JP2002298853A - Lithium secondary battery and electric doublelayer capacitor - Google Patents

Lithium secondary battery and electric doublelayer capacitor

Info

Publication number
JP2002298853A
JP2002298853A JP2001135581A JP2001135581A JP2002298853A JP 2002298853 A JP2002298853 A JP 2002298853A JP 2001135581 A JP2001135581 A JP 2001135581A JP 2001135581 A JP2001135581 A JP 2001135581A JP 2002298853 A JP2002298853 A JP 2002298853A
Authority
JP
Japan
Prior art keywords
secondary battery
current collector
lithium secondary
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001135581A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tachibana
和宏 立花
Tatsuo Nishina
辰夫 仁科
Akiya Kozawa
昭弥 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001135581A priority Critical patent/JP2002298853A/en
Publication of JP2002298853A publication Critical patent/JP2002298853A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an element of low internal resistance and a high rate by preventing generation of passive state film on a collector surface of a lithium secondary battery and an electric double-layer capacitor. SOLUTION: Application of fine grain carbon of particle size 0.8 μm or less on the collector surface prevents generation of a passive state film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は非水電解質系リチ
ウム二次電池、例えばリチウムイオン電池やリチウムポ
リマー電池、および電気二重層キャパシタに関するもの
であり、特にこれらの集電体の表面に炭素の微粒子を付
着せしめることにより、分極が極めて小さい素子を提供
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte type lithium secondary battery, for example, a lithium ion battery, a lithium polymer battery, and an electric double layer capacitor. Is provided to provide an element having extremely small polarization.

【0002】[0002]

【従来の技術】 従来、リチウム二次電池では、リチウ
ムイオンを含む遷移金属との複合酸化物からなる活物質
と、炭素粉末からなる導電助剤とを有機バインダーでア
ルミニウム箔よりなる集電体の表面に固着させた正極
と、リチウムイオンの脱挿入可能な炭素材料粉末などを
有機ポリマーのバインダーで銅箔よりなる集電体の表面
に固着させた負極が使用されてきた。このようにして得
られるリチウム二次電池は、一般に高いエネルギー密度
と長いサイクル寿命を持つが、電気自動車等の動力源や
携帯用電子機器の電源にはより高レート特性の電池が望
ましい。また、有機電解液を用いる電気二重層キャパシ
タは動作電位範囲が広く、容量が大きく、また動作温度
範囲が広いなどの特徴を持つ。有機電解液を用いた通常
の電気二重層キャパシタでは、活性炭を有機バインダー
でアルミニウム箔の集電体の表面に固着させた電極が用
いられる。2枚の電極の間に、有機電解液を含浸させた
セパレーターを介在させて捲回することにより電気二重
層キャパシタが得られる。しかしながら、有機電解質を
用いた電気二重層キャパシタは内部抵抗が大きい欠点が
あった。更に高レートで使用するとアルミニウム表面に
不働態皮膜が形成されて内部抵抗が一層増大する問題が
あった。
2. Description of the Related Art Conventionally, in a lithium secondary battery, a current collector made of aluminum foil with an organic binder using an active material made of a composite oxide with a transition metal containing lithium ions and a conductive aid made of carbon powder is used. A positive electrode fixed on the surface and a negative electrode fixed on a surface of a current collector made of copper foil with a binder of an organic polymer, such as a lithium ion-removable carbon material powder, have been used. The lithium secondary battery obtained in this manner generally has a high energy density and a long cycle life, but a battery having higher rate characteristics is desirable for a power source such as an electric vehicle and a power supply of a portable electronic device. An electric double layer capacitor using an organic electrolyte has characteristics such as a wide operating potential range, a large capacity, and a wide operating temperature range. In an ordinary electric double layer capacitor using an organic electrolyte, an electrode is used in which activated carbon is fixed to the surface of a current collector of an aluminum foil with an organic binder. An electric double layer capacitor can be obtained by winding between two electrodes with a separator impregnated with an organic electrolyte interposed therebetween. However, the electric double layer capacitor using the organic electrolyte has a disadvantage that the internal resistance is large. Further, when used at a high rate, a passive film is formed on the aluminum surface, and there is a problem that the internal resistance further increases.

