JP2536713B2 - AlGaInP semiconductor laser device - Google Patents

AlGaInP semiconductor laser device

Info

Publication number
JP2536713B2
JP2536713B2 JP5020245A JP2024593A JP2536713B2 JP 2536713 B2 JP2536713 B2 JP 2536713B2 JP 5020245 A JP5020245 A JP 5020245A JP 2024593 A JP2024593 A JP 2024593A JP 2536713 B2 JP2536713 B2 JP 2536713B2
Authority
JP
Japan
Prior art keywords
layer
algainp
thin film
film structure
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5020245A
Other languages
Japanese (ja)
Other versions
JPH06237038A (en
Inventor
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5020245A priority Critical patent/JP2536713B2/en
Publication of JPH06237038A publication Critical patent/JPH06237038A/en
Application granted granted Critical
Publication of JP2536713B2 publication Critical patent/JP2536713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバーコードリーダー,光
ディスク等の情報処理機器用の光源に用いられているA
lGaInP半導体レーザに関し、特にその半導体の積
層構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a light source for information processing equipment such as bar code readers and optical discs.
The present invention relates to an lGaInP semiconductor laser, and particularly to a laminated structure of the semiconductor.

【0002】[0002]

【従来の技術】現在AlGaInP半導体レーザにおい
ては高温動作特性の改善が強く望まれている。その改善
のために2つの方法がとられている。その1つは活性層
に隣接して多層薄膜構造を導入し電子波を反射させ高温
動作時においても活性層からのオーバーフロー電流を抑
制する方法(特開昭63−46788)である。もう1
つはpクラッド層中のpキャリア濃度を高めフェルミ準
位を上げ実行的に活性層とクラッド層の障壁高さを大き
くする手法である(ジャーナル オブ クオンタムエレ
クトロニクス ボリューム27ペ−ジ1476〜148
2)。
2. Description of the Related Art At present, in AlGaInP semiconductor lasers, improvement of high temperature operation characteristics is strongly desired. Two methods have been taken to improve it. One of them is a method of introducing a multilayer thin film structure adjacent to the active layer to reflect electron waves and suppress the overflow current from the active layer even at high temperature operation (Japanese Patent Laid-Open No. 63-46788). Another one
One is to increase the p-carrier concentration in the p-cladding layer and raise the Fermi level to effectively increase the barrier height between the active layer and the cladding layer (Journal of Quantum Electronics Volume 27 pages 1476-148).
2).

【0003】[0003]

【発明が解決しようとする課題】従来の技術の欄で述べ
た後者のpクラッド層中のpキャリア濃度を高める手法
は非常に簡単な手法である。ところが、実際にはキャリ
ア濃度を高めるためにpクラッド層中のp型不純物であ
るZnを多量に導入すると、図2に概念的に示すように
導入されたZnが活性層1に拡散し、非発光センター等
を形成し、キャリア寿命を短くし、しきい値電流等の上
昇をもたらす。Zn拡散の抑制という観点から逆にZn
のドーピング量をある程度に押える必要があり、ある濃
度(〜5×1017cm-3)以上に高くすることができな
い。また、従来の技術の欄で述べた前者の手法(多層薄
膜構造を活性層に隣接して設ける手法)では、層厚と各
層の組成とを極めて厳密な関係に選定する必要があり、
製作には原子レベルの制御が求められ、実用上は問題が
多い。そこで、本発明の目的は、従来技術で述べた前者
の手法に新たな機能をもたせ、後者の課題を解決するこ
とにある。
The latter method of increasing the p carrier concentration in the p-clad layer described in the section of the prior art is a very simple method. However, actually, when a large amount of Zn which is a p-type impurity in the p-clad layer is introduced to increase the carrier concentration, the introduced Zn diffuses into the active layer 1 as conceptually shown in FIG. It forms a light emitting center, shortens the carrier life, and raises the threshold current. Conversely, from the viewpoint of suppressing Zn diffusion, Zn
It is necessary to suppress the doping amount to a certain degree, and it is not possible to increase the concentration above a certain concentration (up to 5 × 10 17 cm −3 ). Further, in the former method (method of providing the multilayer thin film structure adjacent to the active layer) described in the section of the conventional technique, it is necessary to select the layer thickness and the composition of each layer in an extremely strict relationship,
Atomic level control is required for manufacturing, and there are many problems in practical use. Therefore, an object of the present invention is to provide the former method described in the prior art with a new function and solve the latter problem.

