the outside air temperature and the amount of accumulated heat, and based on at least the outside air temperature data. In the operation control method of the heat storage air conditioner that predicts the required air conditioning load and controls the operation of the heat source equipment, the weekly annual outside air temperature data set beforehand based on the meteorological data, and at least the heating and cooling calculated by the load calculation. The maximum daily accumulated load and the daily accumulated internally generated load due to internally generated heat are used, and during the cooling period, the outside air temperature and the daily accumulated load excluding the internally generated load, which is almost constant during the season, are proportionally correlated. Since the outdoor temperature and the daily integrated load are proportionally correlated during the heating period, the annual daily integrated load forecast is calculated according to the annual outdoor air temperature data, and the actual The operation of the heat storage cooling and heating apparatus characterized by performing the predictive operation of the heat source device so as to correct the daily cumulative load prediction by the difference between the known outdoor air temperature and the preset annual outdoor air temperature data. Control method.
JP60279246A 1985-12-13 1985-12-13 Operation control method for heat storage air conditioner Expired - Fee Related JP2537784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279246A JP2537784B2 (en) 1985-12-13 1985-12-13 Operation control method for heat storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279246A JP2537784B2 (en) 1985-12-13 1985-12-13 Operation control method for heat storage air conditioner

Publications (2)

Publication Number Publication Date
JPS62141448A JPS62141448A (en) 1987-06-24
JP2537784B2 true JP2537784B2 (en) 1996-09-25

Family

ID=17608471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279246A Expired - Fee Related JP2537784B2 (en) 1985-12-13 1985-12-13 Operation control method for heat storage air conditioner

Country Status (1)

Country Link
JP (1) JP2537784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423842A (en) * 2012-05-24 2013-12-04 珠海格力电器股份有限公司 Air conditioner and method for controlling off-peak starting thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441737A (en) * 1987-08-05 1989-02-14 Sapporo Breweries Detection of accumulated heat quantity in heat accumulator
JPH0772633B2 (en) * 1989-05-23 1995-08-02 大成建設株式会社 Control method of heat storage type air conditioning system
JP2780526B2 (en) * 1991-08-07 1998-07-30 日新電機株式会社 Heat storage control device
JP5485392B2 (en) * 2010-06-30 2014-05-07 三洋電機株式会社 Charge / discharge control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983246A (en) * 1972-12-15 1974-08-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423842A (en) * 2012-05-24 2013-12-04 珠海格力电器股份有限公司 Air conditioner and method for controlling off-peak starting thereof
CN103423842B (en) * 2012-05-24 2016-07-06 珠海格力电器股份有限公司 The control method started of avoiding the peak hour of air-conditioner and air-conditioner

Also Published As

Publication number Publication date
JPS62141448A (en) 1987-06-24

Similar Documents

Publication Publication Date Title
US7992630B2 (en) System and method for pre-cooling of buildings
JP4889167B2 (en) Cogeneration system operation planning method
US5197666A (en) Method and apparatus for estimation of thermal parameter for climate control
AU2012262613B2 (en) A water heater controller or system
US5115967A (en) Method and apparatus for adaptively optimizing climate control energy consumption in a building
US6478233B1 (en) Thermal comfort controller having an integral energy savings estimator
JP2003216715A (en) Device for evaluating and monitoring building energy saving
JP2006029693A (en) Demand control system of multi-air conditioner
CA2373353A1 (en) Humidity control
CN103486693A (en) Energy-saving control method for central air-conditioning chilled water system
KR20180066300A (en) Operating Method of Night Purge based on Cooling Load Prediction
JPH0835706A (en) Air conditioning heat load predicting system
JP2537784B2 (en) Operation control method for heat storage air conditioner
JP2008064388A (en) Hybrid hot water supply machine
JP2002364901A (en) Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning
JP4450541B2 (en) Energy saving evaluation method and energy saving evaluation method
KR20180122054A (en) Building control method based on load prediction based on building energy efficiency rating
JPH07151369A (en) Heat load predicting apparatus and plant heat load predicting apparatus
JPH0886490A (en) Predicting equipment of thermal load
JP2617444B2 (en) Air-conditioning load prediction operation method of thermal storage cooling and heating device
Vladimirovna et al. Energy-efficient autonomous system of heating
JP2005149384A (en) Energy evaluation method
JPH08327150A (en) Hot water supplying and air conditioning system
JPS6338855A (en) Temperature control method for heat accumulating tank
JPH0876858A (en) Heat source control system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees