JP2527838Y2 - Cylindrical polymer battery - Google Patents

Cylindrical polymer battery

Info

Publication number
JP2527838Y2
JP2527838Y2 JP1990059671U JP5967190U JP2527838Y2 JP 2527838 Y2 JP2527838 Y2 JP 2527838Y2 JP 1990059671 U JP1990059671 U JP 1990059671U JP 5967190 U JP5967190 U JP 5967190U JP 2527838 Y2 JP2527838 Y2 JP 2527838Y2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
sheet
battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990059671U
Other languages
Japanese (ja)
Other versions
JPH0424263U (en
Inventor
正樹 吉野
利幸 加幡
文人 増渕
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1990059671U priority Critical patent/JP2527838Y2/en
Publication of JPH0424263U publication Critical patent/JPH0424263U/ja
Application granted granted Critical
Publication of JP2527838Y2 publication Critical patent/JP2527838Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、筒状ポリマー電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cylindrical polymer battery.

[従来の技術] ポリアニリンなどの高分子材料は、電気化学的に可逆
なRedox反応により、電解質イオンを内部に取り込んだ
り放出したりするが、この原理を応用した二次電池が近
年注目されている(特開昭56-136469号)。これらの高
分子材料は電解質カチオン、又はアニオンを内部に取り
込むことにより特殊な錯体を形成し、特にアニオンとの
錯体は安定である。このいわゆるドーピングは非水電解
液中でより安定であるため非水二次電池用正極として優
れる。そしてLi、Naなどのアルカリ金属を負極活物質と
して用いることにより高い電圧を取り出すことができる
ため、ポリマーによる軽量化と合わせて高エネルギー密
度化の実現が期待される。
[Prior art] Polymer materials such as polyaniline take in and release electrolyte ions by an electrochemically reversible Redox reaction. Secondary batteries using this principle have attracted attention in recent years. (JP-A-56-136469). These polymer materials form a special complex by incorporating an electrolyte cation or an anion therein, and a complex with an anion is particularly stable. This so-called doping is more stable in a non-aqueous electrolyte and is therefore excellent as a positive electrode for a non-aqueous secondary battery. Since a high voltage can be obtained by using an alkali metal such as Li or Na as the negative electrode active material, it is expected to realize a high energy density as well as a weight reduction by the polymer.

[考案が解決しようとする課題] しかし、二次電池の活物質として導電性ポリマーを用
いた場合、サイクル寿命が短い、あるいは自己放電が大
きい等といった問題がある。
[Problem to be Solved by the Invention] However, when a conductive polymer is used as an active material of a secondary battery, there are problems such as a short cycle life and a large self-discharge.

又、電圧は高いが、エネルギー密度は、現在の実用の
ものと同等以下である。
Further, although the voltage is high, the energy density is equal to or lower than that of the current practical use.

以上のように、二次電池として実用化するためには、
ドーピングなどの向上、負極、電解液、パッケージング
(実装)などが考慮されなければならない。特にパッケ
ージについては、容器に対する活物質の実装密度を高め
るように、活物質の性状に基づいた電極成形法に解決す
べき問題点が多くある。また、従来の電池と比較する
と、活物質が有機化合物であるため、その形状は複雑な
粒状あるいは繊維状であり、集電マトリックスに塗布、
あるいは含浸して保持する方法やポリアニリンのように
直接集電体上に導電性高分子を重合する方法で形成され
ている。しかし、正極、セパレータ、負極を重ねて渦巻
状とした筒状電池を形成するため渦巻状に電極等を巻き
込む際、第1図に示すように集電体上に一様に正極活物
質を形成した場合、渦状に巻いていくと、内側と外側に
引張り、圧縮の力が生じ、外側では密度が小さくなり、
活物質の結合力が弱まって、ひび、われが発生し、内側
では密度が大きくなり、集電体との結合力が弱まり、剥
離が発生してしまい(第2図)、活物質の脱落や短絡の
原因となっていた。
As described above, for practical use as a secondary battery,
Improvements in doping, anodes, electrolytes, packaging must be considered. In particular, for the package, there are many problems to be solved by the electrode molding method based on the properties of the active material so as to increase the mounting density of the active material in the container. Also, as compared with conventional batteries, the active material is an organic compound, so the shape is complex granular or fibrous, and applied to a current collecting matrix.
Alternatively, it is formed by a method of impregnating and holding or a method of polymerizing a conductive polymer directly on a current collector such as polyaniline. However, when spirally winding electrodes and the like to form a spirally wound cylindrical battery by laminating the positive electrode, the separator, and the negative electrode, the positive electrode active material is uniformly formed on the current collector as shown in FIG. In the case of spiraling, when spirally wound, it is pulled inward and outward, and a compressive force is generated, the density decreases on the outside,
The bonding force of the active material is weakened, cracks and cracks are generated, the density is increased inside, the bonding force with the current collector is weakened, and peeling is caused (FIG. 2). This was causing a short circuit.