【0003】[0003]

【発明が解決しようとする課題】 本発明は、有機電解
質を用いた従来のリチウム二次電池や電気二重層キャパ
シタにおいて、これらの内部抵抗を著しく低下させ、且
つ高レート使用条件下での不働態皮膜の形成を防止する
ことにより、安定な高レート特性を可能とするものであ
る。即ち、本発明の第一の目的は、リチウム二次電池や
電気二重層キャパシタにおいて、これらの集電体表面の
不働態皮膜の形成を防止することにある。本発明の第二
の目的は、リチウム二次電池の充放電電流を増大せしめ
ることにある。本発明の第三の目的は、電気二重層キャ
パシタの内部抵抗を低減することにある。
The present invention relates to a conventional lithium secondary battery or electric double layer capacitor using an organic electrolyte, in which the internal resistance is significantly reduced and the passive state under high rate use conditions is reduced. By preventing the formation of a film, stable high rate characteristics can be achieved. That is, a first object of the present invention is to prevent the formation of a passive film on the surface of a current collector in a lithium secondary battery or an electric double layer capacitor. A second object of the present invention is to increase the charge / discharge current of a lithium secondary battery. A third object of the present invention is to reduce the internal resistance of an electric double layer capacitor.

【0004】[0004]

【課題を解決するための手段】 本発明は、リチウム複
合酸化物を正極活物質、フッ素を含むアニオンのリチウ
ム塩を主電解質、および不働態皮膜が形成され得る金属
を正極集電体とするリチウム二次電池において、導電助
剤としてメジアン径が0.8マイクロメートル以下の微
粒炭素が正極集電体表面に塗布されているリチウム二次
電池、およびフッ素を含むアニオンのリチウム塩を主電
解質、および不働態皮膜が形成され得る金属を集電体と
する電気二重層キャパシタにおいて、導電助剤としてメ
ジアン径が0.8マイクロメートル以下の微粒炭素が集
電体表面に塗布されている電気二重層キャパシタであ
る。
Means for Solving the Problems According to the present invention, a lithium composite oxide is used as a positive electrode active material, a lithium salt of an anion containing fluorine as a main electrolyte, and a metal capable of forming a passive film as a positive electrode current collector. In the secondary battery, a lithium secondary battery in which fine carbon having a median diameter of 0.8 μm or less is applied to the surface of the positive electrode current collector as a conductive auxiliary, and a lithium salt of a fluorine-containing anion as a main electrolyte, and An electric double layer capacitor having a collector capable of forming a passivation film, wherein fine carbon having a median diameter of 0.8 μm or less is coated on the surface of the current collector as a conductive additive. It is.

【0005】[0005]

【作用】 本発明者等は、有機電解液を用いたリチウム
二次電池では集電体と電極活物質の界面、有機電解液を
用いた電気二重層キャパシタでは集電体と電解液の界面
での界面抵抗が大きく、これがこれらの素子の高レート
化の阻害要因であることに着目し、その界面抵抗の減少
を図るため、種々検討した結果、サブミクロンの粒子径
を持った微粒炭素をこれらの集電体の表面に付着させる
ことにより、集電体表面における不働態皮膜の形成が阻
止され、その界面の分極を著しく小さくできることを見
いだしたものである。この効果は従来用いられたきた粒
子径数十マイクロメートルの炭素粒子では全く期待でき
なかったものである。この不働態皮膜の形成を阻止する
メカニズムは明らかではないが、単に微粒炭素の付着に
よる電極表面積の増加から期待される効果ではなく、炭
素微粒子が金属の不働態化皮膜の欠陥部に付着すること
により、炭素の還元作用により皮膜の自己修復を妨害
し、皮膜の欠陥部を導電性活性点として顕在化させるも
のと推定する。
The present inventors have found that at the interface between the current collector and the electrode active material in a lithium secondary battery using an organic electrolyte, and at the interface between the current collector and the electrolyte in an electric double layer capacitor using an organic electrolyte. Focusing on the fact that the interfacial resistance of these elements is large and this is a factor that hinders the increase in the rate of these devices, various studies were conducted to reduce the interfacial resistance. It has been found that by adhering to the surface of the current collector, the formation of a passive film on the surface of the current collector is prevented, and the polarization at the interface can be significantly reduced. This effect cannot be expected at all with the conventionally used carbon particles having a particle diameter of several tens of micrometers. Although the mechanism for preventing the formation of this passivation film is not clear, it is not the effect expected from simply increasing the electrode surface area due to the attachment of fine carbon particles, but rather the carbon fine particles adhere to defects in the metal passivation film. It is presumed that the self-healing of the film is hindered by the reducing action of carbon, and the defective portion of the film is exposed as a conductive active site.

