JP2536710B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2536710B2
JP2536710B2 JP4243851A JP24385192A JP2536710B2 JP 2536710 B2 JP2536710 B2 JP 2536710B2 JP 4243851 A JP4243851 A JP 4243851A JP 24385192 A JP24385192 A JP 24385192A JP 2536710 B2 JP2536710 B2 JP 2536710B2
Authority
JP
Japan
Prior art keywords
layer
current
active layer
inp
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4243851A
Other languages
Japanese (ja)
Other versions
JPH06204598A (en
Inventor
朋子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4243851A priority Critical patent/JP2536710B2/en
Publication of JPH06204598A publication Critical patent/JPH06204598A/en
Application granted granted Critical
Publication of JP2536710B2 publication Critical patent/JP2536710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関し、特
に光通信用半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser for optical communication.

【0002】[0002]

【従来の技術】図2に従来のDC−PBH構造半導体レ
ーザの断面図を示す。例えば特開昭61−108183
号公報参照。従来構造における活性層23とn型電流ブ
ロック層20との最短距離(図2のd)、別の表現をす
ると、メサ部の活性層の上端とメサトップとの距離は、
1.0μmである。この素子の85℃−20mWの動作
電流は90mA以上であった。
2. Description of the Related Art FIG. 2 shows a sectional view of a conventional DC-PBH structure semiconductor laser. For example, JP-A-61-108183
See the official gazette. The shortest distance between the active layer 23 and the n-type current blocking layer 20 in the conventional structure (d in FIG. 2), in other words, the distance between the upper end of the active layer in the mesa portion and the mesa top is
It is 1.0 μm. The operating current at 85 ° C.-20 mW of this device was 90 mA or more.

【0003】[0003]

【発明が解決しようとする課題】Optical Ti
me Domain Reflectmeter(OT
DR)用高出力半導体レーザあるいは耐環境用半導体レ
ーザにおいては、活性層からの発熱を抑制するために、
できる限り駆動電流が小さいことが望ましい。本発明の
目的はこの様な従来構造のDC−PBHレーザの欠点を
除去し、高温動作特性の改善、例えば85℃−20mW
時における駆動電流を80mA以下し、高出力用あるい
は耐環境用レーザの特性を改善することにある。
[Problems to be Solved by the Invention] Optical Ti
me Domain Reflectmeter (OT
In order to suppress heat generation from the active layer in the high power semiconductor laser for DR) or the semiconductor laser for environment resistance,
It is desirable that the drive current is as small as possible. The object of the present invention is to eliminate the drawbacks of the DC-PBH laser having such a conventional structure and to improve the high temperature operation characteristics, for example, 85 ° C.-20 mW.
In order to improve the characteristics of the high output laser or environment resistant laser, the drive current at the time is set to 80 mA or less.

【0004】[0004]

【課題を解決するための手段】本発明は、n型半導体基
上に形成されるDC−PBH(double−cha
nnel planar buried hetero
structure)半導体レーザにおいて、n型電流
ブロック層と活性層との最短距離が0.1〜0.3μm
であることを特徴とする。この距離は、メサ部の活性層
の上端とメサトップとの距離、あるいはメサ部の活性層
の上のp型クラッド層の厚さと言うこともできる。更
に、活性層が57A厚の1.40μm組成InGaAs
Pウェル及び、100A厚の1.13μm組成InGa
AsPバリアからなるMQWであることを特徴とする。
The present invention provides an n-type semiconductor substrate
DC-PBH (double-cha) formed on a plate
nnel planar burried hetero
In a semiconductor laser, the shortest distance between the n-type current block layer and the active layer is 0.1 to 0.3 μm.
Is characterized in that. This distance can be said to be the distance between the upper end of the active layer in the mesa portion and the mesa top, or the thickness of the p-type cladding layer on the active layer in the mesa portion. Further, the active layer is 57 A thick and has a 1.40 μm composition of InGaAs.
P-well and 100 A thick 1.13 μm composition InGa
The MQW is composed of an AsP barrier.