そこで、本考案では、渦巻状に形成しても上記のよう
な問題点を発生することのない筒状ポリマー電池を提供
することを目的とするものである。
Therefore, an object of the present invention is to provide a cylindrical polymer battery which does not cause the above-described problems even when formed in a spiral shape.

[課題を解決するための手段] 本考案者らは、前記課題を解決するため鋭意検討した
結果、正極、セパレータ及び負極を重ねてこれを角型渦
巻状に形成することが有効であることを見出だし、本考
案に至った。
[Means for Solving the Problems] As a result of intensive studies to solve the problems, the present inventors have found that it is effective to stack a positive electrode, a separator, and a negative electrode and form them into a rectangular spiral shape. It was found and led to the present invention.

すなわち、本考案は、正極、負極及び電解質を主たる
構成要素とする電池において、正極活物質が正極集電体
上にしま条に形成されている正極、セパレータ及び負極
を重ね、正極活物質が存在していない部分を折り曲げて
角型渦巻状にした筒条ポリマー電池である。
That is, in the present invention, in a battery having a positive electrode, a negative electrode and an electrolyte as main components, a positive electrode, a separator and a negative electrode in which a positive electrode active material is formed in stripes on a positive electrode current collector are stacked, and the positive electrode active material is present. This is a tubular polymer battery in which a portion not formed is bent to form a square spiral.

現在、二次電池に関してはその高エネルギー化、高寿
命化を目指す方向にあり、それにつれ活物質の使用量も
更に増大する方向にある。したがって、集電体上の活物
質の厚みも増大する方向にあり、ポリマー正極活物質に
ひびわれの発生する傾向は一層強まることになるが、こ
の問題は、本考案により一挙に解決することができる。
At present, secondary batteries are aiming for higher energy and longer life, and the amount of active material used is further increasing. Therefore, the thickness of the active material on the current collector is also increasing, and the tendency of the polymer positive electrode active material to crack is further increased. However, this problem can be solved at once by the present invention. .

本考案によれば、正極、セパレータ、負極積層物は、
渦状に巻くに際し、これを直線的、すなわち角型渦状に
巻き取られるが、高密度エネルギー電池を目指した活物
質量の多い場合には、角部には正極活物質が全くない
か、あっても微量となるように形成する。すなわち、例
えば第3図に示すようにしま状に形成する。このように
形成することにより、折り曲げによる角度部分をこの活
物質量のない部分に当てることにより、第4、5図にみ
るように正極活物質には何の影響も及ぼさずに巻き取る
ことができる。
According to the present invention, the positive electrode, the separator, the negative electrode laminate,
When spirally wound, it is wound in a straight line, that is, in a square spiral shape, but if the amount of active material for high density energy batteries is large, there is no positive electrode active material at the corner, Is also formed in a very small amount. That is, for example, they are formed in a stripe shape as shown in FIG. By forming in this way, the angle portion due to bending is applied to the portion having no active material amount, so that the positive electrode active material can be wound without any influence as shown in FIGS. it can.

本考案において上記のように正極活物質をしま状に形
成するもう一つの利点は、角部の正極物質間のすき間に
電解液が通る穴が形成されることである。これにより十
分な電解液が全正極活物質に行きわたることとなる。
In the present invention, another advantage of forming the positive electrode active material in a strip shape as described above is that a hole through which the electrolyte passes is formed in a gap between the positive electrode materials at the corners. As a result, a sufficient amount of the electrolytic solution reaches all the positive electrode active materials.