【0006】そして、本発明に使用するメジアン径0.
8マイクロメートル以下の微粒炭素は、本発明者等の発
明による特開平10−228922、特開平10−24
1677、平成13年2月13日出願の特許願(整理番
号PI010128)、および平成13年2月27日出
願の特許願(整理番号PI010126)に記載された
方法のものを好適に使うことができる。微粒炭素の粒子
径が0.8マイクロメートルより大きいと、不働態皮膜
の形成を阻止する効果が小さくなる。また微粒炭素の粒
子径は0.8ないし0.05マイクロメートルの範囲が
特に不働態皮膜の形成を阻止する効果が大きい。
The median diameter used for the present invention is 0.1.
Fine carbon particles having a diameter of 8 micrometers or less are disclosed in Japanese Patent Application Laid-Open Nos. 10-228922 and 10-24 according to the present invention.
1677, the method described in the patent application filed on February 13, 2001 (reference number PI010128) and the method described in the patent application filed on February 27, 2001 (reference number PI010126) can be preferably used. . If the particle diameter of the fine carbon is larger than 0.8 μm, the effect of preventing the formation of the passive film is reduced. When the particle size of the fine carbon particles is in the range of 0.8 to 0.05 micrometers, the effect of inhibiting the formation of a passive film is particularly large.

【0007】本発明において、集電体表面に微粒の炭素
粒子を付着させる方法としては、微粒の炭素粒子を含む
水系または有機溶剤系の懸濁液を集電体に塗布して乾燥
するか、集電体を上記の懸濁液に浸してアノード分極す
ることにより微粒の炭素粒子を付着させるか、あるいは
単にリチウム二次電池や電気二重層キャパシタの電解液
として微粒の炭素粒子を分散させたものを用いても良
い。
In the present invention, as a method for adhering fine carbon particles to the surface of the current collector, an aqueous or organic solvent-based suspension containing the fine carbon particles is applied to the current collector and dried. The current collector is immersed in the above suspension and anodic polarized to attach fine carbon particles, or simply dispersed fine carbon particles as an electrolyte for lithium secondary batteries and electric double layer capacitors May be used.

【0008】本発明でリチウム二次電池の正極および電
気二重層キャパシタの集電体として用いる不働態皮膜が
形成され得る金属には、アルミニウム、ニッケル、クロ
ムおよびこれらの合金(例えばステンレス鋼)が最も好
ましく、更に、タンタル、チタン、ハフニウム、ジルコ
ニウム、亜鉛、タングステン、ビスマス、アンチモンお
よびこれらの合金も好適に用いることができる。当然こ
れらの金属またはその合金は、電解液と接する部分に存
在すれば十分であり、めっき層の材料として用いること
もできる。
In the present invention, aluminum, nickel, chromium, and alloys thereof (for example, stainless steel) are most preferable metals on which a passive film used as a positive electrode of a lithium secondary battery and a current collector of an electric double layer capacitor can be formed. Preferably, tantalum, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and alloys thereof are also preferably used. Naturally, it is sufficient if these metals or their alloys are present in a portion in contact with the electrolytic solution, and can be used as a material for the plating layer.

