JP2530842Y2 - Oil-cooled compressor - Google Patents

Oil-cooled compressor

Info

Publication number
JP2530842Y2
JP2530842Y2 JP6340592U JP6340592U JP2530842Y2 JP 2530842 Y2 JP2530842 Y2 JP 2530842Y2 JP 6340592 U JP6340592 U JP 6340592U JP 6340592 U JP6340592 U JP 6340592U JP 2530842 Y2 JP2530842 Y2 JP 2530842Y2
Authority
JP
Japan
Prior art keywords
oil
flow path
compressor
temperature
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6340592U
Other languages
Japanese (ja)
Other versions
JPH0628286U (en
Inventor
正樹 松隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6340592U priority Critical patent/JP2530842Y2/en
Publication of JPH0628286U publication Critical patent/JPH0628286U/en
Application granted granted Critical
Publication of JP2530842Y2 publication Critical patent/JP2530842Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、圧縮機本体内のガス圧
縮空間部に温度調節した油を注入するようにした油冷式
圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-cooled compressor in which temperature-adjusted oil is injected into a gas compression space in a compressor body.

【0002】[0002]

【従来の技術】従来、図5に示す油冷式圧縮機が公知で
あり、圧縮機本体11の吸込側には、吸込フィルタ12
を設けた吸込流路13が、吐出側には、油分離回収器1
4を設けた吐出流路15が接続してある。油分離回収器
14の下部は油溜まり部16になっており、ここから温
度調節弁17に至り、ここで分岐し、油冷却器18を経
由する第1流路19と、油冷却器18を経由しない第2
流路20とに分岐し、油冷却器18の出側でこの両流路
が合流して、圧縮機本体11内の図示しないガス圧縮空
間部,軸受,軸封部等の注油箇所にいたる油供給流路2
1が設けてある。油供給流路21の、油分離回収器14
と温度調節弁17との間の部分には油温検出可能に温度
スイッチ22が設けてあり、この温度スイッチ22によ
り、検出した油温が低くなる程、温度調節弁17のA,
Bポート間の流路断面積に比して、A,Cポート間の流
路断面積が大きくなるように、逆に検出した油温が高く
なる程、A,Bポート間の流路断面積が大きくなるよう
に、温度調節弁17に対して制御可能となっている。
2. Description of the Related Art A conventional oil-cooled compressor shown in FIG.
The suction passage 13 provided with the oil separation and recovery device 1 is provided on the discharge side.
4 is connected to the discharge channel 15. The lower part of the oil separator / collector 14 is an oil sump 16 from which a temperature control valve 17 is branched, where the first flow path 19 passing through an oil cooler 18 and an oil cooler 18 are connected. Second not going through
The oil is branched into a flow path 20, and the two flow paths join at the outlet side of the oil cooler 18, and the oil reaches a lubricating point such as a gas compression space, a bearing, and a shaft seal (not shown) in the compressor main body 11. Supply channel 2
1 is provided. Oil separation and recovery device 14 in oil supply passage 21
A temperature switch 22 is provided in a portion between the temperature control valve 17 and the temperature control valve 17 so that the temperature of the oil can be detected.
Conversely, the higher the detected oil temperature is, the larger the cross-sectional area between the A and C ports is, compared to the cross-sectional area between the B-ports. Is controllable with respect to the temperature control valve 17 so that is increased.