【0004】[0004]

【課題を解決するための手段】本発明のAlGaInP
半導体素子は、p型の導電型を有するクラッド層中にA
l組成の異なるAlGaInP層が交互に積層された多
層薄膜構造を活性層に隣接して配置するとともに、多層
薄膜構造を形成するAlGaInP層のうち少なくとも
Al組成が小さい層に引っ張り歪が加わるようにしたこ
とを特徴とする。その構成を図1を用いて説明する。活
性層1がAlGaInPクラッド層3,4に挟み込まれ
たDH構造を有する。活性層1は多層半導体薄膜でなる
いわゆるMQWか、又は単層のバルク半導体層のいずれ
であってもよい。p−AlGaInPクラッド層4中に
活性層1に隣接させ多層薄膜構造2を配置する。多層薄
膜構造2は、(Alx Ga1-xz In1-z P層と(A
y Ga1-yq In1-qP層とでなり、Al組成の異
なる層を交互に積層したものである。y≧xとしてあ
り、Al組成の小さい層である(Alx Ga1-xz
1-z P層には引っ張り歪が加わるように、(Alx
1-xz In1-z P層におけるAlx Ga1- x の組成
zが選定してある。DH構造を結晶成長させる基板がG
aAsであればz>0.5のときに(Alx Ga1-x
z In1-z P層に引っ張り歪が加わる。他方、qは0.
5より大きくても小さくてもよい。
The AlGaInP of the present invention
The semiconductor element has A in a clad layer having p-type conductivity.
A multi-layer thin film structure in which AlGaInP layers having different l compositions are alternately laminated is arranged adjacent to the active layer, and tensile strain is applied to at least a layer having a small Al composition among the AlGaInP layers forming the multi-layer thin film structure. It is characterized by The configuration will be described with reference to FIG. The active layer 1 has a DH structure sandwiched by AlGaInP cladding layers 3 and 4. The active layer 1 may be either a so-called MQW formed of a multi-layer semiconductor thin film or a single-layer bulk semiconductor layer. A multilayer thin film structure 2 is arranged adjacent to the active layer 1 in the p-AlGaInP cladding layer 4. The multi-layered thin film structure 2 includes (Al x Ga 1-x ) z In 1-z P layer and (A
It becomes in a l y Ga 1-y) q In 1-q P layer is formed by laminating layers having different Al composition alternately. y ≧ x, which is a layer having a small Al composition (Al x Ga 1-x ) z I
In order to apply tensile strain to the n 1 -z P layer, (Al x G
a 1-x) z In 1 -z Al in the P layer x Ga 1-x composition z is are selected. The substrate for crystal growth of the DH structure is G
If aAs, when z> 0.5 (Al x Ga 1-x ).
A tensile strain is applied to the z In 1 -z P layer. On the other hand, q is 0.
It may be larger or smaller than 5.

【0005】[0005]

【作用】GaInP中のZnの拡散定数はGa固相量が
大きい程小さくなることが知られている。例えば850
℃でGa0.48In0.52Pでの拡散定数は1.3×10-9
cm2 /secであり、固相Ga量を増やしたGa0.6
In0.4 Pでは0.8×10-9cm2 /secであり拡
散定数は小さくなる。また歪を内在させた多層AlGa
InP層の界面はZnをトラップする傾向示す。この2
つの効果により、P−AlGaInPクラッド層4中に
多層薄膜構造2を導入した本発明の構造は活性層1への
Znの拡散を抑える機能を有する。それゆえP−AlG
aInPクラッド層4中のZn原子濃度をさらに高める
ことができ、それはアクセプタ濃度を高めることにな
り、キャリアオーバーフローを抑制することになる。こ
こで本発明と従来の超格子構造体(多重電子障壁)(特
開昭63ー46788)との違いを効果の面から再度明
らかにしておく。従来の超格子構造体は、本発明におけ
る多重薄膜構造に似た構造ではあるが、各層の厚さ及び
真空準位を入射する電子波を反射するように決めなけれ
ばならない。そこで、従来の超格子構造体では層厚に対
する組成の関係が厳密に選定されなければならない。本
発明の構造には層厚の制限はなく、従来の超格子構造体
にさらに付加できる発明となっている。逆に言えば本発
明における多層薄膜構造は、Zn拡散抑制層として機能
させるために設けたものであり、電子波との位相条件の
考慮を必要とするものではなく、位相条件がずれている
場合においても効果を発揮する。
It is known that the diffusion constant of Zn in GaInP decreases as the amount of Ga solid phase increases. For example, 850
The diffusion constant of Ga 0.48 In 0.52 P at ℃ is 1.3 × 10 -9
cm 2 / sec and Ga 0.6 with an increased amount of solid phase Ga
In 0.4 P is 0.8 × 10 −9 cm 2 / sec, and the diffusion constant is small. In addition, multi-layered AlGa with internal strain
The interface of the InP layer tends to trap Zn. This 2
Due to two effects, the structure of the present invention in which the multilayer thin film structure 2 is introduced into the P-AlGaInP cladding layer 4 has a function of suppressing diffusion of Zn into the active layer 1. Therefore P-AlG
The Zn atom concentration in the aInP cladding layer 4 can be further increased, which increases the acceptor concentration and suppresses carrier overflow. Here, the difference between the present invention and the conventional superlattice structure (multi-electron barrier) (JP-A-63-46788) will be clarified again from the viewpoint of the effect. Although the conventional superlattice structure is a structure similar to the multiple thin film structure of the present invention, the thickness of each layer and the vacuum level must be determined so as to reflect incident electron waves. Therefore, in the conventional superlattice structure, the relationship of composition with respect to layer thickness must be selected strictly. The structure of the present invention has no limitation on the layer thickness and is an invention that can be further added to the conventional superlattice structure. Conversely speaking, the multilayer thin film structure in the present invention is provided to function as a Zn diffusion suppressing layer, does not require consideration of the phase condition with the electron wave, and when the phase condition is deviated. Also effective in.

