JPH0935721A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0935721A
JPH0935721A JP7208389A JP20838995A JPH0935721A JP H0935721 A JPH0935721 A JP H0935721A JP 7208389 A JP7208389 A JP 7208389A JP 20838995 A JP20838995 A JP 20838995A JP H0935721 A JPH0935721 A JP H0935721A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
negative electrode
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7208389A
Other languages
Japanese (ja)
Other versions
JP3553697B2 (en
Inventor
Okitoshi Kimura
興利 木村
Toshiyuki Osawa
利幸 大澤
Toshishige Fujii
俊茂 藤井
Nobuo Katagiri
伸夫 片桐
Hiroyuki Iechi
洋之 家地
Yoshitaka Hayashi
嘉隆 林
Tomohiro Inoue
智博 井上
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20838995A priority Critical patent/JP3553697B2/en
Publication of JPH0935721A publication Critical patent/JPH0935721A/en
Application granted granted Critical
Publication of JP3553697B2 publication Critical patent/JP3553697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which excels in a current characteristic and has large capacity and excels in self-discharge and cycle characteristics and protection against corrosion by separating electrically conductive means in two places by a specific distance along a peripheral part of a positive electrode collector layer or a negative electrode collector layer. SOLUTION: Collectors 1, 5 or 9 and a positive electrode comprising a positive electrode active material or collectors 3 or 7 are provided in the periphery of each collector of a negative electrode comprising a negative electrode active material and two pieces of positive electrode terminal parts 1', 5', 9', 1", 5", 9" or negative electrode terminal parts 3', 7', 3", 7" are provided in opposite sides so that both of them exist in the farthest position L. It is preferable that two pieces of positive electrode terminals or a negative electrode terminal part exist in the position separated by 3/4L to L to each other and preferably exist in the farthest position L or in its vicinity, where L means a distance between both of them in the case where two pieces of electrically conductive means exist in the farthest position, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、二次電池、特にリチウム二次電
池に関する。
TECHNICAL FIELD The present invention relates to a secondary battery, particularly a lithium secondary battery.

【0002】[0002]

【従来技術】近年の電子機器の小型化、薄型化、軽量化
の進歩は目覚ましいものがあり、とりわけOA分野にお
いてはデスクトップ型からラップトップ型、ノートブッ
ク型へと小型軽量化している。加えて、電子手帳、電子
スチルカメラなどの新しい小型電子機器の分野も出現
し、さらには従来のハードディスク、フロッピーディス
クの小型化に加えて新しいメモリーメディアであるメモ
リーカードの開発も進められている。このような電子機
器の小型化、薄型化、軽量化の波の中でこれらの電力を
支える二次電池にも高性能化が要求されている。このよ
うな要望の中、鉛蓄電池やニッカド電池に代わる高エネ
ルギー密度電池としてリチウム二次電池の開発が急速に
進められてきた。二次電池からの集電方法については数
多くの提案がなされており、例えば、集電体としてモリ
ブデンを含む鉄合金(特開昭59−173962号公
報)やチタンまたはチタン被覆金属(特開昭59−68
169号公報)が提案されている。また、電極活物質と
集電体との密着性は集電効率を上げるうえで重要である
ことから、有機二次電池用の集電体については数多くの
検討がなされてきた。例えば、特開昭58−11227
1号公報や特開昭58−189968号公報には炭素系
集電体が、また、特開昭59−112584号公報には
金属薄膜集電体、さらに特開昭58−115777号公
報や特開昭58−115776号公報には集電体と活物
質との密着方法が報告されている。本発明者らも電池の
実装、ポリマー電池の集電法、容量の向上について従来
から研究をおこなっており、すでに特願昭62−927
91号では集電体とポリマー活物質の密着性の改善、特
願昭63−28923号ではシート状集電体に打ち抜き
孔を設けることによる電池のエネルギー容量の増加、ま
たPCT/JP88100373ではシート状電極の実
装法(折りたたみ方法)により、やはりエネルギー容量
の向上について提案を行っている。以上のように本発明
者らは電極活物質からの集電法、実装法を改善すること
により電池のエネルギー容量を上げる研究を行ってき
た。
2. Description of the Related Art Recent advances in miniaturization, thinning, and weight reduction of electronic devices have been remarkable, and in the OA field, in particular, the size has been reduced from desktop type to laptop type to notebook type. In addition, the field of new small electronic devices such as electronic notebooks and electronic still cameras has also appeared, and in addition to the miniaturization of conventional hard disks and floppy disks, the development of new memory media, memory cards, is underway. In the wave of miniaturization, thinning, and weight reduction of such electronic devices, high performance is also required for secondary batteries that support such electric power. Under such demands, development of lithium secondary batteries as high energy density batteries replacing lead storage batteries and nickel cadmium batteries has been rapidly advanced. Many proposals have been made for a method of collecting current from a secondary battery. For example, an iron alloy containing molybdenum as a current collector (Japanese Patent Laid-Open No. 59-173962) and titanium or titanium-coated metal (Japanese Patent Laid-Open No. 59). -68
169) has been proposed. Further, since the adhesion between the electrode active material and the current collector is important for increasing current collection efficiency, many studies have been made on current collectors for organic secondary batteries. For example, JP-A-58-11227
No. 1 and JP-A-58-189968 disclose carbon-based current collectors, JP-A-59-112584 discloses metal thin film current collectors, and JP-A-58-115777 and JP-A-58-115777. JP-A-58-1157776 reports a method for adhering a current collector and an active material. The inventors of the present invention have also conducted researches on battery mounting, polymer battery current collection method, and capacity improvement, and have already disclosed Japanese Patent Application No. 62-927.