本考案において使用される正極活物質としては、陰イ
オンをドープすることのできるグラファイトやポリアニ
リン、ポリチオフェン、ポリフラン、ポリピロール、ポ
リフェニレンスルフィド、ポリフェニレンオキシド、ポ
リアセチレン等の導電性高分子物質等が挙げられ、又、
正極活物質には導電性高分子だけでなく、通常リチウム
二次電池の正極として用いられるものから選定できる。
例えばTiO2、Cr2O3、V2O5、V6O13、MnO2、CuO、MnO3、C
u5V2O15等の金属酸化物、TiS2、FeS、CuCoS4、MoS3等の
金属硫化物、NbSe、VSe2等の金属セレン化物などを使用
することができるが、これらの中でも導電性高分子は本
発明電極との相性に特に優れ、導電性高分子物質を正極
に用いる場合には、ポリアニリン類が最も好適に使用し
得る。
Examples of the positive electrode active material used in the present invention include conductive polymer materials such as graphite and polyaniline, polythiophene, polyfuran, polypyrrole, polyphenylene sulfide, polyphenylene oxide, and polyacetylene that can be doped with an anion. ,
The positive electrode active material can be selected not only from a conductive polymer, but also from those usually used as a positive electrode of a lithium secondary battery.
For example, TiO 2 , Cr 2 O 3 , V 2 O 5 , V 6 O 13 , MnO 2 , CuO, MnO 3 , C
u 5 V 2 O metal oxide such as 15, TiS 2, FeS, CuCoS 4, MoS metal sulfides such as 3, NbSe, may be used, such as metal selenides such as VSe 2, conductive Among these The conductive polymer is particularly excellent in compatibility with the electrode of the present invention, and when a conductive polymer material is used for the positive electrode, polyanilines can be most preferably used.

アニリン類のポリマーの代表例としては、アニリン、
2−メトキシアニリン、3−メトキシアニリン、2,5−
ジメトキシアニリン、2,6−ジメチルアニリン、N−メ
チルアニリン、N−エチルアニリン、パラ−フェニレン
ジアミン、オルソ−フェニレンジアミン、パラ−ジフェ
ニルアミン、1−アミノナフタレン、1−アミノピレン
等の重合物などが挙げられるが、これらの中で最も好ま
しいのはアニリンの重合物である。
Representative examples of aniline polymers include aniline,
2-methoxyaniline, 3-methoxyaniline, 2,5-
Polymers such as dimethoxyaniline, 2,6-dimethylaniline, N-methylaniline, N-ethylaniline, para-phenylenediamine, ortho-phenylenediamine, para-diphenylamine, 1-aminonaphthalene, 1-aminopyrene and the like. However, among these, the most preferred is a polymer of aniline.

これらのポリマーを形成するシートとしては、ステン
レス類、鉄、チタン、アルミニウム等の金属シートをエ
キスバンド加工したものあるいは網状に切り込んだもの
又は打ち抜き加工したものが挙げられる。更に該金属の
50μm以下の箔が使える。該金属を発泡させたものある
いは該金属の粉末を多孔質に焼結したものも使用するこ
とができる。
Examples of the sheet forming these polymers include a sheet obtained by subjecting a metal sheet such as stainless steel, iron, titanium, and aluminum to an ex-band processing, a sheet cut into a net shape, or a punched sheet. Furthermore, the metal
A foil of 50 μm or less can be used. It is also possible to use a foamed metal or a porous sintered powder of the metal.

又、黒鉛のシートや炭素繊維布も使用することができ
る。
Graphite sheets and carbon fiber cloths can also be used.

上記シートの上に正極活物質を形成する方法として
は、まずシートを必要なところだけしま状にマスキング
した後、電解重合法、押出成形法そしてポリマーを結着
剤と共にシート状に塗布してもよいのである。活物質量
の厚みは0.3mm以上2.0mm以下が妥当で0.3mm以下では円
型渦巻きも可能であり、2.0mm以上では角型渦巻きの効
果も少ない。好ましくは0.5mm以上1.5mm以下である。
As a method of forming the positive electrode active material on the sheet, first, the sheet is masked only in a necessary portion in a strip shape, and then the electrolytic polymerization method, the extrusion molding method, and the polymer are applied in a sheet shape together with a binder. It is good. The thickness of the amount of the active material is preferably from 0.3 mm to 2.0 mm, and when the thickness is 0.3 mm or less, a circular spiral is possible. When the thickness is 2.0 mm or more, the effect of the square spiral is small. Preferably it is 0.5 mm or more and 1.5 mm or less.

