JPS58107888A - Lubricating device - Google Patents

Lubricating device

Info

Publication number
JPS58107888A
JPS58107888A JP57219339A JP21933982A JPS58107888A JP S58107888 A JPS58107888 A JP S58107888A JP 57219339 A JP57219339 A JP 57219339A JP 21933982 A JP21933982 A JP 21933982A JP S58107888 A JPS58107888 A JP S58107888A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
cooler
sensor
outlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57219339A
Other languages
Japanese (ja)
Inventor
ルデツク・クセラ
アウグスト・フオ−ゲリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of JPS58107888A publication Critical patent/JPS58107888A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary-Type Compressors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特にヒートポンプとして作動する冷凍装置用
のスクリューコンプレッサーに対する給油装置なるもの
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lubricating device for a screw compressor for a refrigeration system, in particular operating as a heat pump.

一本もしくは二本の軸で構成されるスクリューコンプレ
ッサーにおいて、油を圧力をかげてコンプレッサーに注
送しベヤリング、ロータ、軸シール部ならびに場合によ
りトランスミッション装置を潤滑し二軸構成の場合ロー
タ間のヤヤツノそしてロータとハウソング間のヤヤッデ
を密封しさらに圧縮熱の一部を分散させる事は周知の事
である。
In screw compressors with one or two shafts, oil is injected under pressure into the compressor to lubricate the bearings, rotors, shaft seals, and in some cases transmission equipment. It is well known that the seal between the rotor and the hose is used to further disperse some of the compression heat.

油は油分離器で圧縮冷凍剤・油混合物から分離され冷却
器で冷却されコンプレッサーに再住込される。
The oil is separated from the compressed refrigerant/oil mixture in an oil separator, cooled in a cooler, and repopulated into the compressor.

比較的低い凝縮温度が必要とされる冷凍装置またはヒー
トポンゾ装置例えば低温加熱設備などにおける在来のス
クリューコンプレッサーの場合、上記様式の給油にはな
んら格別な困難をともなわない。
In the case of conventional screw compressors in refrigeration or heat pump systems, such as low-temperature heating installations, where relatively low condensing temperatures are required, refueling in this manner does not present any particular difficulties.

これらの場合油分離器で分離した油は許容範囲の粘性を
保持しているので、潤滑油フィルムがコンプレッサー内
で良好に形成できる。
In these cases, the oil separated in the oil separator maintains an acceptable viscosity, so that a lubricating oil film can be formed well in the compressor.

第1図にこの様式の冷凍装置の構造が示されており、こ
れはまた指示条件の下でヒートポンプとしても作動でき
るものである。この装置には、カップリング2を介して
電動機1で動かされるスクリューコンプレッサー3と、
油分離器4、凝縮器5ならびに蒸発器6を含む冷凍回路
がある。
FIG. 1 shows the construction of this type of refrigeration system, which can also operate as a heat pump under indicated conditions. This device includes a screw compressor 3 driven by an electric motor 1 via a coupling 2;
There is a refrigeration circuit including an oil separator 4, a condenser 5 and an evaporator 6.

例えばアンモニヤを冷媒として使用しても良い。For example, ammonia may be used as the refrigerant.

コンプレッサー3内に圧縮され油を成分として含有する
冷媒蒸気が油分離器4内に導入される。
Refrigerant vapor compressed in the compressor 3 and containing oil as a component is introduced into the oil separator 4 .

この油分離器内で形成する油・冷媒溶液は分離器から取
出され圧力上昇ポンプ7によりクーラ8に送られ次いで
分岐ライン9,10a、10b。
The oil-refrigerant solution forming in this oil separator is removed from the separator and sent by a pressure increase pump 7 to a cooler 8 and then to branch lines 9, 10a, 10b.

11を介して圧縮室に住込され、ベアリング(図示省略
)および軸シール部12に送られる。この場合、クーラ
8および凝縮器5の冷却液として例えば水を用いても良
く、この冷却液は先づクーラ8次いで凝縮器5と矢印方
向に送られる。蒸発器6の加熱媒体は水や海水または空
気などで良い。
11 into the compression chamber, and is sent to the bearing (not shown) and the shaft seal portion 12. In this case, for example, water may be used as the cooling liquid for the cooler 8 and the condenser 5, and this cooling liquid is first sent to the cooler 8 and then to the condenser 5 in the direction of the arrow. The heating medium of the evaporator 6 may be water, seawater, air, or the like.