【0006】[0006]

【実施例】以下に本発明の実施例を挙げ、本発明を一層
具体的に説明する。本発明を具体的に実施した構造の断
面模式図を図3に示す。この構造は有機金属分解気相成
長法(MOVPE法)により結晶を積層し作成した。ま
ず、n型のGaAs基板9上にn型のGaAsバッファ
ー層8を0.5μm積層後、厚さ0.9μmのn型のA
lGaInPクラッド層3,アンドープGaInP/A
lGaInPMQW構造でなる活性層1,活性層1より
10nm厚の(Al0.7 Ga0.30.5 In 0.5 P層4
aを介して、GaInP/AlGaInPでなる多層薄
膜構造2,厚さ0.9μmのp型(Al0.7 Ga0.3
0.5 In0.5 Pクラッド層4,厚さ0.3μmのGa
0.5 In0.5 Pでなるバッファー層6を順次に積層し
た。活性層1は厚さ6nmのGa0.6 In0.4 Pをウエ
ル,厚さ4nmの(Al0.5 In0.50.5 In0.5
をバリアとするウエル数4のMQWである。また多層薄
膜構造2は、厚さ10ÅのGa0.6 In0.4 Pと厚さ2
0Åの(Al0.7 Ga0.30.5 In0.5 Pとを交互に
10層積層したものである。10nm厚の(Al0.7
0.30.5 In0.5 P層4aは、成長時にはn型又は
p型のいずれであっても、アンドソープであっても差し
支えなく、使用時にp型のクラッド層4からp型不純物
が拡散しp型となる。このウエハに、ストライプ状にパ
ターン化されたSiO2 膜のマスクをして、GaInP
バッファー層6とP−AlGaInPクラッド層4とを
部分的にエッチングし、メサ構造を形成し、その後にn
型のGaAsでなる電流ブロック層5をメサの左右に積
層した。さらにSiO2 膜を除去後に表面全体をGaA
sキャップ層7で覆い図3の構造を作成した。p側及び
n側の表面それぞれに電極を形成し、ヘキ開によりレー
ザ素子を切り出して素子を完成させた。
EXAMPLES The present invention will be further described with reference to the following examples of the present invention.
This will be specifically described. Destruction of the structure in which the present invention is specifically implemented
A schematic view of the surface is shown in FIG. This structure is a metalorganic decomposition vapor phase
Crystals were laminated by the long method (MOVPE method). Well
First, an n-type GaAs buffer is formed on the n-type GaAs substrate 9.
-Layer 8 is laminated by 0.5 μm and then 0.9 μm thick of n-type A
lGaInP clad layer 3, undoped GaInP / A
From the active layer 1 and the active layer 1 having the lGaInPMQW structure
10 nm thick (Al0.7 Ga0.3 )0.5 In 0.5 P layer 4
Multilayer thin consisting of GaInP / AlGaInP via a
Membrane structure 2, 0.9 μm thick p-type (Al0.7 Ga0.3 )
0.5 In0.5 P clad layer 4, Ga having a thickness of 0.3 μm
0.5 In0.5 The buffer layer 6 made of P is sequentially stacked.
Was. The active layer 1 is made of Ga having a thickness of 6 nm.0.6 In0.4 P
With a thickness of 4 nm (Al0.5 In0.5 )0.5 In0.5 P
Is an MQW with four wells having a barrier. Multi-layer thin
The film structure 2 has a thickness of 10 Å Ga0.6 In0.4 P and thickness 2
0Å (Al0.7 Ga0.3 )0.5 In0.5 Alternating with P
It is a laminate of 10 layers. 10 nm thick (Al0.7G
a0.3 )0.5 In0.5 The P layer 4a is n-type or
Whether it is p-type or and-soap
Without support, p-type impurities from the p-type clad layer 4 during use
Diffuse and become p-type. A stripe pattern is formed on this wafer.
Turned SiO2 GaInP as a film mask
The buffer layer 6 and the P-AlGaInP cladding layer 4 are
Partially etched to form mesa structure, then n
Type current blocking layer 5 made of GaAs on both sides of the mesa
Layered. Further SiO2 After removing the film, the entire surface is GaA
The structure of FIG. 3 was prepared by covering with the s-cap layer 7. p side and
An electrode is formed on each of the n-side surfaces, and cleaving
The element was cut out to complete the element.