負極活物質として用いられるのは、Li、Na、K等のア
ルカリ金属、Li-Al、Li-Si、Li-Se、Li-Pb、Li-Al-Mg等
のアルカリ金属を含む2元系以上の合金属があげられ
る。これらはそのままシート状で用いても良いし、粉末
にして焼結シート状あるいはペースト状にして基本に塗
布して用いても良い。更に上記金属や合金を溶融し、多
孔質基体に含浸して用いても良い。更に上記金属や合金
を基体上に蒸着やスパッタリング等によって付着させて
用いても良い。又、負極活物質量が多くなった場合、正
極と同様に形成することによって、良好な筒状となる。
As a negative electrode active material, a binary system or more containing alkali metals such as Li, Na, and K, and alkali metals such as Li-Al, Li-Si, Li-Se, Li-Pb, and Li-Al-Mg Metal. These may be used in the form of a sheet as they are, or may be used in the form of a powder, a sintered sheet or a paste, and basically applied. Further, the above metal or alloy may be melted and impregnated into a porous substrate before use. Further, the above-mentioned metals and alloys may be used by being deposited on a substrate by vapor deposition or sputtering. In addition, when the amount of the negative electrode active material is large, a favorable cylindrical shape is obtained by forming the negative electrode active material in the same manner as the positive electrode.

セパレータとしては微多孔性のポリプロピレンシー
ト、ガラスの不織布、更にイオン選択性膜などが挙げら
れる。
Examples of the separator include a microporous polypropylene sheet, a nonwoven fabric of glass, and an ion-selective membrane.

電解質としてはアニオン類のポリマーヘドーピングさ
れる陰イオン、例えばPF6 -、AsF6 -、SbF6 -、SbCl6 -のよ
うなVb族元素のハロゲン化物陰イオン、BF4 -、AlCl4 -
ようなIIIb族元素のハロゲン化物陰イオン、I-、Br-、C
l-のようなハロゲン陰イオンを含むアルカリ金属塩ある
いはアルキルアンモニウム類があげられる。これらの塩
は溶解される溶媒の種類によっても異なるが0.1M〜5M程
度の種類で用いるのが良い。又2種類以上混合して用い
ても良い。
As the electrolyte, anions doped into the polymer of anions, for example, halide anions of the Vb group element such as PF 6 , AsF 6 , SbF 6 , SbCl 6 , BF 4 , and AlCl 4 halogenated anions of group IIIb elements such as, I -, Br -, C
l - alkali metal salts or alkyl ammonium compound containing halogen anion, such as and the like. These salts vary depending on the type of the solvent to be dissolved, but are preferably used in a type of about 0.1 M to 5 M. Also, two or more kinds may be mixed and used.

溶媒としては非プロトン性で、かつ高誘導率、さらに
液体状である温度範囲が常温前後で広い非水電解液が望
ましい。
As the solvent, a non-aqueous electrolytic solution which is aprotic, has a high dielectric constant, and has a wide liquid temperature range around room temperature is desirable.

[実施例] 以下に実施例を示し、本考案を更に詳細に説明する。[Examples] The present invention will be described in more detail with reference to the following examples.

正極の集電体として厚さ20μmのシート状ステンレス
に化学エッチング法により直径100μmの円形孔を1cm2
当り100個の割合で設けた後プラスト処理によりシート
表面を粗面化した。
A circular hole having a diameter of 100 μm was formed in a sheet-like stainless steel having a thickness of 20 μm as a current collector of the positive electrode by a chemical etching method in a size of 1 cm 2.
After the sheet was provided at a ratio of 100 pieces, the sheet surface was roughened by a plast treatment.