No. 91 improves the adhesion between the current collector and the polymer active material, Japanese Patent Application No. 63-28923 increases the energy capacity of the battery by providing punched holes in the current collector, and PCT / JP88100373 has a sheet-like shape. We are also making proposals to improve the energy capacity by the electrode mounting method (folding method). As described above, the present inventors have conducted research to improve the energy capacity of a battery by improving the current collecting method from the electrode active material and the mounting method.

【0003】本出願人は先に特開平2−78152号で
正極負極の端子を互いに反対方向に設けることを提案し
ているが、該方法によっても、活物質からの集電を考え
た場合十分な配慮がなされているとはいえない。このよ
うなリチウム二次電池は、LiClO4,LiBF4,L
iAsF6,LiPF6,LiSbF6,LiCF3SO3
等の電解質塩を溶解した電解液が用いられていることが
良くしられている。これに対し、近年LiN(CF3
22やLiC(CF3SO23を電解質とする電解液
をリチウム二次電池に用いることが提案されている
〔L.A.Dominey, Fifth Inter
national Seminor on Lithi
um Battery Technology and
Applications, March 4−6,
1(1991)〕。これらの電解質は、イオン伝導度を
高くできることを始めとして、自己放電、負荷特性、低
温特性に優れる電解質塩として注目を集めている。しか
しながら、これらの塩は腐食性があり、電極の金属材料
や容器の金属材料を侵す欠点を有するとともに、我々が
開発を続けてきた複合正極(後述)や炭素負極におい
て、自己放電、サイクル特性の点で好ましい特性の得ら
れない塩であった。
The applicant of the present application has previously proposed in Japanese Patent Laid-Open No. 2-78152 that the terminals of the positive electrode and the negative electrode are provided in opposite directions, but this method is also sufficient when current collection from the active material is considered. It cannot be said that such consideration has been given. Such a lithium secondary battery includes LiClO 4 , LiBF 4 , L
iAsF 6 , LiPF 6 , LiSbF 6 , LiCF 3 SO 3
It is well known that an electrolytic solution in which an electrolyte salt such as is dissolved is used. On the other hand, in recent years, LiN (CF 3 S
It has been proposed to use an electrolyte solution containing O 2 ) 2 or LiC (CF 3 SO 2 ) 3 as an electrolyte in a lithium secondary battery [L. A. Dominey, Fifth Inter
national Seminar on Lithi
um Battery Technology and
Applications, March 4-6,
1 (1991)]. These electrolytes are attracting attention as electrolyte salts having excellent self-discharge, load characteristics, and low-temperature characteristics, including the ability to increase ionic conductivity. However, these salts are corrosive and have the drawback of attacking the metal material of the electrode and the metal material of the container, as well as the self-discharge and cycle characteristics of the composite positive electrode (described later) and carbon negative electrode that we have been developing. In terms of the point, it was a salt that could not obtain preferable characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明に使用する正負
極とは集電体上に活物質層を複合化したものであり、こ
のような電極を用いて図1のような積層型の電池を構成
した場合、電気化学的な反応挙動は端子に近い方で優勢
におこる。このため端子部に近い方から電位(電圧)が
下がってゆく。結果として電流を取出せる実質の面積は
徐々に小さくなり、一定の電流値を取出そうとすると、