【0009】本発明で用いるリチウム二次電池の正極活
物質としては、LiMnO、LiMn、LiN
iO、LiCoO、LiVO、LiV、Li
CrO、LiFeO、LiTiO、LiSc
、LiYOなどのリチウム複合酸化物を使用でき
る。これらのリチウム複合酸化物には、Na、K、R
b、Cs、Fr等のアルカリ金属、Al、Zn、Ga、
Fe、Cd、In、Sb、Hg、Ti、Pb、Bi、P
o等の典型金属の化合物または塩を含むことができる。
特にLiMn中のMnは資源が豊富で、低価格で
あるので、好適に使用される。
As the positive electrode active material for the lithium secondary battery used in the present invention, LiMnO 2 , LiMn 2 O 4 , LiN
iO, LiCoO 2 , LiVO 2 , LiV 2 O 4 , Li
CrO 2, LiFeO 2, LiTiO 2 , LiSc
Lithium composite oxides such as O 2 and LiYO 2 can be used. These lithium composite oxides include Na, K, R
b, Cs, alkali metal such as Fr, Al, Zn, Ga,
Fe, Cd, In, Sb, Hg, Ti, Pb, Bi, P
A compound or salt of a typical metal such as o may be included.
In particular, Mn in LiMn 2 O 4 is preferably used because it has abundant resources and is inexpensive.

【0010】本発明のリチウム二次電池で用いる電解質
としては、LiBF、LiPF、LiAsF、Li
SbF、LiCFSO、Li(CFSO
N、Li(CFSOC等のフッ素を含むアニオ
ンのリチウム塩が使用される。なかでもLiBFは、L
iPFと同様にアルミニウムを安定化させる作用が最
も強く、LiPFよりも安価で熱力学的な安定性もL
iPFより優れているところから、好適に使用され
る。また本発明の電気二重層キャパシタで用いる電解質
としては、フッ素を含むアニオンの第4級アンモニウム
塩であるRBF、RPF、RAsF、RSbF
RCFSO、R(CFSON、R(CF
SOC(RはTEA、TEMA等を表す)等を用
いることができる。
The electrolyte used in the lithium secondary battery of the present invention includes LiBF 4 , LiPF 6 , LiAsF and LiAsF.
SbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2
A lithium salt of a fluorine-containing anion such as N or Li (CF 3 SO 2 ) 3 C is used. Among them, LiBF is L
Like iPF 6, it has the strongest effect of stabilizing aluminum, is less expensive than LiPF 6 , and has thermodynamic stability L
Because it is superior to iPF 6 , it is preferably used. Examples of the electrolyte used in the electric double layer capacitor of the present invention include quaternary ammonium salts of fluorine-containing anions such as RBF 4 , RPF 4 , RAsF, RSbF 6 ,
RCF 3 SO 3 , R (CF 3 SO 2 ) 2 N, R (CF 3
SO 2 ) 3 C (R represents TEA, TEMA, or the like) or the like can be used.

【0011】[0011]