実施例1 上記集電体幅40mm、長さ120mmに4mm間隔で1mmのテフ
ロンテープを貼り付けた。そして、0.5Mアニリン、1.5N
H2SO4を水に溶解し、0.75VvsS.C.E.定電位重合法によ
り、集電体上にポリアニリンを片面1.5mm厚、計3mm厚で
作成した。そして、テフロンテープを剥がすと4mm間隔
で約1mm幅のSUS面が露出することになった。これを数回
圧延ロールに通し、電解液を十分浸したトーネンタピル
スと80μm厚リチウムといっしょに角型渦巻きで巻いた
結果スムーズに電池缶に実装でき、充放電試験の結果12
7.5mAh/gの容量が得られた。
Example 1 A 1 mm Teflon tape was attached to the current collector 40 mm wide and 120 mm long at intervals of 4 mm. And 0.5M aniline, 1.5N
H 2 SO 4 was dissolved in water, and polyaniline was formed on the current collector with a thickness of 1.5 mm on one side, a total of 3 mm in thickness, by a 0.75 V vs S. CE constant potential polymerization method. Then, when the Teflon tape was peeled off, the SUS surface having a width of about 1 mm was exposed at intervals of 4 mm. This was passed through a rolling roll several times and wound with a rectangular spiral together with Tonentapirus and 80 μm-thick lithium, which had been sufficiently immersed in the electrolyte, and was smoothly mounted on the battery can.
A capacity of 7.5 mAh / g was obtained.

実施例2 上記集電体幅40mm、長さ160mmに8mm間隔で1mmのテフ
ロンテープを貼り付けた。そして、0.1Mピロール、0.05
M パラトルエンスルホン酸ナトリウムをアセトニトリ
ルに溶解し5Vの定電位電解を行って、片面1mm厚、両面
で2mmのポリピロールを形成させた。テフロンテープを
剥がした後、この正極シートと電解液を十分浸したガラ
ス繊維不織布と100μmリチウム−20wt%アルミニウム
を円型渦巻きで巻いた結果、スムーズにφ16の電池缶に
実装でき、充放電試験の結果90mAh/gの容量が得られ
た。
Example 2 A 1 mm Teflon tape was attached to the current collector 40 mm wide and 160 mm long at 8 mm intervals. And 0.1M pyrrole, 0.05
M sodium paratoluenesulfonate was dissolved in acetonitrile and subjected to 5 V constant potential electrolysis to form 1 mm thick polypyrrole on one side and 2 mm on both sides. After peeling off the Teflon tape, this positive electrode sheet, a glass fiber non-woven fabric sufficiently immersed in electrolyte and 100μm lithium-20wt% aluminum are wound in a circular spiral, and can be smoothly mounted on a φ16 battery can. As a result, a capacity of 90 mAh / g was obtained.

実施例3 上記集電体幅40mm、長さ130mmに実施例1の方法で20
μm厚のポリアニリンを作成した。そして、4mm間隔で1
mm幅のテープによりマスキングした後、化学重合ポリア
ニリンと結着剤を混合し、この正極上に1.5mm厚計3mm厚
に形成し、マスクを剥がし正極シートを作成した。これ
を電解液と十分に浸したトーネンタピルスそして100μ
m厚リチウムを角型に巻いた。そして、電池缶に実装し
たところ、107.8mAh/gの容量が得られた。
Example 3 The same method as in Example 1 was applied to the current collector 40 mm in width and 130 mm in length.
A μm thick polyaniline was prepared. And 1 at 4mm intervals
After masking with a tape having a width of mm, a chemically polymerized polyaniline and a binder were mixed, formed on this positive electrode to a thickness of 1.5 mm and a total thickness of 3 mm, and the mask was peeled off to prepare a positive electrode sheet. This is fully soaked with electrolyte and tonentapirus and 100μ
m-thick lithium was wound into a square shape. Then, when mounted on a battery can, a capacity of 107.8 mAh / g was obtained.

実施例4 上記集電体幅40mm長さ200mmに8mm間隔で1mm幅のテフ
ロンテープを貼り付けた。そして、化学重合ポリアニリ
ンと結着剤を混合し、シート上に0.5mmずつ計1mm形成し
た。これを電解液を十分浸したガラス繊維不織布とリチ
ウム−20wt%アルミニウム80μmと角型渦巻きにして電
池缶に実装したところ125mAh/gの容量が得られた。
Example 4 A Teflon tape having a width of 1 mm was attached to the current collector at a width of 40 mm and a length of 200 mm at intervals of 8 mm. Then, the chemically polymerized polyaniline and the binder were mixed to form a total of 1 mm on the sheet in 0.5 mm increments. This was made into a glass fiber non-woven fabric sufficiently immersed in an electrolytic solution and 80 μm of lithium-20 wt% aluminum in a rectangular spiral, and mounted on a battery can to obtain a capacity of 125 mAh / g.