【0003】そして、上記注油箇所に潤滑の他に、特に
ガス圧縮空間に対しては冷却,シールのために注入した
油を、最終的には、油分離回収器14内の油溜まり部1
6に回収して、この油を油供給流路21より、再度上記
注油箇所に送り込むようになっている。この注油箇所に
注入する油の温度が一定温度以下になると、吸込流路1
3より圧縮機本体11内に吸込まれたガスに含まれる水
蒸気が凝縮し、ドレン水となり、これが油分離回収器1
4内に蓄積され、好ましくない状態となる。これを防止
するために、温度スイッチ22による検出温度が高い場
合には、温度調節弁17のA,Cポートを非連通状態と
し、A,Bポートを連通状態にして、油を油冷却器18
で冷却する一方、検出した油温が低くなるにしたがっ
て、A,Bポート間の流路断面積は小さく、A,Cポー
ト間の流路断面積は大きくなるようにして、第2流路2
0を流れる油を増大させ、油温の低下を防ぎ、注油温度
を一定範囲内に保つようにしてある。
[0003] In addition to lubrication at the lubricating point, oil injected for cooling and sealing, especially in the gas compression space, is finally supplied to the oil reservoir 1 in the oil separator / collector 14.
6, and the oil is sent again from the oil supply flow path 21 to the above-described lubrication point. When the temperature of the oil injected into the lubrication point falls below a certain temperature, the suction passage 1
The steam contained in the gas sucked into the compressor main body 11 from the compressor 3 is condensed and becomes drain water.
4 and is in an undesirable state. In order to prevent this, when the temperature detected by the temperature switch 22 is high, the ports A and C of the temperature control valve 17 are set to the non-communication state, the ports A and B are set to the communication state, and the oil is cooled by the oil cooler 18.
While cooling at the same time, the lower the detected oil temperature, the smaller the cross-sectional area of the flow path between the A and B ports and the larger the cross-sectional area of the flow path between the A and C ports.
The oil flowing through zero is increased, the oil temperature is prevented from lowering, and the lubrication temperature is kept within a certain range.

【0004】この温度調節弁17の制御の具体的内容の
一例として、上記検出温度T°Cと、A,Bポート間の
流量比率(%),A,Cポート間の流量比率(%)との
関係を示せば、次の表1のようになり、油温は60〜7
0°Cの間に保たれることになる。
As an example of the specific contents of the control of the temperature control valve 17, the detected temperature T ° C, the flow ratio between the A and B ports (%), the flow ratio between the A and C ports (%), and The following Table 1 shows the relationship between the oil temperature and the oil temperature.
It will be kept between 0 ° C.

【0005】[0005]

【表1】 [Table 1]

【0006】圧縮機の起動前の油は低温状態にあり、起
動前の温度調節弁17は、油冷却器18を経由する第1
流路19に油を導くA,Bポート間の流路を閉じた状態
にあり、起動直後は、A,Bポート間の流量比率は0
%,A,Cポート間の流量比率は100%となる。一般
に、この温度調節弁17は、油温T°Cを検出後、実際
に設定流量配分状態に移行するまでに一定の時間がかか
り、時定数を有している。
[0006] The oil before the start of the compressor is in a low temperature state.
The flow path between the A and B ports for guiding the oil to the flow path 19 is in a closed state.
%, The flow ratio between the A and C ports is 100%. In general, the temperature control valve 17 has a time constant after detecting the oil temperature T ° C and taking a certain period of time before actually shifting to the set flow distribution state.

【0007】[0007]

【考案が解決しようとする課題】上記従来の圧縮機で
は、起動時、油は100%第2流路20に流れ、その後
油温は急上昇する。この油温の上昇に伴って、A,Bポ
ート間の流路が開き始める。ところで、第2流路20に
比して第1流路19の流路抵抗は、一般に大である。こ
のため、A,Bポート間の流路断面積と、A,Cポート
間の流路断面積が等しくなっても、第1流路19におけ
る油の流量は少なく、A,Cポート間の流路が殆ど閉じ
た状態になって初めて、油が油冷却器18に流れ始め
る。この結果、圧縮機の起動時に油温が高くなり過ぎ
て、温度スイッチ22からの信号により、圧縮機が非常
停止するという問題が生じる。本考案は、斯る従来の問
題点を課題としてなされたもので、例えば起動時に、油
温が過度に上昇するのを防止し、非常停止という事態の
発生をなくすことを可能とした油冷式圧縮機を提供しよ
うとするものである。
In the conventional compressor described above, at start-up, 100% of the oil flows through the second flow path 20, and thereafter the oil temperature rises rapidly. As the oil temperature rises, the flow path between the A and B ports starts to open. Incidentally, the flow path resistance of the first flow path 19 is generally larger than that of the second flow path 20. For this reason, even if the cross-sectional area of the flow path between the A and B ports is equal to the cross-sectional area of the flow path between the A and C ports, the flow rate of the oil in the first flow path 19 is small, and the flow rate between the A and C ports is small. Only when the road is almost closed does the oil start flowing to the oil cooler 18. As a result, when the compressor is started, the oil temperature becomes too high, and the signal from the temperature switch 22 causes a problem that the compressor is emergency stopped. The present invention has been made to solve such a conventional problem, and for example, at the time of startup, an oil-cooled type that can prevent an excessive rise in oil temperature and eliminate the occurrence of an emergency stop. It is intended to provide a compressor.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本考案は、圧縮機本体と、この吐出側に設けた油分
離回収器と、この油分離回収器の下部の油溜まり部から
温度調節弁に至り、ここで分岐し、油冷却器を経由する
第1流路と、油冷却器を経由しない第2流路とに分岐
し、油冷却器の出側でこの両流路が合流して、上記圧縮
機本体内のガス圧縮空間部,軸受,軸封部等の注油箇所
にいたる油供給流路とを有する油冷式圧縮機において、
上記第2流路を、上記第1流路と同一流路断面積を有す
る場合に比して、流量制限可能に形成した。
In order to solve the above problems, the present invention relates to a compressor body, an oil separation and recovery device provided on the discharge side, and an oil reservoir at the lower portion of the oil separation and recovery device. It reaches the temperature control valve, branches here, and branches into a first flow path that passes through the oil cooler and a second flow path that does not pass through the oil cooler. In an oil-cooled compressor having a gas supply space in the compressor body, an oil supply passage extending to a lubrication point such as a bearing, a shaft seal portion, and the like,
The second flow path is formed so as to be able to restrict the flow rate as compared with the case where the first flow path has the same flow path cross-sectional area.