【実施例】【Example】

【実施例1】アセチレン黒をトリロールミルを用いて粉
砕したメジアン径0.15マイクロメートルの微粒炭素
のアセトン懸濁液をアルミニウム箔の表面全体に薄く塗
布し、乾燥させて試料電極とした。対極として白金、参
照極として銀(3.0V vsLi/Li)を使用
し、トールビーカー中に三極セルを組み立てた。プロピ
レンカーボネート(PC):1,2ジメトキシエタン
(DME)=1:1(体積比)の混合溶媒に1M四フッ
化ホウ酸リチウム(LiBF)を加えた電解質をトー
ルビーカーに注入した。アルゴン置換グローブボックス
中で掃引速度100mV/sでサイクリックボルタンメ
トリーをおこなった。また比較試験として、微粒炭素を
塗布しないアルミニウム箔を集電体とし、同一構造の三
極セルを組み立て同一条件で比較した。その結果を図1
に示す。図1の試験結果に見られるように、微粒炭素を
塗布していないアルミニウム箔は銀に対して5Vでも電
解液の分解電流は流れず、アルミニウム表面に不働態皮
膜が形成されていることが分かる。これに対して、微粒
炭素をアルミニウム表面全体に塗布した場合、1.5V
付近で電解液の分解に起因する電流が認められることか
ら、不働態皮膜の生成が阻止されていることが分かる。
Example 1 An acetone suspension of fine carbon having a median diameter of 0.15 μm obtained by pulverizing acetylene black using a triroll mill was thinly applied to the entire surface of an aluminum foil and dried to obtain a sample electrode. A triode cell was assembled in a tall beaker using platinum as the counter electrode and silver (3.0 V vs Li / Li + ) as the reference electrode. An electrolyte in which 1 M lithium tetrafluoroborate (LiBF 4 ) was added to a mixed solvent of propylene carbonate (PC): 1,2 dimethoxyethane (DME) = 1: 1 (volume ratio) was injected into a tall beaker. Cyclic voltammetry was performed at a sweep rate of 100 mV / s in an argon-purged glove box. As a comparative test, an aluminum foil not coated with fine carbon was used as a current collector, and triode cells having the same structure were assembled and compared under the same conditions. Figure 1 shows the results.
Shown in As can be seen from the test results in FIG. 1, the decomposition current of the electrolytic solution did not flow even at 5 V against silver in the aluminum foil not coated with fine carbon particles, indicating that a passive film was formed on the aluminum surface. . On the other hand, when fine carbon is applied to the entire aluminum surface, 1.5V
A current due to the decomposition of the electrolytic solution was observed in the vicinity, indicating that the formation of the passive film was prevented.

【0012】[0012]

【実施例2】純度99.99%のアルミニウム箔を試料
電極とし、対極として白金、参照極として銀を使用し、
トールビーカー中に三極セルを組み立てた。実施例1と
同一組成の電解液にメジアン径0.2マイクロメートル
の微粒炭素を1%加えてトールビーカーに注入した。こ
れを実施例1と同様の条件でサイクリックボルタンメト
リーをおこなった。また比較試験として、微粒炭素加え
ない電解液を用いた場合についても同一条件で比較し
た。その結果を図2に示す。図2の試験結果に見られる
ように、微粒炭素を1%加えた場合、銀に対して0.5
V付近から電流の増大が見られることから、電解液への
微粒炭素の添加によって不働態皮膜の生成が阻止された
ことが分かる。
Example 2 An aluminum foil having a purity of 99.99% was used as a sample electrode, platinum was used as a counter electrode, and silver was used as a reference electrode.
A triode cell was assembled in a tall beaker. 1% of fine carbon having a median diameter of 0.2 μm was added to an electrolytic solution having the same composition as in Example 1 and injected into a tall beaker. This was subjected to cyclic voltammetry under the same conditions as in Example 1. As a comparative test, a comparison was also made under the same conditions when an electrolytic solution without the addition of fine carbon was used. The result is shown in FIG. As can be seen from the test results in FIG. 2, when 1% fine carbon was added, 0.5% with respect to silver.
From the vicinity of V, an increase in current is observed, which indicates that the addition of fine carbon to the electrolytic solution prevented the formation of a passive film.

【0013】[0013]

【発明の効果】 以上の説明から明らかな通り、本発明
によればアルミニウム等の不働態皮膜が生成されやすい
集電体の表面に微粒炭素を接触せしめることにより、そ
の不働態皮膜の生成を阻止することができ、高レートの
リチウム二次電池および電気二重層キャパシタを提供で
きるものである。
As is apparent from the above description, according to the present invention, the formation of the passive film is prevented by bringing fine carbon particles into contact with the surface of the current collector on which the passive film such as aluminum is easily formed. Thus, a high-rate lithium secondary battery and an electric double layer capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微粒炭素を塗布した集電体と従来の集
電体を用いたサイクリックボルタングラムである。
FIG. 1 is a cyclic voltammogram using a current collector coated with fine carbon of the present invention and a conventional current collector.