【0005】[0005]

【作用】半導体レーザにおいて低発振閾値電流、高微分
効率を実現するには、活性層以外の部分を流れる不要な
漏れ電流を低減することが重要である。従来構造の半導
体レーザの漏れ電流の機構について図2を用いて説明す
る。活性層23の両脇を流れる漏れ電流は、電流ブロッ
ク層のpnpn構造によってある程度抑制される。しか
し、活性層23の上部のp型クラッド層22からpnp
n構造のp型電流ブロック層21に流れ込むゲート電流
(図2のIg)が増加すると発振閾値電流、微分効率が
悪化するばかりでなく、pnpn構造のサイリスタ作用
によりターンオン電圧が低下し、一度ターンオンすると
大きな漏れ電流が流れ始める。
In order to realize a low oscillation threshold current and a high differential efficiency in a semiconductor laser, it is important to reduce unnecessary leakage current flowing in a portion other than the active layer. The mechanism of the leakage current of the semiconductor laser having the conventional structure will be described with reference to FIG. The leakage current flowing on both sides of the active layer 23 is suppressed to some extent by the pnpn structure of the current block layer. However, from the p-type cladding layer 22 above the active layer 23 to the pnp
When the gate current (Ig in FIG. 2) flowing into the n-type p-type current blocking layer 21 increases, not only the oscillation threshold current and the differential efficiency deteriorate, but also the turn-on voltage decreases due to the thyristor action of the pnpn structure, and once turned on. Large leakage current begins to flow.

【0006】従来の構造では、活性層23上部のp型ク
ラッド層22からpnpn構造のp型電流ブロック層2
1に流れ込むゲート電流Igの発生は不可避である。特
に高温においては、ゲート電流Igが増加するためター
ンオン電圧が低下し、発振閾値電流が高く微分効率が更
に小さくなるという欠点を有していた。
In the conventional structure, from the p-type clad layer 22 above the active layer 23 to the p-type current blocking layer 2 of the pnpn structure.
The generation of the gate current Ig flowing into 1 is unavoidable. Particularly at high temperature, the gate current Ig increases, the turn-on voltage decreases, and the oscillation threshold current is high, and the differential efficiency is further reduced.

【0007】次に2次元光デバイスシミュレータによ
り、図3に示す半導体レーザ構造を解析した結果を示
す。図3はDC−PBH構造を模式的に示した図でシミ
ュレーションに用いた構造を示した。図4(a)に85
℃での電流−光出力特性を示す。n型電流ブロック層と
活性層との最短距離、d=0.1〜1.0μm(図3の
d)について計算した。図4(b)は85℃−光出力5
mW時における微分効率、及び漏れ電流のd依存性であ
る。図4(b)から分かるように、d=0.2μmでは
漏れ電流も最小値に達し、それ以下では飽和している。
これに伴い微分効率もd=0.2μmを中心として0.
1〜0.3μmあたりで最大値に達する。従って、dの
値としては、0.1〜0.3μmに最適値があることが
わかる。
Next, the result of analysis of the semiconductor laser structure shown in FIG. 3 by a two-dimensional optical device simulator will be shown. FIG. 3 is a diagram schematically showing the DC-PBH structure and shows the structure used for the simulation. 85 in FIG.
The current-light output characteristic in ° C is shown. n-type current blocking layer
The shortest distance from the active layer, d = 0.1 to 1.0 μm (d in FIG. 3), was calculated. FIG. 4B shows 85 ° C.-optical output 5
It is the d efficiency of the differential efficiency and the leakage current at mW. As can be seen from FIG. 4B, the leakage current reaches the minimum value at d = 0.2 μm, and is saturated below that.
Along with this, the differential efficiency is about 0.
The maximum value is reached around 1 to 0.3 μm. Therefore, d
It can be seen that the optimum value is 0.1 to 0.3 μm .