比較例1 上記集電体幅40mm長さ100mmに、実施例1の方法でポ
リアニリンを片面1.5mm厚両面3mm厚作成し、正極シート
とした。それと電解液を十分浸したセパレータそして80
μm厚リチウムとで円型渦巻き、電池缶に封入し、充放
電試験を行った。結果として105mAh/gしか得られなかっ
た。
Comparative Example 1 Polyaniline was formed to a thickness of 1.5 mm on one side and a thickness of 3 mm on both sides with the current collector width of 40 mm and length of 100 mm by the method of Example 1 to obtain a positive electrode sheet. Separator fully soaked with electrolyte and 80
A circular spiral with lithium having a thickness of μm was sealed in a battery can, and a charge / discharge test was performed. As a result, only 105 mAh / g was obtained.

比較例2 上記集電体幅40mm長さ160mmに実施例2と同様にポリ
ピロールを両面で2mm作成し、正極シートとした。これ
を圧延ロールを通してセパレータ、負極といっしょに円
型渦巻きにしたところ、中心付近で集電体からポリピロ
ールがはがれるという現象が発生した。容量も61mAh/g
しか得られなかった。
Comparative Example 2 Polypyrrole of 2 mm was formed on both sides of the current collector with a width of 40 mm and a length of 160 mm in the same manner as in Example 2 to obtain a positive electrode sheet. When this was formed into a circular spiral together with the separator and the negative electrode through a rolling roll, a phenomenon that polypyrrole was peeled off from the current collector near the center occurred. Capacity is also 61mAh / g
I could only get it.

比較例3 上記集電体幅40mm長さ130mmに実施例3のように20μ
m厚のポリアニリンの上に結着剤で計3mm化学重合ポリ
アニリンを作成したが円型渦巻きでは、はがれ剥離が発
生してしまい容量も88mAh/gしか得られなかった。
Comparative Example 3 The current collector was 40 μm wide and 130 mm long and 20 μm as in Example 3.
A chemically polymerized polyaniline having a total thickness of 3 mm was formed on the m-thick polyaniline with a binder. However, in the case of a circular spiral, peeling and peeling occurred, and a capacity of only 88 mAh / g was obtained.

比較例4 上記集電体幅40mm長さ160mmに化学重合ポリアニリン
を結着剤とともに1.5mmずつ3mm厚で形成し、電解液を十
分浸したセパレータとリチウム−20wt%アルミニウム80
μmシートとともに円型渦巻きにし電池缶に実装して試
験したところ、74mAh/gしか得られなかった。
COMPARATIVE EXAMPLE 4 A chemically polymerized polyaniline was formed to a thickness of 3 mm with a binder in a thickness of 1.5 mm each with a binder in a width of the current collector of 40 mm and a length of 160 mm.
When a test was conducted by forming a spiral shape along with the μm sheet into a battery can and mounting it on a battery can, only 74 mAh / g was obtained.