【0009】[0009]

【作用】上記考案のように構成することにより、第1流
路と第2流路の流路抵抗が均衡するようになる。
With the above construction, the flow resistances of the first flow path and the second flow path are balanced.

【0010】[0010]

【実施例】次に、本考案の一実施例を図面にしたがって
説明する。図1は、本考案の第1実施例に係る油冷式圧
縮機を示し、図5に示す圧縮機とは、第2流路20にオ
リフィス1を設けた点を除き、他は実質的に同一であ
り、互いに共通する部分には同一番号を付して説明を省
略する。この第1実施例では、このようにオリフィス1
を設けることにより、第2流路20における流量を制限
して、温度調節弁17のA,Bポート間の流路が開いた
場合に、油の油冷却器18への流入遅れが生じないよう
にしてある。そして、このようにして、例えば圧縮機の
起動時に、油温の過度な上昇、およびこれに伴う圧縮機
の非常停止という事態の発生を防いでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an oil-cooled compressor according to a first embodiment of the present invention, which is substantially the same as the compressor shown in FIG. 5 except that an orifice 1 is provided in a second flow path 20. Parts that are the same and that are common to each other are given the same reference numerals and description thereof is omitted. In the first embodiment, the orifice 1
Is provided, the flow rate in the second flow path 20 is limited, and when the flow path between the A and B ports of the temperature control valve 17 is opened, the flow of oil into the oil cooler 18 is not delayed. It is. In this way, for example, when the compressor is started, it is possible to prevent an excessive rise in the oil temperature and an emergency stop of the compressor accompanying the oil temperature.

【0011】図2は、第1実施例の場合の、圧縮機起動
直後における温度スイッチ22による検出油温の変化を
示したもので、実線で示す曲線が本実施例の場合で、二
点鎖線で示す曲線がオリフィス1を設けなかった場合の
温度変化を示している。図から分かるように、オリフィ
ス1を設けない場合には、起動後、間もなく油温は温度
スイッチ設定温度Toを超えて上昇するのに対して、本
実施例の場合には、油冷却器18に油が流入遅れを生じ
ることなく流れて、油温は低く抑えられている。
FIG. 2 shows the change in the oil temperature detected by the temperature switch 22 immediately after the start of the compressor in the case of the first embodiment. The curve shown by the solid line in this embodiment is the two-dot chain line. The curve shown by indicates the temperature change when the orifice 1 is not provided. As can be seen from the figure, when the orifice 1 is not provided, the oil temperature immediately exceeds the temperature switch set temperature T o after startup, whereas in the present embodiment, the oil cooler 18 Oil flows without delay and the oil temperature is kept low.