しかしながら、スクリューコンプレッサーを熱ポンプ設
備例えば高温加熱設備に用いる場合には65ないし12
0°C位の高凝縮温度が必要となる。
However, when using a screw compressor for heat pump equipment, such as high-temperature heating equipment, 65 to 12
A high condensation temperature of around 0°C is required.

装置の冷凍回路における高凝縮温度の理由によりコンプ
レッサーは比較的高い最終圧を出さねばならぬ。その結
果、冷媒がフロロクロロハイドロカー7ドン(例えばR
12およびR22)やハイドロカーざン又はハイドロカ
ーボン混合物よりなる場合、冷媒は潤滑油中でかなり濃
縮しこれは油分離器内における最終圧力においてである
。油中の増加冷媒含有によりコンプレッサー内に潤滑油
フィルムがもはや確実に形成できない程油・冷媒溶液の
粘性がドがることがある。
Because of the high condensing temperatures in the refrigeration circuit of the device, the compressor must deliver a relatively high final pressure. As a result, the refrigerant is fluorochlorohydrocarbon (e.g. R
12 and R22), hydrocarbons or hydrocarbon mixtures, the refrigerant is considerably concentrated in the lubricating oil at the final pressure in the oil separator. Due to the increased refrigerant content in the oil, the viscosity of the oil-refrigerant solution may become so thick that a lubricant film can no longer be reliably formed within the compressor.

油中の冷媒の溶解度は冷媒の種類や油の種類、コンプレ
ッサーの最終圧力ならびにコンプレッサーを出る冷媒・
油混合物の出口温度いかんによる。
The solubility of refrigerant in oil depends on the type of refrigerant, the type of oil, the final pressure of the compressor, and the refrigerant exiting the compressor.
Depends on the outlet temperature of the oil mixture.

油分離器内の圧力が大きければ大きい程、油中の冷媒の
溶解度が大きくなり、温度が高い程溶解度は小さい。
The greater the pressure in the oil separator, the greater the solubility of the refrigerant in the oil, and the higher the temperature, the lower the solubility.

本発明は、油中の冷媒含有を低下することにより粘性を
制御下に保持できるようなスクリューコンプレッサーに
対する給油装置の提供をその目的としている。この問題
は、油分離器内に形成する油・冷媒溶液の流路をクーラ
に入る前にこれを二本の支流に分け、第一の支流を少く
とも一つの地点で未冷却状態で圧縮室内に注入し圧縮熱
をクーラ内の第二支流から消散させ冷却された支流を少
くともコンプレッサーベヤリング内に注入することによ
り解決される。
The object of the present invention is to provide an oil supply device for a screw compressor in which the viscosity can be kept under control by reducing the refrigerant content in the oil. This problem can be solved by dividing the oil/refrigerant solution flow path that forms in the oil separator into two tributaries before entering the cooler, and then leaving the first tributary uncooled at at least one point inside the compression chamber. and dissipating the heat of compression from a second branch in the cooler and injecting the cooled branch into at least the compressor bearing.

本発明による汐NKより、べ丁リングに用いる冷却した
支流は油フィルムが必要な限度に形成するのを保証する
ような粘性を有し他方圧縮室に直接未冷却の支流を注入
することにより油中に最小量の冷媒がmけるよう適切な
高温に出口温度を保つ。
From Shio NK according to the invention, the cooled tributary used in the bedding ring has a viscosity that ensures that an oil film forms to the required extent, while the oil can be removed by injecting the uncooled tributary directly into the compression chamber. Maintain the outlet temperature at a suitably high temperature to allow a minimum amount of refrigerant to enter.

圧縮された冷媒・油混合物出口温度はコンプレッサー圧
縮比により変化し、それは冷媒回路蒸発器の熱移送媒体
の温度と、凝縮器中の熱吸収媒体のため作り出される温
度に依存する。
The compressed refrigerant-oil mixture outlet temperature varies with the compressor compression ratio, which depends on the temperature of the heat transfer medium in the refrigerant circuit evaporator and the temperature created for the heat absorption medium in the condenser.