【0008】図5(a)(b)は、活性層23上部近傍
の活性層23に平行な位置(図3のA−A’)におけ
る、発振閾値電流でのバンド端エネルギー36・38と
擬フェルミレベル37・39をプロットしたものであ
る。図5(a)はd=0.6μm、図5(b)はd=
0.2μmの場合である。活性層23上部のp型クラッ
ド層22と活性層23横のp型電流ブロック層21の正
孔に対するポテンシャル障壁が、(a)ではほとんど0
Vであるが、(b)では0.15Vある。また、正孔の
擬フェルミレベル39と価電子帯のバンド端エネルギー
38の差から、(b)の場合では、(a)と比べてp型
電流ブロック層21のこの位置での正孔濃度が低下して
いることが分かる。即ち、活性層23上部のp型クラッ
ド層22から活性層23横のp型電流ブロック層21へ
の電流が、(b)の方が(a)の場合より流れにくくな
っていることを示している。
FIGS. 5 (a) and 5 (b) show the band edge energies 36 and 38 at the oscillation threshold current at a position near the upper part of the active layer 23 and parallel to the active layer 23 (AA 'in FIG. 3). This is a plot of Fermi levels 37 and 39. 5 (a) is d = 0.6 μm, and FIG. 5 (b) is d =
This is the case of 0.2 μm. The potential barriers against holes in the p-type cladding layer 22 above the active layer 23 and the p-type current blocking layer 21 beside the active layer 23 are almost zero in (a).
Although it is V, it is 0.15 V in (b). Further, from the difference between the pseudo-Fermi level 39 of holes and the band edge energy 38 of the valence band, in the case of (b), the hole concentration at this position of the p-type current blocking layer 21 is higher than that of (a). You can see that it is decreasing. That is, it is shown that the current from the p-type clad layer 22 above the active layer 23 to the p-type current block layer 21 beside the active layer 23 is less likely to flow in the case of (b) than in the case of (a). There is.

【0009】図6(a)(b)は、活性層23端近傍の
電流ブロック層の活性層23に垂直な位置(図3のB−
B’)における発振閾値電圧での電子41、正孔濃度4
0をプロットしたものである。図6(a)はd=0.6
μm、(b)はd=0.2μmの場合である。(b)の
場合では、p型電流ブロック層21の上部pn接合付近
に形成される正孔濃度が低下している領域の幅と、d
(0.2μm)がほぼ同程度の大きさになっているが、
(a)の場合にはd(0.6μm)の方がかなり大き
い。これらより、d=0.2μmの場合ではp型クラッ
ド層22からp型電流ブロック層21への電流が静電的
に流れにくくなっていることがわかる。
FIGS. 6A and 6B show a position of the current blocking layer near the edge of the active layer 23, which is perpendicular to the active layer 23 (B- in FIG. 3).
Electron 41 and hole concentration 4 at the oscillation threshold voltage in B ')
It is a plot of 0. In FIG. 6A, d = 0.6.
.mu.m, (b) are for d = 0.2 .mu.m. In the case of (b), the width of the region where the hole concentration is reduced near the upper pn junction of the p-type current block layer 21, and d
(0.2 μm) is about the same size,
In the case of (a), d (0.6 μm) is considerably larger. From these, it can be seen that in the case of d = 0.2 μm, the current from the p-type cladding layer 22 to the p-type current blocking layer 21 is less likely to flow electrostatically.

【0010】DC−PBH構造では、pnpn電流ブロ
ック層のサイリスタ構造のゲートに相当する部分と活性
層部分が電気的に接続された形になっており、前記dの
距離が小さい(d=0.1〜0.3μm)場合には電流
ブロック層に流れ込む電流が空間的に制限されるため、
np電流ブロック層界面では発振閾値電圧あたりの電圧
値で空乏層が形成される。空乏層が活性層上部のp型ク
ラッド層端部に形成されれば濡れ電流が静電的にも抑制
され、更に電圧を加えても濡れ電流が抑制されるためサ
イリスタはターンオンしにくくなる。
In the DC-PBH structure, a portion of the pnpn current blocking layer corresponding to the gate of the thyristor structure and the active layer portion are electrically connected, and the distance d is small (d = 0. 1 to 0.3 μm), the current flowing into the current blocking layer is spatially limited,
At the np current block layer interface, a depletion layer is formed with a voltage value around the oscillation threshold voltage. If the depletion layer is formed at the end of the p-type clad layer above the active layer, the wetting current is also suppressed electrostatically, and the wetting current is suppressed even if a voltage is applied, so that the thyristor is hard to turn on.