【0012】図3は、本考案の第2実施例に係る油冷式
圧縮機を示し、図1に示す圧縮機とは、オリフィス1を
設ける代わりに、第2流路20の管径に比して大きい管
径を有する第1流路19aを設けた点を除き、他は実質
的に同一であり、互いに共通する部分には同一番号を付
して説明を省略する。そして、このように第2実施例を
形成することにより、第1流路19aの単位長さ当たり
の流路抵抗を小さくして、全体として第1流路19aと
第2流路20の流路抵抗を均衡させ、この結果第1実施
例の場合と同様に油冷却器18への油の流入遅れが生じ
ないようになっている。
FIG. 3 shows an oil-cooled compressor according to a second embodiment of the present invention. The compressor shown in FIG. 1 is different from the compressor shown in FIG. The other parts are substantially the same except that a first flow path 19a having a large pipe diameter is provided, and the common parts are denoted by the same reference numerals and description thereof is omitted. By forming the second embodiment in this manner, the flow resistance per unit length of the first flow path 19a is reduced, and the flow paths of the first flow path 19a and the second flow path 20 as a whole are reduced. The resistance is balanced, and as a result, as in the first embodiment, there is no delay in the flow of oil into the oil cooler 18.

【0013】図4は、本考案の第3実施例に係る油冷式
圧縮機を示し、図1に示す圧縮機とは、オリフィス1に
代えて流量調節弁2を第2流路20に設けた点を除き、
他は実質的に同一であり、互いに共通する部分には同一
番号を付して説明を省略する。そして、第3実施例で
は、温度調節弁2により第2流路20における油の流量
を制限して、第1流路の方に油が流れ易くすることによ
り、上記各実施例と同様の作用を生じるようになってい
る。
FIG. 4 shows an oil-cooled compressor according to a third embodiment of the present invention, which is different from the compressor shown in FIG. 1 in that a flow control valve 2 is provided in the second flow passage 20 instead of the orifice 1. Except for
The other parts are substantially the same, and the parts common to each other are denoted by the same reference numerals and description thereof is omitted. In the third embodiment, the flow rate of the oil in the second flow path 20 is limited by the temperature control valve 2 so that the oil can easily flow toward the first flow path. Is caused.

【0014】[0014]

【考案の効果】以上の説明より明らかなように、本考案
によれば、圧縮機本体と、この吐出側に設けた油分離回
収器と、この油分離回収器の下部の油溜まり部から温度
調節弁に至り、ここで分岐し、油冷却器を経由する第1
流路と、油冷却器を経由しない第2流路とに分岐し、油
冷却器の出側でこの両流路が合流して、上記圧縮機本体
内のガス圧縮空間部,軸受,軸封部等の注油箇所にいた
る油供給流路とを有する油冷式圧縮機において、上記第
2流路を、上記第1流路と同一流路断面積を有する場合
に比して、流量制限可能に形成してある。
As is apparent from the above description, according to the present invention, the temperature of the compressor body, the oil separation / recovery device provided on the discharge side, and the temperature of the oil reservoir at the lower part of the oil separation / recovery device are measured. It reaches the control valve, where it branches off and the first through the oil cooler
It branches into a flow path and a second flow path that does not pass through the oil cooler, and the two flow paths join at the outlet side of the oil cooler to form a gas compression space, a bearing, and a shaft seal in the compressor body. In the oil-cooled compressor having an oil supply flow path extending to an oil injection point such as a part, the flow rate of the second flow path can be restricted as compared with the case where the first flow path has the same flow path cross-sectional area. It is formed in.

【0015】このため、第1流路と第2流路の流路抵抗
が均衡するようになり、例えば起動時に油温が過度に上
昇するのを防止し、非常停止という事態の発生をなくす
ことが可能になるという効果を奏する。
For this reason, the flow resistance of the first flow path and the flow resistance of the second flow path are balanced, for example, to prevent the oil temperature from excessively rising at the time of startup and to eliminate the occurrence of an emergency stop. This has the effect that it becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本考案の第1実施例に係る油冷式圧縮機の全
体構成図である。
FIG. 1 is an overall configuration diagram of an oil-cooled compressor according to a first embodiment of the present invention.

【図2】 図1に示す圧縮機の起動後の油温の変化を示
す図である。
FIG. 2 is a diagram showing a change in oil temperature after the compressor shown in FIG. 1 is started.

【図3】 本考案の第2実施例に係る油冷式圧縮機の全
体構成図である。
FIG. 3 is an overall configuration diagram of an oil-cooled compressor according to a second embodiment of the present invention.

【図4】 本考案の第3実施例に係る油冷式圧縮機の全
体構成図である。
FIG. 4 is an overall configuration diagram of an oil-cooled compressor according to a third embodiment of the present invention.