圧縮比の変動によりコンプレッサー中に注入される油・
冷媒溶液の量もまた変化する。
Oil injected into the compressor due to fluctuations in compression ratio.
The amount of refrigerant solution also varies.

もし例えば圧縮比を下げる即ち蒸発器内の圧力が上昇し
凝縮器内の圧力が一定のままならば、または蒸発器内の
圧力が一定で凝縮器内の圧力が低下すると、注入される
油・冷媒溶液の量も低下する。減少する圧縮比をもつ最
適の場合には注入される油・冷媒溶液の量は、冷却され
た支流の粘性が限界的な影響を受けないような範囲内で
出口温度が一定でありもしくは変動する程度に減らされ
る。
If, for example, we reduce the compression ratio, i.e. the pressure in the evaporator increases and the pressure in the condenser remains constant, or if the pressure in the evaporator remains constant and the pressure in the condenser decreases, the injected oil The amount of refrigerant solution also decreases. In the optimal case with a decreasing compression ratio, the amount of oil/refrigerant solution injected is such that the outlet temperature is constant or fluctuates within a range such that the viscosity of the cooled tributary is not critically affected. reduced to a certain degree.

しかしながら、圧縮比の変化により注入される油の量が
変化し出口温度が油・冷媒溶液の粘性が不適当になる程
下がるような運転条件があり、さらに出口温度が潤滑油
の炭化もしくはその他物性劣化を招く数値以上に上昇す
る場合も有り得る。
However, there are operating conditions in which the amount of oil injected changes due to changes in the compression ratio, and the outlet temperature drops to such an extent that the viscosity of the oil/refrigerant solution becomes inappropriate. It is possible that the value increases beyond the value that causes deterioration.

かかる場合でもスクリューコンプレッサー給油について
装置の確実な運転を保証するために、本発明の特徴によ
ればコンプレッサー出口温度に依存して少くとも一本の
支流の流量をコントロールする段階が含まれる。出口温
度を左右するための変更実施例によれば、冷媒・油混合
物の出口温度のためのセンサーが油・冷媒溶液の二本の
送りラインに接続した三方バルブをコントロールするよ
う設けられる。
In order to ensure reliable operation of the device even in such cases for screw compressor oiling, according to a feature of the invention a step is included to control the flow rate of at least one tributary stream as a function of the compressor outlet temperature. According to a modified embodiment for influencing the outlet temperature, a sensor for the outlet temperature of the refrigerant-oil mixture is provided to control a three-way valve connected to the two feed lines of the oil-refrigerant solution.

この出口温度のコントロールはまた、スクリューコンプ
レッサー給油についての許容し難い条件が部分負荷運転
で発生した場合においても使用できる。
This outlet temperature control can also be used in cases where unacceptable conditions for screw compressor oiling occur during part load operation.

次に本発明を第2図から第4図を参照してその詳細につ
き下記説明を行う。
Next, the present invention will be explained in detail below with reference to FIGS. 2 to 4.

第2図において、油分離器内に形成する油と冷媒の溶液
の流路13はボン7°7を通った後とクーラ8に入る前
との二本の支流に分けられ、第一の支流はクーラ8で冷
却され分岐ライン10a。
In FIG. 2, the oil and refrigerant solution flow path 13 formed in the oil separator is divided into two branches, one after passing through the bong 7°7 and the other before entering the cooler 8. The branch line 10a is cooled by the cooler 8.

10b、11を介してベヤリング(図示省略)ならびに
軸シール部12に送られる。第二の未冷却の支流はコン
トロールバルブ15を含むライン14を介して圧縮室中
に注入される。
It is sent to the bearing (not shown) and the shaft seal portion 12 via 10b and 11. The second uncooled substream is injected into the compression chamber via line 14 containing control valve 15.

コンプレッサー3の吐出ライン16には、温度センサ1
7が最終コントロール要素1日を介しコントロールバル
ブ15に作用するよう設けられている。
A temperature sensor 1 is installed in the discharge line 16 of the compressor 3.
7 is provided to act on the control valve 15 through the final control element.