【0011】ところが、従来構造の様にdが1.0μm
程度と大きい場合には、大きな電流が電流ブロック層に
流れ込むため、ターンオンしてしまうと考えられる。ま
た図5、図6を用いて説明したようにd=0.2μmと
d=0.6μmの比較からd=0.6μmでは十分な効
果が得られない。図4で示したように、d=0.1〜
0.3μmで、効果が顕著に現れることがわかる。
However, as in the conventional structure, d is 1.0 μm.
In the case of a large amount, a large current flows into the current blocking layer, and it is considered that the current is turned on. Further, as described with reference to FIGS. 5 and 6, from the comparison of d = 0.2 μm and d = 0.6 μm, a sufficient effect cannot be obtained at d = 0.6 μm. As shown in FIG. 4 , d = 0.1
It can be seen that the effect is remarkable when the thickness is 0.3 μm .

【0012】[0012]

【実施例】本発明について図面を参照して説明する。図
1を用いて本発明の一実施例であるInGaAsP/I
nP系MQW DC−PBHについて説明する。まず最
初に、n−InP(001)基板1上にMOVPE法を
用いて、n−InPバッファー層2(Si:1.2×1
1 8 cm- 3 ドープ)0.5μm、1.13μm組成
n−InGaAsP SCH層3(Si:1.2×10
1 8 cm- 3 ドープ)600A(オングストローム)、
57A厚の1.40μm組成InGaAsPウェル4
(ノンドープ)及び100A厚の1.13μm組成In
GaAsPバリア4(ノンドープ)からなる7層MQW
構造5、p−InPクラッド層6(Zn:3.0×10
1 7 cm- 3 ドープ)0.2μmを成長し、MQWウェ
ハを成長する。本実施例ではMOVPE法を用いるが、
これはLPE法あるいはMBE法等においても可能であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. InGaAsP / I which is one embodiment of the present invention will be described with reference to FIG.
The nP-based MQW DC-PBH will be described. First, the n-InP buffer layer 2 (Si: 1.2 × 1) is formed on the n-InP (001) substrate 1 by using the MOVPE method.
0 18 cm −3 doped) 0.5 μm, 1.13 μm composition n-InGaAsP SCH layer 3 (Si: 1.2 × 10
18 cm -3 dope) 600 A (angstrom),
57A thick 1.40 μm InGaAsP well 4
(Non-doped) and 100 A thick 1.13 μm composition In
7-layer MQW composed of GaAsP barrier 4 (non-doped)
Structure 5, p-InP cladding layer 6 (Zn: 3.0 × 10
17 cm −3 doped) 0.2 μm to grow an MQW wafer. Although the MOVPE method is used in this embodiment,
This is also possible in the LPE method or MBE method.

【0013】次に、DC−PBHメサ形成用の5.0μ
m離れた3.0μm幅の2本ストライプマスクを用い
て、Br−メタノール系のエッチャントによりMQWウ
ェハ上にダブルチャネル7を形成する。そして、LPE
法を用いてMQWウェハ上に形成されたダブルチャネル
を埋め込み成長する。
Next, 5.0 μ for forming the DC-PBH mesa
Double channels 7 are formed on the MQW wafer by a Br-methanol-based etchant using two 3.0 μm-wide stripe masks separated by m. And LPE
Method is used to bury and grow the double channel formed on the MQW wafer.

【0014】最終的な埋め込み形状としては図1(b)
に示す様に、幅1.4μm活性層8とn型電流ブロック
層9との最短距離dは0.2μmとなる。図2に示す従
来構造のDC−PBH構造と比べると、活性層8とn電
流ブロック層9との最短距離(ここではp−InPクラ
ッド層の厚さ)が異なる。
The final embedded shape is shown in FIG.
As shown in, the shortest distance d between the 1.4 μm wide active layer 8 and the n-type current blocking layer 9 is 0.2 μm. Compared with the conventional DC-PBH structure shown in FIG. 2, the shortest distance between the active layer 8 and the n-current blocking layer 9 (here, p-InP class) is used.
The thickness of the pad layer) is different.