【図5】 従来の油冷式圧縮機の全体構成図である。FIG. 5 is an overall configuration diagram of a conventional oil-cooled compressor.

【符号の説明】[Explanation of symbols]

1 オリフィス 2 流量調節弁 11 圧縮機本体 14 油分離回収器 15 吐出流路 16 油溜まり部 17 温度調節弁 18 油冷却器 19,19a 第1流路 20 第2流路 21 油供給流路 DESCRIPTION OF SYMBOLS 1 Orifice 2 Flow control valve 11 Compressor main body 14 Oil separation and recovery unit 15 Discharge flow path 16 Oil reservoir 17 Temperature control valve 18 Oil cooler 19, 19a First flow path 20 Second flow path 21 Oil supply flow path

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 圧縮機本体と、この吐出側に設けた油分
離回収器と、この油分離回収器の下部の油溜まり部から
温度調節弁に至り、ここで分岐し、油冷却器を経由する
第1流路と、油冷却器を経由しない第2流路とに分岐
し、油冷却器の出側でこの両流路が合流して、上記圧縮
機本体内のガス圧縮空間部,軸受,軸封部等の注油箇所
にいたる油供給流路とを有する油冷式圧縮機において、
上記第2流路を、上記第1流路と同一流路断面積を有す
る場合に比して、流量制限可能に形成したことを特徴と
する油冷式圧縮機。
1. A compressor body, an oil separation / recovery device provided on the discharge side, and an oil reservoir at a lower portion of the oil separation / recovery device to a temperature control valve. And a second flow path that does not pass through the oil cooler, and the two flow paths join at the outlet side of the oil cooler to form a gas compression space portion and a bearing in the compressor body. , An oil-cooled compressor having an oil supply passage to an oiling point such as a shaft seal portion,
An oil-cooled compressor, wherein the second flow path is formed so as to be able to restrict a flow rate as compared with a case where the second flow path has the same flow path cross-sectional area as the first flow path.
JP6340592U 1992-09-10 1992-09-10 Oil-cooled compressor Expired - Lifetime JP2530842Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340592U JP2530842Y2 (en) 1992-09-10 1992-09-10 Oil-cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340592U JP2530842Y2 (en) 1992-09-10 1992-09-10 Oil-cooled compressor

Publications (2)

Publication Number Publication Date
JPH0628286U JPH0628286U (en) 1994-04-15
JP2530842Y2 true JP2530842Y2 (en) 1997-04-02

Family

ID=13228366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340592U Expired - Lifetime JP2530842Y2 (en) 1992-09-10 1992-09-10 Oil-cooled compressor

Country Status (1)

Country Link
JP (1) JP2530842Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170334B2 (en) * 2013-04-26 2017-07-26 アネスト岩田株式会社 Oil-cooled compressor

Also Published As

Publication number Publication date
JPH0628286U (en) 1994-04-15

Similar Documents

Publication Publication Date Title
JPS58107888A (en) Lubricating device
JP2530842Y2 (en) Oil-cooled compressor
JP2009121398A (en) Oil cooled air compressor
US9890671B2 (en) Crankcase ventilation system having an oil jet pump with an integrated check valve
JP2016223357A (en) Oil separator
JP3737932B2 (en) Oil cooling structure of oil-cooled compressor
JPH10176748A (en) Oil cooler device for transmission
JPH11294906A (en) Refrigerating system
JPS6221690Y2 (en)
JPS6032330Y2 (en) Engine lubricating oil reflux device
JPS6211285Y2 (en)
JP2000186688A (en) Oil cooled screw compressor
JP2701558B2 (en) Oil return control device for refrigeration equipment
JP3899238B2 (en) Oil-cooled screw compressor
KR880001990A (en) Refrigeration circuit
JP3588987B2 (en) Transmission oil cooling system
JP5997670B2 (en) Oil-cooled air compressor
JPS60114659A (en) Turbo refrigerator
JPH0643450Y2 (en) Engine lubricator
JPS6240084Y2 (en)
JPH1194378A (en) Oil-cooled refrigerator
CN105422419A (en) Compressor and oil-return switching method
JPH10141787A (en) Screw refrigerating machine
JPH0921569A (en) Refrigerator
JPH0735067A (en) Oil-cooled screw compressor