【0007】[0007]

【発明の効果】効果を明らかにするために多層薄膜構造
2のある素子とない素子とをpクラッド層へのドーピン
グ量を変えながら作成した。pクラッド層のキャリア濃
度が1×1017cm-3のときは発振しきい値にはともに
高く両者には差がなかった。キャリア濃度が4×1017
cm3 のときは両者の発振しきい値はともに減少し差も
見られない。発振しきい値の特性温度は30〜40kで
ここにも大きな差は見られない。さらにキャリア濃度を
8×1017cm-3に増加させた素子では大きな差が現わ
れた。多層薄膜構造2のない素子は4×1017cm-3
低下したしきい値が再び大きく上昇した。一方、多層薄
膜構造2を導入している素子ではしきい値には4×10
17cm-3のときに比べ変化はなく、その特性温度は60
kに上昇した。これはまさに図2で示したZn拡散を多
層薄膜構造2が抑制し、pクラッド層キャリア濃度を高
く維持している本発明の効果によるものである。
In order to clarify the effect, an element having the multilayer thin film structure 2 and an element having no multilayer thin film structure 2 were formed while changing the doping amount in the p-clad layer. When the carrier concentration of the p-clad layer was 1 × 10 17 cm −3 , both oscillation thresholds were high and there was no difference between them. Carrier concentration is 4 × 10 17
At cm 3 , both oscillation thresholds decrease and no difference is observed. The characteristic temperature of the oscillation threshold is 30 to 40 k, and no significant difference is observed here. Further, a large difference appeared in the element in which the carrier concentration was increased to 8 × 10 17 cm -3 . In the device without the multi-layered thin film structure 2, the threshold value lowered at 4 × 10 17 cm -3 again increased greatly. On the other hand, in the element in which the multilayer thin film structure 2 is introduced, the threshold value is 4 × 10.
There is no change compared to the case of 17 cm -3 , and its characteristic temperature is 60
rose to k. This is due to the effect of the present invention that the multilayer thin film structure 2 suppresses the Zn diffusion shown in FIG. 2 and the p-cladding layer carrier concentration is maintained high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザ素子における活性層及び
これを挟むクラッド層の構造を示す概略図。
FIG. 1 is a schematic view showing a structure of an active layer and a clad layer sandwiching the active layer in a semiconductor laser device of the present invention.

【図2】クラッド層4中のZnが活性層1へ拡散する様
子を示す概念図。
FIG. 2 is a conceptual diagram showing how Zn in a clad layer 4 diffuses into an active layer 1.

【図3】本発明の構造を導入し実施したAlGaInP
半導体レーザの模式的断面図。
FIG. 3 AlGaInP implemented by introducing the structure of the present invention
Schematic sectional view of a semiconductor laser.

【符号の説明】[Explanation of symbols]