【0015】以上に示す工程に基づいて作製した素子の
85℃における電流−光出力特性は、20mW時の駆動
電流が75mAと、従来の構造(約90mA以上)と比
較し、10mA以上改善される。
The current-light output characteristics at 85 ° C. of the device manufactured based on the above steps are 75 mA at 20 mW, which is improved by 10 mA or more as compared with the conventional structure (about 90 mA or more). .

【0016】本発明は実施例に示したInGaAsP/
InP系DC−PBHレーザのみならずAlGaAs/
GaAs系DC−PBHレーザにも適用出来る。
The present invention is based on the InGaAsP /
InP-based DC-PBH laser as well as AlGaAs /
It can also be applied to a GaAs DC-PBH laser.

【0017】[0017]

【発明の効果】本発明によれば高温動作時の特性に優れ
たレーザが得られる。特に高温動作での微分効率に優
れ、駆動電流を低減できる。
According to the present invention, a laser having excellent characteristics during high temperature operation can be obtained. In particular, the differential efficiency is excellent in high temperature operation, and the drive current can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のInGaAsP/InP系MQW D
C−PBH半導体レーザを示す図。(a)はMQWウェ
ハを示す図で(b)は埋め込み形状を示す図である。
FIG. 1 is an InGaAsP / InP-based MQWD of the present invention.
The figure which shows a C-PBH semiconductor laser. (A) is a figure which shows a MQW wafer, (b) is a figure which shows an embedding shape.

【図2】従来のDC−PBH構造半導体レーザ断面図で
ある。
FIG. 2 is a cross-sectional view of a conventional DC-PBH structure semiconductor laser.

【図3】本発明を説明するための構造模式図である。FIG. 3 is a structural schematic diagram for explaining the present invention.

【図4】本発明を説明するための図で、(a)は電流−
光出力特性のd依存性を示す図、(b)は微分効率と漏
れ電流のd依存性を示す図である。
FIG. 4 is a diagram for explaining the present invention, in which (a) is a current −
FIG. 6 is a diagram showing d dependence of light output characteristics, and FIG. 6B is a diagram showing d dependence of differential efficiency and leakage current.

【図5】本発明を説明するための図で、図3のA−A’
方向での距離とエネルギー準位を示す図である。
5 is a view for explaining the present invention, which is taken along the line AA ′ in FIG.
It is a figure which shows the distance in a direction, and an energy level.

【図6】本発明を説明するための図で、図3のB−B’
方向での距離とキャリア濃度を示す図である。
FIG. 6 is a view for explaining the present invention, and is BB ′ of FIG.
It is a figure which shows the distance and carrier concentration in a direction.

【符号の説明】[Explanation of symbols]

1 n−InP(001)基板 2 n−InPバッファー層 3 1.13μm組成n−InGaAsP SCH層 4 1.40μm組成n−InGaAsPウェル 5 1.13μm組成InGaAsPバリア 6 7層MQW構造 7 p−InGaAsPクラッド層 8 ダブルチャネル 9 活性層 10 p−InGaAsPキャップ層 11 p−InP層 12 n−InP電流ブロック層 13 p−InP電流ブロック層 14 p−InPクラッド層 15 n−InPバッファー層 16 電極 17 SiO2 膜、 18 p−InGaAsPキャップ層 19 p−InP層 20 n−InP電流ブロック層 21 p−InP電流ブロック層 22 p−InPクラッド層 23 活性層 24 n−InPバッファー層 25 n−InP基板 26 電極 27 電極 28 p−InGaAsPキャップ層 29 p−InP層 30 n−InP電流ブロック層 31 p−InP電流ブロック層 32 P−InPクラッド層 33 活性層 34 n−InP基板 35 電極 36,38 バンド端エネルギー 37,39 擬フェルミレベル 40 正孔濃度 41 電子濃度1 n-InP (001) substrate 2 n-InP buffer layer 3 1.13 μm composition n-InGaAsP SCH layer 4 1.40 μm composition n-InGaAsP well 5 1.13 μm composition InGaAsP barrier 6 7-layer MQW structure 7 p-InGaAsP clad Layer 8 Double channel 9 Active layer 10 p-InGaAsP cap layer 11 p-InP layer 12 n-InP current block layer 13 p-InP current block layer 14 p-InP clad layer 15 n-InP buffer layer 16 Electrode 17 SiO 2 film , 18 p-InGaAsP cap layer 19 p-InP layer 20 n-InP current blocking layer 21 p-InP current blocking layer 22 p-InP clad layer 23 active layer 24 n-InP buffer layer 25 n-InP substrate 26 electrode 27 electrode 28 p-In GaAsP cap layer 29 p-InP layer 30 n-InP current blocking layer 31 p-InP current blocking layer 32 P-InP clad layer 33 active layer 34 n-InP substrate 35 electrode 36,38 band edge energy 37,39 pseudo-Fermi level 40 hole concentration 41 electron concentration