上記の如く、圧縮冷媒・油混合物の出口温度は油分離器
4の油中における冷媒の溶解度従って潤滑油の粘性に影
響を与える。他方、この出口温度はトップ臨界値を超え
てはいけない。
As mentioned above, the outlet temperature of the compressed refrigerant/oil mixture affects the solubility of the refrigerant in the oil of the oil separator 4 and thus the viscosity of the lubricating oil. On the other hand, this outlet temperature must not exceed the top critical value.

もし出口温度が変化する運転条件により必要値から外れ
た場合、温度センサー17は最終コントロール要素18
に送られる信号によりコントロ−ルバルゾ15を適量だ
け開閉する。
If the outlet temperature deviates from the required value due to changing operating conditions, the temperature sensor 17
The control valve 15 is opened and closed by an appropriate amount in response to a signal sent to the control valve 15.

上記実施例で出口温度は流量コントロール装置を介して
コントロールされるが、第3図に示す実施例の場合圧縮
室中に注入される支流の温度のコントロールによりコン
トロールされる。この場合、出口温度が設定値より外れ
たら、温度センサー17により最終コントロール要素2
1に送られる信号により、油と冷媒溶液のための二本の
送りラインに接続した三方パルf20が影響され、一本
のライン14はクーラ8に入る前に分岐しており他のラ
イン19はクーラ8を出た後接合ライン22から分かれ
出口ライン14aは圧縮室に送られている。
In the embodiment described above, the outlet temperature is controlled via a flow control device, but in the embodiment shown in FIG. 3, it is controlled by controlling the temperature of the tributary stream injected into the compression chamber. In this case, if the outlet temperature deviates from the set value, the final control element 2
1 influences the three-way pulse f20 connected to two feed lines for oil and refrigerant solution, one line 14 branches off before entering the cooler 8 and the other line 19 After exiting the cooler 8, the outlet line 14a branches off from the joining line 22 and is sent to the compression chamber.

第4図に示す実施例において、出口温度は冷却支流の一
部の流量をコントロールすることによりコントロールさ
れ、ライン14を介して圧縮室中に注入される未冷却の
油・冷媒溶液の量は一定の運転状態に対して一定に保た
れる。
In the embodiment shown in FIG. 4, the outlet temperature is controlled by controlling the flow rate of a portion of the cooling branch, and the amount of uncooled oil/refrigerant solution injected into the compression chamber via line 14 is constant. is kept constant for the operating conditions.

出口温度が設定値から外れた場合には、温度センサー1
Tが最終コントロール要素23を介し二方向パルプ24
をコントロールし、そのバルブの送りライン25は接合
ライン22に接続し出口ライン26は圧縮室に導かれて
いる。三方/々ルプは冷却された油・冷媒溶液の一部量
が冷却されてない油・冷媒溶液にたえず混合されるよう
必要な出口温度で中間位置を占める。出口温度が設定値
を超えるや否や圧縮室に注入される冷却された油・冷媒
溶液の童は増加しもしくは出口温度設定値が媒溶液は圧
縮室内部で混合する。
If the outlet temperature deviates from the set value, temperature sensor 1
T passes through the final control element 23 to the two-way pulp 24
The feed line 25 of the valve is connected to the joining line 22, and the outlet line 26 is led to the compression chamber. The three-way loop occupies an intermediate position at the exit temperature required so that a portion of the cooled oil-refrigerant solution is constantly mixed with the uncooled oil-refrigerant solution. As soon as the outlet temperature exceeds the set point, the amount of cooled oil-refrigerant solution injected into the compression chamber increases or the outlet temperature set point causes the medium solution to mix inside the compression chamber.

実施例の全部にわたり、冷却されてない支流を一つの地
点上で圧縮室に注入することができる点指摘せねばなら
ぬ。
It must be pointed out that in all of the embodiments the uncooled tributary stream can be injected into the compression chamber at one point.