電圧降下がはげしく充分な放電反応がおこらない部分を
残したまま電力が取り出せなくなってしまう。この現象
は大きな電流を取出そうとするほど顕著にあらわれると
ともに例えば電池の容量をふやすため、図2のように正
負極およびセパレータを折りたたんで積層した場合や単
純に正負極を1枚づつ積層した場合、すなわち電極面積
が大きくなるほど加速度的にエネルギー効率が悪くなっ
てくる。これに対して正負極の端子を図3、図4のよう
に互いに反対側に配置すると、電極反応が比較的均一に
起こるようになり、端子を同一端から取る場合より、高
エネルギー容量で負荷時の電圧降下の小さい電池を提供
することが可能となるが充分と言えるものではなく、特
に電極が長い場合、端子がはなれていることから、電極
反応は比較的均一におきやすいが電流負荷に対して、全
体的に電池電圧を下げやすい欠点がある。これは、電極
の中心部に近い側ほど電極反応をおこし難く、未反応部
分を残したまま電池電圧(電極電位)が下がり、電流が
とり出せなくなることに起因していると考えられる。本
発明の目的は以上の不具合を考え、これらの塩を用いた
ときに金属の腐食を押さえると共に、本発明の複合正
極、炭素負極においても自己放電、サイクル特性に優れ
る電解質塩を提供することである。
The positive and negative electrodes used in the present invention are a composite of an active material layer on a current collector, and such electrodes are used to form a laminated battery as shown in FIG. , The electrochemical reaction behavior predominates nearer to the terminal. Therefore, the potential (voltage) decreases from the side closer to the terminal. As a result, the actual area where the current can be taken becomes gradually smaller, and when trying to get a constant current value,
The voltage drop is so severe that the power cannot be taken out while leaving a portion where sufficient discharge reaction does not occur. This phenomenon becomes more prominent as a large current is drawn, and for example, in order to increase the capacity of the battery, when the positive and negative electrodes and the separator are folded and stacked as shown in FIG. 2, or when the positive and negative electrodes are simply stacked one by one. That is, as the electrode area increases, the energy efficiency becomes acceleratingly deteriorated. On the other hand, if the positive and negative terminals are arranged on the opposite sides as shown in FIGS. 3 and 4, the electrode reaction will occur relatively uniformly, and the load with a higher energy capacity than that when the terminals are taken from the same end. It is possible to provide a battery with a small voltage drop at the time, but it is not sufficient, and especially when the electrode is long, the electrode reaction is relatively uniform because the terminals are separated, so it is easy to apply the current load. On the other hand, there is a drawback that the battery voltage is easily lowered as a whole. It is considered that this is because it is more difficult for the electrode reaction to occur on the side closer to the center of the electrode, and the battery voltage (electrode potential) decreases while leaving the unreacted portion, and the current cannot be taken out. In view of the above problems, the object of the present invention is to suppress the corrosion of metals when using these salts, and also to provide an electrolyte salt having excellent self-discharge and cycle characteristics in the composite positive electrode of the present invention and the carbon negative electrode. is there.