【図2】本発明の微粒炭素を電解液中に添加した場合と
無添加の場合のサイクリックボルタングラムである。
FIG. 2 is a cyclic voltammogram when fine carbon of the present invention is added to an electrolytic solution and when it is not added.

【符号の説明】[Explanation of symbols]

A:微粒炭素を塗布した集電体のサイクリックボルタン
グラム B:従来の集電体のサイクリックボルタングラム C:微粒炭素を添加した電解液によるサイクリックボル
タングラム D:無添加の電解液によるサイクリックボルタングラム
A: Cyclic voltammogram of current collector coated with fine carbon B: Cyclic voltammogram of conventional current collector C: Cyclic voltammogram with electrolytic solution to which fine carbon is added D: Cyclic voltammogram with no additional electrolytic solution Click voltammogram

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 BB08 BB12 CC01 DD05 EE01 EE04 EE05 5H029 AJ02 AJ06 AK03 AM03 AM04 AM05 AM07 5H050 AA02 AA12 BA15 CA07 CA08 CA09 DA02 DA04 DA06 DA08 DA09 DA10 DA13 EA08 FA18 GA10 GA22 HA05  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 5H017 AA03 BB08 BB12 CC01 DD05 EE01 EE04 EE05 5H029 AJ02 AJ06 AK03 AM03 AM04 AM05 AM07 5H050 AA02 AA12 BA15 CA07 CA08 CA09 DA02 DA04 DA06 DA08 DA09 DA10 DA13 EA08 FA18 GA10 GA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウム複合酸化物を正極活物質、フッ
素を含むアニオンのリチウム塩を主電解質、および不働
態皮膜が形成され得る金属を正極集電体とするリチウム
二次電池において、導電助剤としてメジアン径が0.8
マイクロメートル以下の微粒炭素が正極集電体表面に塗
布されていることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a lithium composite oxide as a positive electrode active material, a lithium salt of an anion containing fluorine as a main electrolyte, and a metal capable of forming a passive film as a positive electrode current collector. With a median diameter of 0.8
A lithium secondary battery, wherein fine carbon particles having a size of not more than micrometer are coated on the surface of the positive electrode current collector.
【請求項2】 リチウム複合酸化物を正極活物質、フッ
素を含むアニオンのリチウム塩を主電解質、および不働
態皮膜が形成され得る金属を正極集電体とするリチウム
二次電池において、メジアン径が0.8マイクロメート
ル以下の微粒炭素が電解液にに添加されていることを特
徴とするリチウム二次電池。
2. A lithium secondary battery comprising: a lithium composite oxide as a positive electrode active material; a lithium salt of an anion containing fluorine as a main electrolyte; and a metal capable of forming a passive film as a positive electrode current collector. A lithium secondary battery characterized in that fine carbon particles having a particle size of 0.8 micrometers or less are added to an electrolyte solution.
【請求項3】 請求項1または請求項2において、不働
態皮膜が形成され得る金属がアルミニウム、亜鉛、ニッ
ケル、クロムから選ばれた金属、あるいはそれを含む合
金であるリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the metal on which the passivation film can be formed is a metal selected from aluminum, zinc, nickel, and chromium, or an alloy containing the same.
【請求項4】 フッ素を含むアニオンのリチウム塩を主
電解質、および不働態皮膜が形成され得る金属を集電体
とする電気二重層キャパシタにおいて、導電助剤として
メジアン径が0.8マイクロメートル以下の微粒炭素が
集電体表面に塗布されていることを特徴とする電気二重
層キャパシタ。
4. An electric double layer capacitor comprising a lithium salt of a fluorine-containing anion as a main electrolyte and a metal capable of forming a passive film as a current collector, wherein a median diameter of 0.8 μm or less is used as a conduction aid. An electric double layer capacitor, wherein fine carbon particles are applied to the surface of a current collector.
【請求項5】 フッ素を含むアニオンのリチウム塩を主
電解質、および不働態皮膜が形成され得る金属を集電体
とする電気二重層キャパシタにおいて、メジアン径が
0.8マイクロメートル以下の微粒炭素が電解液にに添
加されていることを特徴とする電気二重層キャパシタ。
5. An electric double layer capacitor using a lithium salt of a fluorine-containing anion as a main electrolyte and a metal capable of forming a passive film as a current collector, wherein fine carbon particles having a median diameter of 0.8 μm or less are removed. An electric double layer capacitor which is added to an electrolytic solution.
【請求項6】 請求項4または請求項5において、不働
態皮膜が形成され得る金属がアルミニウム、亜鉛、ニッ
ケル、クロムから選ばれた金属、あるいはそれを含む合
金である電気二重層キャパシタ。
6. The electric double layer capacitor according to claim 4, wherein the metal on which the passivation film can be formed is a metal selected from aluminum, zinc, nickel, and chromium, or an alloy containing the same.
JP2001135581A 2001-03-28 2001-03-28 Lithium secondary battery and electric doublelayer capacitor Pending JP2002298853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135581A JP2002298853A (en) 2001-03-28 2001-03-28 Lithium secondary battery and electric doublelayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135581A JP2002298853A (en) 2001-03-28 2001-03-28 Lithium secondary battery and electric doublelayer capacitor