また、未冷却の油・冷媒溶液を軸シールに冷却溶液の代
りに送るのも好適である。
It is also preferred to send an uncooled oil/refrigerant solution to the shaft seal instead of the cooling solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は普通の冷凍装置のダイヤグラム図で、第2図は
ヒートポンプ設備の冷凍回路におけるスクリューコンプ
レッサーのための給油装置系のフローダイヤグラムで出
口温度は冷却されてない支流の流量をコントロールする
ことによりコントロールされ、第6図は第二実施例の同
様な図であり、出口温度は圧縮室内に注入される油・冷
媒溶液の温度のコントロールによりコントロールされ、
第4図は第三実施例のフローダイヤグラムであり、出口
温度は圧縮室内に注入される油・冷媒溶液の流量のコン
トロールによりコントロールされる。 3:スクリューコンルッサー;4:油分離器;5:凝縮
器:6:蒸発器:8:クーラ:12:軸シール;10a
、10b、11:分岐ライン:15:コントロールパル
プ;1フ:温度センサー;18:最終コントロール要素
:20:三方バルジ;24:二方向7ぐルゾ 代理人  浅 村  皓 外4名 1 Fig、3 F i g、4
Figure 1 is a diagram of an ordinary refrigeration system, and Figure 2 is a flow diagram of the oil supply system for the screw compressor in the refrigeration circuit of a heat pump facility.The outlet temperature is determined by controlling the flow rate of the uncooled tributary. FIG. 6 is a similar diagram of the second embodiment, in which the outlet temperature is controlled by controlling the temperature of the oil/refrigerant solution injected into the compression chamber;
FIG. 4 is a flow diagram of the third embodiment, in which the outlet temperature is controlled by controlling the flow rate of the oil/refrigerant solution injected into the compression chamber. 3: Screw conlusor; 4: Oil separator; 5: Condenser: 6: Evaporator: 8: Cooler: 12: Shaft seal; 10a
, 10b, 11: Branch line: 15: Control pulp; 1F: Temperature sensor; 18: Final control element: 20: Three-way bulge; 24: Two-way 7-guruzo agent Asamura Akigai 4 people 1 Fig, 3F i g, 4

Claims (1)

【特許請求の範囲】 (1)特にヒートポンプとして作動される冷凍装置のた
めのスクリューコンプレッサーに対する給油装置にして
、油が閉回路内に循環し油分離器内で圧縮冷媒・油混合
物から分離され、分離された油からの冷媒の部分酌量が
圧力ならびに温度により油中に溶け、油により吸収され
る圧縮熱が次にクーラに消散され、油・冷媒溶液が圧力
の下にスクリューコンプレッサー中に注入される上記給
油装置において、油分離器内に形成する油・冷媒溶液の
流路がクーラに入る前に二本の支流に分けられ、第一の
支流は冷却されてない状態で少くとも一つの場所で圧縮
室中に注入され、他方圧縮熱はクーラ中の第二支流から
消散され、冷却された支流は少くトモコンプレッサーベ
ヤリング中に注入されることを特徴とする給油装置。 (2、特許請求の範囲第1項による給油装置にして、冷
媒・油混合物の出口温度のためのセンサーを設け、該セ
ンサーの信号は少くとも一本の支流の流量をコントロー
ルすることを特徴とする給油装置。 (3)特許請求の範囲第1項による給油装置にして、冷
媒・油混合物の出口温度のためのセンサーを設げ、該セ
ンサーは油・冷媒溶液のための二本の送りラインに接続
した三方バルブをコントロールし、一本の送りラインは
クーラに入る前に他の送りラインはクーラを出てから分
岐し、三方パルプ出口ラインは圧縮室に送られることを
特徴とする給油装置。
[Scope of Claims] (1) A lubricating device for a screw compressor, especially for a refrigeration device operated as a heat pump, in which oil is circulated in a closed circuit and separated from a compressed refrigerant-oil mixture in an oil separator, A partial amount of refrigerant from the separated oil is dissolved into the oil due to pressure as well as temperature, the heat of compression absorbed by the oil is then dissipated in the cooler, and the oil-refrigerant solution is injected under pressure into the screw compressor. In the oil supply system described above, the oil/refrigerant solution flow path formed in the oil separator is divided into two tributaries before entering the cooler, and the first tributary is in an uncooled state at least in one location. A refueling system characterized in that the heat of compression is dissipated from a second branch in the cooler, and a small amount of the cooled branch is injected into the compressor bearing. (2. The oil supply device according to claim 1 is characterized in that it is provided with a sensor for the outlet temperature of the refrigerant-oil mixture, and the signal of the sensor controls the flow rate of at least one tributary stream. (3) A refueling device according to claim 1, comprising a sensor for the outlet temperature of the refrigerant-oil mixture, the sensor being connected to two feed lines for the oil-refrigerant solution. A lubrication system that controls a three-way valve connected to the oil feeder, one feed line branches off before entering the cooler, the other feed line leaves the cooler, and the three-way pulp outlet line is sent to the compression chamber. .
JP57219339A 1981-12-17 1982-12-16 Lubricating device Pending JPS58107888A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH806681 1981-12-17
CH8068105 1981-12-17