[考案の効果] 以上説明したように、本考案によれば正極、セパレー
タ及び負極の積層物を渦巻状に巻き取っても、正極活物
質に、ひび、われ、剥離などが生ずることを防止するこ
とができ、性能の改善された筒状ポリマー電池を得るこ
とができる。
[Effects of the Invention] As described above, according to the present invention, even if the laminate of the positive electrode, the separator, and the negative electrode is spirally wound, it is possible to prevent the positive electrode active material from being cracked, cracked, and peeled off. Thus, a cylindrical polymer battery with improved performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来の正極の層構成を説明する図、第2図は第
1図の従来の正極を巻いた際に活物質に剥離などが発生
する状態を説明する図、第3図a及び第3図bは本考案
の筒状ポリマー電池に使用する正極の層構成を説明する
図、第4図a及び第4図b並びに第5図a及び第5図b
は、それぞれ第3図a及び第3図bに示す正極を巻いた
状態を説明する図。
FIG. 1 is a diagram illustrating a layer configuration of a conventional positive electrode, FIG. 2 is a diagram illustrating a state where peeling or the like occurs in an active material when the conventional positive electrode of FIG. 1 is wound, FIG. Fig. 3b is a view for explaining the layer structure of the positive electrode used in the cylindrical polymer battery of the present invention, Figs. 4a and 4b and Figs. 5a and 5b.
FIG. 3 is a view for explaining a state in which the positive electrode shown in FIGS. 3A and 3B is wound.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 木村 興利 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 昭56−136469(JP,A) 実公 昭37−165(JP,Y1) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kouri Kimura 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (56) References JP-A-56-136469 (JP, A) 37-165 (JP, Y1)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】正極、負極及び電解質を主たる構成要素と
する電池において、正極活物質が正極集電体上にしま条
に形成されている正極、セパレータ及び負極を重ね、正
極活物質が存在していない部分を折り曲げて角型渦巻状
にした筒条ポリマー電池。
In a battery comprising a positive electrode, a negative electrode and an electrolyte as main components, a positive electrode active material is formed by laminating a positive electrode, a separator and a negative electrode formed on a positive electrode current collector in stripes. A cylindrical polymer battery in which the part that has not been bent is bent into a rectangular spiral shape.
JP1990059671U 1990-04-27 1990-06-07 Cylindrical polymer battery Expired - Lifetime JP2527838Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990059671U JP2527838Y2 (en) 1990-04-27 1990-06-07 Cylindrical polymer battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-44633 1990-02-27
JP4463390 1990-04-27
JP1990059671U JP2527838Y2 (en) 1990-04-27 1990-06-07 Cylindrical polymer battery

Publications (2)

Publication Number Publication Date
JPH0424263U JPH0424263U (en) 1992-02-27
JP2527838Y2 true JP2527838Y2 (en) 1997-03-05

Family

ID=31890059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990059671U Expired - Lifetime JP2527838Y2 (en) 1990-04-27 1990-06-07 Cylindrical polymer battery

Country Status (1)

Country Link
JP (1) JP2527838Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980016522A (en) * 1996-08-28 1998-06-05 김광호 Manufacturing method of lithium ion secondary battery and lithium ion secondary battery manufactured according to the method
JP4967265B2 (en) * 2005-07-13 2012-07-04 大日本印刷株式会社 Non-aqueous electrolyte storage element electrode structure, method for producing the electrode structure, and non-aqueous electrolyte storage element
JP2012146480A (en) * 2011-01-12 2012-08-02 Dainippon Screen Mfg Co Ltd Method for producing electrode, battery electrode and battery
DE102011017613A1 (en) * 2011-04-27 2012-10-31 Robert Bosch Gmbh Cell winding of a lithium-ion battery and method for producing a cell coil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321114A (en) * 1980-03-11 1982-03-23 University Patents, Inc. Electrochemical doping of conjugated polymers

Also Published As

Publication number Publication date
JPH0424263U (en) 1992-02-27

Similar Documents

Publication Publication Date Title
JPH097896A (en) Electric double-layer capacitor
HU219058B (en) Electro-chemical cell
WO2001017052A2 (en) All-solid-state electrochemical device and method of manufacturing
JP2002203562A (en) Non-aqueous electrolyte secondary battery
US4851308A (en) Solid-state energy storage cell wherein the electrolyte comprises an organic support and an inorganic salt
JP2000285929A (en) Solid electrolyte battery
JP3472133B2 (en) Lithium secondary battery and method of manufacturing electric double layer capacitor
JP2002151141A (en) Proton conduction polymer secondary battery
JP2002319405A (en) Lithium secondary battery
JP4078542B2 (en) Power storage device
JP3512551B2 (en) Rechargeable battery
JP2725786B2 (en) Sheet-like electrode, method of manufacturing the same, and secondary battery using the same
JP2527838Y2 (en) Cylindrical polymer battery
JP2002298853A (en) Lithium secondary battery and electric doublelayer capacitor
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
US9912008B2 (en) Electrical energy storage device with non-aqueous electrolyte
JPH0935721A (en) Secondary battery
JPH09205041A (en) Electric double layered capacitor
EP3218953B1 (en) Secondary battery with non-aqueous electrolyte
JP2542221B2 (en) Battery using polyaniline composite electrode
JPS62176068A (en) Cylindrical polymer battery
JPS62115663A (en) Organic electrolyte secondary battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JPH0349151A (en) Secondary battery
JP2644765B2 (en) Positive electrode for storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term