Publications (1)

Publication Number Publication Date
JP2002298853A true JP2002298853A (en) 2002-10-11

Family

ID=18983017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135581A Pending JP2002298853A (en) 2001-03-28 2001-03-28 Lithium secondary battery and electric doublelayer capacitor

Country Status (1)

Country Link
JP (1) JP2002298853A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108360A1 (en) 2007-03-05 2008-09-12 Toyo Ink Mfg. Co., Ltd. Composition for battery
WO2009147765A1 (en) 2008-06-04 2009-12-10 東洋インキ製造株式会社 Composition for battery
JP2010061996A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Composition for battery
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device
WO2014010476A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
JP2018073645A (en) * 2016-10-31 2018-05-10 トヨタ自動車株式会社 Method of manufacturing electrode for lithium ion secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
WO2008108360A1 (en) 2007-03-05 2008-09-12 Toyo Ink Mfg. Co., Ltd. Composition for battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
WO2009147765A1 (en) 2008-06-04 2009-12-10 東洋インキ製造株式会社 Composition for battery
JP2010061996A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Composition for battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2014010476A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP2018073645A (en) * 2016-10-31 2018-05-10 トヨタ自動車株式会社 Method of manufacturing electrode for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
Naoi et al. Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices
US5429895A (en) Nickel alloy electrodes for electrochemical devices
US10707539B2 (en) Battery
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
JP2004103560A (en) Electrolytic solution for lithium-sulfur battery and lithium-sulfur battery containing electrolytic solution
JP2006260886A (en) Porous metal anode and lithium secondary battery using the same
JP2008021517A (en) Nonaqueous secondary battery
JP2002298853A (en) Lithium secondary battery and electric doublelayer capacitor
WO2013035527A1 (en) Nonaqueous electrolyte secondary battery
JP2011096575A (en) Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
JP2000138074A (en) Secondary power supply
JP4798420B2 (en) Secondary battery
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
EP1052714B1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP6096517B2 (en) Active material and secondary battery using the same
JPH0452592B2 (en)
JP2017139324A (en) Lithium ion capacitor
JP2019121500A (en) Cylindrical secondary cell
US20240047747A1 (en) Zinc rechargeable batteries
JPH06333553A (en) Nonaqueous secondary battery
EP4040528A1 (en) Nonaqueous electrolyte secondary battery
JP7209196B2 (en) Cylindrical secondary battery
JP3363547B2 (en) Non-aqueous electrolyte secondary battery
JPH11354155A (en) Nonaqueous electrolyte secondary battery