1 活性層 2 多層薄膜構造 3 n−AlGaInPクラッド層 4 p−AlGaInPクラッド層 5 電流ブロック層 6 GaInPバッファー層 7 GaAsキャップ層 8 GaAsバッファー層 9 GaSa基板 10 多層薄膜構造を構成する低Al組成AlGaI
nP層 11 多層薄膜構造を構成する高Al組成AlGaI
nP層
DESCRIPTION OF SYMBOLS 1 Active layer 2 Multilayer thin film structure 3 n-AlGaInP clad layer 4 p-AlGaInP clad layer 5 Current block layer 6 GaInP buffer layer 7 GaAs cap layer 8 GaAs buffer layer 9 GaSa substrate 10 Low Al composition AlGaI which comprises a multilayer thin film structure
nP layer 11 High Al composition AlGaI constituting a multilayer thin film structure
nP layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al組成を異にする(Alx Ga1-x
Z In1-z P層と(Aly Ga1-yq In1-q P層
(y≧x)とが交互に積層された多層薄膜構造を、活性
層を両側より挟み込むクラッド層のうちp型の導電型を
有するAlGaInPクラッド層中に前記活性層に隣接
して有し、 前記多層薄膜構造をなす2つのAlGaInP層のうち
Al組成の小さい(Alx Ga1-xz In1-z P層に
引っ張り歪が加わる値に前記(Alx Ga1-xz In
1-z P層におけるAlx Ga1-x の組成比zが選ばれて
いることを特徴とするAlGaInP半導体レーザ素
子。
1. Different Al compositions (Al x Ga 1-x )
Z In 1-z P layer and the (Al y Ga 1-y) q In 1-q P layer (y ≧ x) and a multilayer thin film structure are alternately laminated, one of the cladding layers sandwiching the active layer from both sides Of the two AlGaInP layers that have the p-type conductivity type and are adjacent to the active layer in the AlGaInP clad layer and that have the multi-layer thin film structure, the Al composition is the smallest (Al x Ga 1-x ) z In 1- When the tensile strain is applied to the zP layer, the above (Al x Ga 1-x ) z In
An AlGaInP semiconductor laser device, wherein a composition ratio z of Al x Ga 1-x in the 1-z P layer is selected.
【請求項2】 前記活性層をクラッド層で挟み込んだ半
導体積層構造がGaAs基板上に結晶成長により形成さ
れており、前記組成比zが0.5以上であることを特徴
とする請求項1に記載のAlGaInP半導体レーザ素
子。
2. A semiconductor laminated structure in which the active layer is sandwiched by cladding layers is formed on a GaAs substrate by crystal growth, and the composition ratio z is 0.5 or more. The AlGaInP semiconductor laser device described.
JP5020245A 1993-02-08 1993-02-08 AlGaInP semiconductor laser device Expired - Fee Related JP2536713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020245A JP2536713B2 (en) 1993-02-08 1993-02-08 AlGaInP semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020245A JP2536713B2 (en) 1993-02-08 1993-02-08 AlGaInP semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH06237038A JPH06237038A (en) 1994-08-23
JP2536713B2 true JP2536713B2 (en) 1996-09-18

Family

ID=12021815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020245A Expired - Fee Related JP2536713B2 (en) 1993-02-08 1993-02-08 AlGaInP semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2536713B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125272A (en) * 1994-10-28 1996-05-17 Nec Corp Semiconductor laser
JP3521793B2 (en) 1999-03-03 2004-04-19 松下電器産業株式会社 Manufacturing method of semiconductor laser
TW554601B (en) 2001-07-26 2003-09-21 Matsushita Electric Ind Co Ltd Semiconductor laser device and method for fabricating the same
JP4313628B2 (en) 2003-08-18 2009-08-12 パナソニック株式会社 Semiconductor laser and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053367A (en) * 1991-02-01 1993-01-08 Sumitomo Electric Ind Ltd Semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053367A (en) * 1991-02-01 1993-01-08 Sumitomo Electric Ind Ltd Semiconductor laser

Also Published As

Publication number Publication date
JPH06237038A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
JP4011569B2 (en) Semiconductor light emitting device
JPH0750445A (en) Manufacture of semiconductor laser
JP2536713B2 (en) AlGaInP semiconductor laser device
KR100277561B1 (en) Semiconductor laser device
JPH09205249A (en) Semiconductor laser
JPH11186665A (en) Semiconductor light emitting element
WO2000021169A1 (en) Semiconductor laser
JP2792177B2 (en) Semiconductor laser
JP2009076602A (en) Two-wavelength semiconductor laser device, and manufacturing method thereof
JP4033930B2 (en) Semiconductor laser
JP3239821B2 (en) Method for producing strained semiconductor crystal
JPH05211372A (en) Manufacture of semiconductor laser
JP3820826B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JP2860217B2 (en) Semiconductor laser device and method of manufacturing the same
JPH09275239A (en) Semiconductor laser device
JP2005236024A (en) Semiconductor laser element
JP2000151024A (en) Semiconductor light-emitting element
JP2000277854A (en) Semiconductor laser
JP2007157802A (en) Semiconductor laser device and method of manufacturing same
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JP3518842B2 (en) Gallium nitride based compound semiconductor laser
JP2002299762A (en) Nitride semiconductor element
JP2956425B2 (en) Semiconductor laser and method of manufacturing the same
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP2932709B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

LAPS Cancellation because of no payment of annual fees