Publications (1)

Publication Number Publication Date
JPS58107888A true JPS58107888A (en) 1983-06-27

Family

ID=4334609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219339A Pending JPS58107888A (en) 1981-12-17 1982-12-16 Lubricating device

Country Status (9)

Country Link
JP (1) JPS58107888A (en)
DE (1) DE3238241A1 (en)
DK (1) DK490882A (en)
ES (1) ES8400190A1 (en)
FR (1) FR2518662A1 (en)
GB (1) GB2111662A (en)
IT (1) IT1156133B (en)
SE (1) SE8207121L (en)
ZA (1) ZA827971B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466485A (en) * 1987-09-08 1989-03-13 Hitachi Ltd Oil supplier of oil cooling type screw compressor
US6203301B1 (en) * 1998-04-29 2001-03-20 Chun Kyung Kim Fluid pump
WO2006013636A1 (en) * 2004-08-03 2006-02-09 Mayekawa Mfg.Co.,Ltd. Lubricant supply system and operating method of multisystem lubrication screw compressor
WO2016129083A1 (en) * 2015-02-12 2016-08-18 株式会社前川製作所 Oil-cooled screw compressor system and method for modifying same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478054A (en) * 1983-07-12 1984-10-23 Dunham-Bush, Inc. Helical screw rotary compressor for air conditioning system having improved oil management
US6122924A (en) * 1999-06-30 2000-09-26 Carrier Corporation Hot gas compressor bypass using oil separator circuit
DE112005001636A5 (en) * 2004-05-07 2007-05-31 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg air compressor
DE202005002519U1 (en) * 2005-02-17 2006-06-29 Leybold Vacuum Gmbh Vacuum displacement pump for use in e.g. hospital, has controlling device connected with motor and actuating motor after actuation of heating device when fixed threshold value is reached, where value is lubricant temperature
DE102006001276B4 (en) * 2006-01-10 2019-02-28 Linde Ag Refrigeration circuit and method for operating a refrigeration cycle
US7762789B2 (en) * 2007-11-12 2010-07-27 Ingersoll-Rand Company Compressor with flow control sensor
BE1018075A3 (en) 2008-03-31 2010-04-06 Atlas Copco Airpower Nv METHOD FOR COOLING A LIQUID-INJECTION COMPRESSOR ELEMENT AND LIQUID-INJECTION COMPRESSOR ELEMENT FOR USING SUCH METHOD.
US8276289B2 (en) 2009-03-27 2012-10-02 Terra Green Energy, Llc System and method for preparation of solid biomass by torrefaction
WO2011090482A2 (en) * 2010-01-22 2011-07-28 Ingersoll-Rand Company Compressor system including a flow and temperature control device
US9518579B2 (en) 2010-01-22 2016-12-13 Ingersoll-Rand Company Oil flooded compressor having motor operated temperature controlled mixing valve
DE102010002649A1 (en) * 2010-03-08 2011-09-08 Bitzer Kühlmaschinenbau Gmbh screw compressors
FI123202B (en) 2011-02-08 2012-12-14 Gardner Denver Oy Method and apparatus for controlling the compressed air compressor operating temperature
US20190136843A1 (en) * 2016-06-10 2019-05-09 Hitachi, Ltd. Air Compressor
CN110411054B (en) * 2019-07-09 2021-02-02 南京天加环境科技有限公司 Gas heat pump air conditioning system capable of reducing temperature of lubricating oil and control method
CN113266571A (en) * 2021-05-10 2021-08-17 广东葆德科技有限公司 Compressor engine oil viscosity control system and control method
CN115507025B (en) * 2022-10-18 2024-02-27 西安交通大学 High rotor axial temperature uniformity twin-screw compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759348A (en) * 1971-11-08 1973-09-18 Maekawa Seisakusho Kk Method of compressing chlorine gas
GB1457435A (en) * 1973-01-13 1976-12-01 Hokuetsu Kogyo Co Compressor arrangement including an oil-injection-type rotary compressor having a centrifugal water separator
CA1074750A (en) * 1975-03-31 1980-04-01 Sullair Corporation Rotary screw compressor and method of operation
GB1548663A (en) * 1975-06-24 1979-07-18 Maekawa Seisakusho Kk Refrigerating apparatus
DE2710621A1 (en) * 1977-03-11 1978-09-14 Demag Ag Oil cooled rotary compressor injection system - has vent hole to prevent air accumulated during shut=down disrupting oil flow