【0005】[0005]

【課題を解決するための手段】本発明者らは、正極集電
体層、正極活物質層、電解質層、炭素系負極活物質層お
よび負極集電体層の各層よりなる層構造単位を2個以上
有して構成される二次電池において、前記の層構造単位
のすべての正極集電体層および負極集電体層の二ヶ所に
電気的導電手段を設けるとともに、該二ヶ所の電気的導
電手段を、該電気的導電手段が設けられる正極集電体層
または負極集電体層の周辺部に沿って3/4L〜Lだけ
離れて存在させることにより、前記の技術課題が解決で
きることを見い出し、本発明に到達した。(ただし、前
記Lは、二個の電気的導電手段が、それぞれもっとも離
れた位置に存在する場合の両者間の距離を意味する。) 以下、本発明の二次電池の構成を図面に基づいて具体的
に説明する。ただし本発明の二次電池は図面に示すもの
に限定されるものではない。図5において、集電体1、
5あるいは9と正極活物質層よりなる正極または集電体
3あるいは7と負極活物質層よりなる負極の各集電体の
周辺に2個の正極端子部1′、5′、9′、1″、
5″、9″あるいは負極端子部3′、7′、3″、7″
を、両者がもっとも離れた位置Lに存在するように対向
辺に設けたことを特徴とするものである。前記2個の正
極端子部あるいは負極端子部は、互いに3/4L〜Lだ
け離れた位置、好ましくはもっとも離れた位置Lあるい
はその近傍に存在することが好ましい。図6に本発明の
別の実施態様を示す。図6のものは、図5に示す層構造
において、2個の正極端子部1′、5′、9′、1″、
5″、9″あるいは負極端子部3′、7′、3″、7″
を、両者がもっとも離れた位置Lに存在するように対向
辺に代えて対頂角に設けたことを特徴とするものであ
る。
DISCLOSURE OF THE INVENTION The inventors of the present invention have adopted a layer structure unit consisting of a positive electrode current collector layer, a positive electrode active material layer, an electrolyte layer, a carbon-based negative electrode active material layer and a negative electrode current collector layer. In a secondary battery configured to have more than one, an electrically conductive means is provided at each of two positions of all the positive electrode current collector layer and the negative electrode current collector layer of the above-mentioned layer structure unit, It is possible to solve the above technical problem by allowing the conductive means to be separated by 3 / 4L to L along the peripheral portion of the positive electrode current collector layer or the negative electrode current collector layer provided with the electrically conductive means. Found and arrived at the present invention. (However, L means the distance between the two electrically conductive means when they are at the most distant positions.) Hereinafter, the configuration of the secondary battery of the present invention will be described with reference to the drawings. This will be specifically described. However, the secondary battery of the present invention is not limited to the one shown in the drawings. In FIG. 5, current collector 1,
Two positive electrode terminal portions 1 ′, 5 ′, 9 ′, 1 ′ around each positive electrode or current collector 3 or 7 composed of the positive electrode active material layer 5 or 9 and negative electrode composed of the negative electrode active material layer. ″,
5 ", 9" or negative electrode terminal portions 3 ', 7', 3 ", 7"
Are provided on the opposite sides so that the two are present at the most distant position L. It is preferable that the two positive electrode terminal portions or the negative electrode terminal portions are present at positions separated from each other by 3 / 4L to L, preferably at the most separated position L or in the vicinity thereof. FIG. 6 shows another embodiment of the present invention. In the layer structure shown in FIG. 5, the one shown in FIG. 6 has two positive electrode terminal portions 1 ′, 5 ′, 9 ′, 1 ″,
5 ", 9" or negative electrode terminal portions 3 ', 7', 3 ", 7"
Is provided at an apex angle instead of the opposite side so that the two are present at the most distant position L.

【0006】リチウム電池の電解質塩としては、非水溶
媒に溶解し、高いイオン伝導度を示すものが用いられ
る。このようなものとしては、例えば、カチオンとして
はアルカリ金属イオンが例示できる。アニオンとしては
Cl-,Br-,I-,SCN-,ClO4 -,BF4 -,PF
6 -,SbF6 -,CF3SO3 -,(CF3SO22-が例
示できる。これらの電解質塩のうちイオン伝導度が高い
こと、負荷特性、低温特性に優れることからLiN(C
3SO22を用いることが好ましい。しかしながら、
LiN(CF3SO22は腐食性があり、特に正極集電
体層をアルミニウムとしたときは顕著であり、電界が印
加されるとアルミニウムの溶出電流がながれることが本
発明における検討によりわかっている。この腐食性を押
さえることを検討した結果、LiN(CF3SO22
他の電解質塩を加えることにより腐食性を押さえること
ができることが判った。加えられる電解質塩としては上
記したカチオン、アニオンの組合せよりなる電解質塩の
添加が効果があったが、腐食の防止、本発明の複合正
極、複合負極とのマッチングの面からより好ましくはア
ニオンとしてBF4 -を持ち且つカチオンとしては意外に
もリチウム以外のアルカリ金属イオンあるいはアルカリ
土類金属イオンあるいはテトラアルキルアンモニウムイ
オンの組み合わせを持つ塩が好ましいことが判った。す
なわち本発明の好ましい実施形態としては電解質塩とし
てLiN(CF3SO22と次式で表せる少なくとも1
種の電解質との混合電解質を用いることである。
As the electrolyte salt of the lithium battery, one that is soluble in a non-aqueous solvent and exhibits high ionic conductivity is used. Examples of such a cation include an alkali metal ion. Examples of anions include Cl , Br , I , SCN , ClO 4 , BF 4 , PF.