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n型半導体基板上に形成されたDC−PB
H(double−channelplanar bu
ried heterostructure)半導体レ
ーザにおいて、n型電流ブロック層と活性層との最短距
離が0.1〜0.3μmであることを特徴とする半導体
レーザ。
1. A DC-PB formed on an n-type semiconductor substrate.
H (double-channel planar bu
In a semiconductor laser with a ried heterostructure, the shortest distance between the n-type current block layer and the active layer
A semiconductor laser having a separation of 0.1 to 0.3 μm .
【請求項2】活性層が57オングストローム(A)厚の
1.40μm組成InGaAsPウェルと100A厚の
1.13μm組成InGaAsPバリアからなる多重量
子井戸(MQW)であることを特徴とする請求項1記載
の半導体レーザ。
2. The active layer is a multi-quantum well (MQW) comprising a 1.40 .mu.m composition InGaAsP well of 57 angstrom (A) thickness and a 1.13 .mu.m composition InGaAsP barrier of 100 A thickness. Semiconductor laser.
JP4243851A 1992-09-14 1992-09-14 Semiconductor laser Expired - Lifetime JP2536710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4243851A JP2536710B2 (en) 1992-09-14 1992-09-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4243851A JP2536710B2 (en) 1992-09-14 1992-09-14 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06204598A JPH06204598A (en) 1994-07-22
JP2536710B2 true JP2536710B2 (en) 1996-09-18

Family

ID=17109903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4243851A Expired - Lifetime JP2536710B2 (en) 1992-09-14 1992-09-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2536710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354886A (en) 1998-06-10 1999-12-24 Nec Corp Semiconductor laser and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261383A (en) * 1985-09-11 1987-03-18 Fujitsu Ltd Semiconductor laser and manufacture thereof
JPH0513866A (en) * 1991-06-28 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element

Also Published As

Publication number Publication date
JPH06204598A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
JPH07106685A (en) Semiconductor laser
US5692002A (en) Buried heterostructure semiconductor laser fabricated on a p-type substrate
US5214662A (en) Semiconductor optical devices with pn current blocking layers of wide-band gap materials
JPS63316484A (en) Quantum effect semiconductor device
JPH0786678A (en) Semiconductor laser device
JP2536710B2 (en) Semiconductor laser
EP0621665B1 (en) Semiconductor double-channel-planar-buried-heterostructure laser diode effective against leakage current
JPH09129969A (en) Semiconductor laser
JPH0945999A (en) Semiconductor device and manufacture thereof
US20040136427A1 (en) Semiconductor optical device
JP2793464B2 (en) Semiconductor laser
JPH1012958A (en) Semiconductor laser device and manufacture thereof
JP3403915B2 (en) Semiconductor laser
JPH01184972A (en) Semiconductor laser device
US20040086015A1 (en) Semiconductor optical device, semiconductor laser device, semiconductor optical modulation device, and semiconductor optical integrated device
JP2008270435A (en) Semiconductor optical element
JP2007005642A (en) Semiconductor light emitting element
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP3652454B2 (en) Semiconductor laser and manufacturing method thereof
JP3199329B2 (en) Method of manufacturing semiconductor laser device
US20050189552A1 (en) Semiconductor light-emitting device
JP2004111743A (en) Semiconductor optical device
JPH03133189A (en) Highly resistive semiconductor layer buried type semiconductor laser
JPS6237557B2 (en)
JPS6261383A (en) Semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 17