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466485A (en) * 1987-09-08 1989-03-13 Hitachi Ltd Oil supplier of oil cooling type screw compressor
US6203301B1 (en) * 1998-04-29 2001-03-20 Chun Kyung Kim Fluid pump
WO2006013636A1 (en) * 2004-08-03 2006-02-09 Mayekawa Mfg.Co.,Ltd. Lubricant supply system and operating method of multisystem lubrication screw compressor
US7347301B2 (en) 2004-08-03 2008-03-25 Mayekawa Mfg. Co., Ltd. Lubricant supply system and operating method of multisystem lubrication screw compressor
WO2016129083A1 (en) * 2015-02-12 2016-08-18 株式会社前川製作所 Oil-cooled screw compressor system and method for modifying same
JPWO2016129083A1 (en) * 2015-02-12 2017-11-24 株式会社前川製作所 Oil-cooled screw compressor system and its remodeling method
RU2689864C2 (en) * 2015-02-12 2019-05-29 Майекава Мфг. Ко., Лтд. Oil-filled screw compressor system and method for its modification
US10662947B2 (en) 2015-02-12 2020-05-26 Mayekawa Mfg. Co., Ltd. Oil-flooded screw compressor system and method for modifying the same

Also Published As

Publication number Publication date
GB2111662A (en) 1983-07-06
ES516979A0 (en) 1983-10-16
FR2518662A1 (en) 1983-06-24
SE8207121L (en) 1983-06-18
IT1156133B (en) 1987-01-28
IT8224707A0 (en) 1982-12-13
DE3238241A1 (en) 1983-07-21
ZA827971B (en) 1983-08-31
ES8400190A1 (en) 1983-10-16
SE8207121D0 (en) 1982-12-13
DK490882A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
JPS58107888A (en) Lubricating device
US6233967B1 (en) Refrigeration chiller oil recovery employing high pressure oil as eductor motive fluid
US5431025A (en) Apparatus and method of oil charge loss protection for compressors
US4780061A (en) Screw compressor with integral oil cooling
US4854130A (en) Refrigerating apparatus
US3856493A (en) Energy recovery system for oil injected screw compressors
US4918944A (en) Falling film evaporator
US5899091A (en) Refrigeration system with integrated economizer/oil cooler
US6058727A (en) Refrigeration system with integrated oil cooling heat exchanger
MXPA01010444A (en) Refrigeration system with phase separation.
EP0852324B1 (en) Refrigerant circulating apparatus
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
US5765392A (en) Screw compressor apparatus for refrigerants with oils soluble in refrigerants
JPS60105873A (en) Oil cooling device for compressor, particularly, screw type compressor
US3838581A (en) Refrigerator apparatus including motor cooling means
US4359313A (en) Liquid ring pump seal liquid chiller system
EP1293735B1 (en) Refrigerant circuit
CA1205645A (en) Method of recirculating oil in refrigerating systems
US5433590A (en) Cooling device for the lubrication circuit of a compressor
JPH0379959A (en) Refrigeration apparatus
JP2002266782A (en) Screw refrigerating machine
US20040098996A1 (en) Alternate flow of discharge gas to a vaporizer for a screw compressor
JP2000045991A (en) Refrigerant lubricating system for refrigerator compressor
JPH07260262A (en) Refrigerating device
US20090272439A1 (en) Maximum operating pressure control for systems with float valve metering devices