6 -, SbF 6 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N - can be exemplified. Among these electrolyte salts, LiN (C) has high ionic conductivity, excellent load characteristics and low temperature characteristics.
It is preferred to use F 3 SO 2 ) 2 . However,
LiN (CF 3 SO 2 ) 2 has a corrosive property, which is remarkable especially when the positive electrode current collector layer is made of aluminum, and it has been found from the study in the present invention that the elution current of aluminum changes when an electric field is applied. ing. As a result of studying to suppress the corrosiveness, it was found that the corrosiveness can be suppressed by adding other electrolyte salt to LiN (CF 3 SO 2 ) 2 . As the electrolyte salt to be added, the addition of an electrolyte salt composed of a combination of the above-mentioned cation and anion was effective, but from the viewpoint of preventing corrosion and matching with the composite positive electrode and composite negative electrode of the present invention, more preferably BF as anion. 4 - surprisingly salt having a combination of alkali metal ions or alkaline earth metal ion or tetraalkylammonium ions other than lithium was found that preferred as and cation have. That is, in a preferred embodiment of the present invention, LiN (CF 3 SO 2 ) 2 as an electrolyte salt and at least 1 represented by the following formula
The use of a mixed electrolyte with the seed electrolyte.

【化2】M(BF4)x (I) (R1234)NBF4 (II) (式中、Mはアルカリ金属またはアルカリ土類金属、x
は1または2、R1,R2,R3,R4は同一または相異な
っていてもよいアルキル基)
Embedded image M (BF 4 ) x (I) (R 1 R 2 R 3 R 4 ) NBF 4 (II) (wherein M is an alkali metal or an alkaline earth metal, x
Is 1 or 2, and R 1 , R 2 , R 3 and R 4 are the same or different alkyl groups)

【0007】リチウム二次電池の正極活物質としてはT
iS2,MoS2,CoO2,V25,FeS2,Nb
2,ZrS2,MnO2などの遷移金属酸化物、あるい
は遷移金属カルコゲン化合物であり、無機材料を活物質
として使用した例が数多く研究されている。このような
材料はリチウムイオンを電気化学的に可逆的にその構造
内に出し入れが可能であり、この性質を利用することに
よりリチウム二次電池の開発が進められてきた。このよ
うな無機材料を活物質とするリチウム二次電池は、一般
に活物質自体の真密度が高いため、高いエネルギー密度
の電池を構成しやすく、リチウムの吸蔵、放出が活物質
の結晶構造中へのインターカレート、デインターカレー
トである場合、電圧平坦性に優れる電池を構成しやすい
という特徴をもつ。反面、必要以上のリチウムイオンが
結晶構造中に蓄積された場合、結晶構造の破壊がおこ
り、二次電池の活物質としての機能を著しく低下させる
という欠点を持つ。このことは、二次電池用電極として
過放電に弱いということを現している。このような無機
材料を活物質とするリチウム二次電池の開発過程のなか
で近年になってリチウム二次電池の電極活物質の可能性
としてアニオンを可逆的に吸蔵、放出させることで電極
反応を行える導電性高分子の発見があった。導電性高分
子は、電極材料として軽量で高出力密度等の特徴を有す
るほか、材料固有の性質である導電性により集電性に優
れ、100%の放電深度に対しても高いサイクル特性を
示し、また電極としての成形加工性も良好であるなど無
機材料に無い特徴を有している。
T is used as a positive electrode active material of a lithium secondary battery.
iS 2 , MoS 2 , CoO 2 , V 2 O 5 , FeS 2 , Nb
Many examples of transition metal oxides such as S 2 , ZrS 2 , and MnO 2 or transition metal chalcogen compounds, in which an inorganic material is used as an active material, have been studied. Such a material is capable of electrochemically reversibly taking lithium ions in and out of its structure, and the lithium secondary battery has been developed by utilizing this property. Since a lithium secondary battery using such an inorganic material as an active material generally has a high true density of the active material itself, it is easy to construct a battery having a high energy density, and lithium occlusion and release are reduced into the crystal structure of the active material. In the case of the intercalation and deintercalation, there is a feature that a battery having excellent voltage flatness can be easily formed. On the other hand, when more than necessary lithium ions are accumulated in the crystal structure, the crystal structure is destroyed and the function as the active material of the secondary battery is significantly deteriorated. This means that the secondary battery electrode is vulnerable to overdischarge. Recently, in the process of developing a lithium secondary battery using such an inorganic material as an active material, the electrode reaction can be performed by reversibly absorbing and releasing anions as a potential electrode active material of the lithium secondary battery. There was a discovery of conducting polymer that can be done. The conductive polymer is lightweight as an electrode material and has characteristics such as high output density, and also has excellent current collecting properties due to the conductivity, which is a unique property of the material, and exhibits high cycle characteristics even at a discharge depth of 100%. Further, it has characteristics that the inorganic material does not have, such as good moldability as an electrode.

【0008】導電性高分子の例としては、ポリアセチレ
ン(例えば、特開昭56−136489)、ポリピロー
ル(例えば、第25回電池討論会、講演要旨集、P25
61,1984)、ポリアニリン(例えば、電気化学協
会第50回大会、講演要旨集、P2281,1984)
などが報告されている。リチウム二次電池には上述した
ような正極の開発の他に、負極の開発という技術課題が
ある。従来リチウム二次電池の負極はリチウムやリチウ
ムアルミニウム合金が使用されてきたが、リチウムは充
放電のサイクル特性が悪いこと、デンドライトによりシ
ョートの危険がある欠点を有するとともに、リチウムア
ルミニウム合金は、サイクル特性はある程度確保できる
ものの、材料の電位が貴な方向に移動するため高電圧電
池をつくりずらいとともに可とう性がないという欠点を
有している。このため最近になり、リチウムを吸蔵、放
出できる炭素材料を負極に用いたリチウム二次電池が注
目され、さかんに研究開発が行われている。この電池が
リチウムイオン電池と称されるものである。本発明の電
池において用いられる正極活物質はTiS2,MoS2
Co25,V25,MnO2,CoO2等の遷移金属酸化
物、遷移金属カルコゲン化合物及びこれらとLiとの複
合体(Li複合酸化物;LiMnO2,LiMn24
LiCoO2等)、有機物の熱重合物である一次元グラ
ファイト化物、フッ化カーボン、グラファイト、あるい
は10-2S/cm以上の電気伝導度を有する導電性高分
子、具体的にはポリアニリン、ポリピロール、ポリアズ
レン、ポリフェニレン、ポリアセチレン、ポリアセン、
ポリフタロシアニン、ポリ−3−メチルチオフェン、ポ
リピリジン、ポリジフェニルベンジジン等の高分子及び
これらの誘導体が挙げられるが、100%の放電深度に
対しても高いサイクル特性を示し、無機材料に比べ比較
的過放電に強い導電性高分子を使用することが好まし
い。また導電性高分子は、成形加工性の点でプラスチッ
クであるために、従来にない特徴を生かすことができ
る。以上のような利点を導電性高分子は有しているもの
の、導電性高分子を正極に用いた二次電池には、活物質
の密度が低いため体積エルギー密度が低く、また、電解
液中に電極反応に充分足りるだけの電解質が必要であ
り、且つ充放電反応に伴い電解液濃度の変化が大きいた
め、液抵抗等の変化が大きく、スムーズな充放電反応を
行なうには、過剰な電解液が必要となるという問題点が
ある。このことはエネルギー密度を向上させる点で不利
となる。
Examples of the conductive polymer include polyacetylene (for example, JP-A-56-136489), polypyrrole (for example, 25th Battery Symposium, Abstracts, P25).
61, 1984), polyaniline (for example, 50th Conference of the Electrochemical Society of Japan, Proceedings, P2281, 1984).
Etc. have been reported. The lithium secondary battery has a technical problem of developing a negative electrode in addition to the above-described development of the positive electrode. Conventionally, lithium and lithium aluminum alloys have been used for the negative electrode of lithium secondary batteries.However, lithium has the disadvantage of poor charge / discharge cycle characteristics and the danger of short-circuiting due to dendrites. Although it can be secured to some extent, it has the drawback that it is difficult to make a high-voltage battery because the potential of the material moves in a noble direction and there is no flexibility. For this reason, recently, a lithium secondary battery using a carbon material capable of inserting and extracting lithium as a negative electrode has attracted attention, and research and development have been vigorously conducted. This battery is called a lithium ion battery. The positive electrode active material used in the battery of the present invention is TiS 2 , MoS 2 ,
Transition metal oxides such as Co 2 S 5 , V 2 O 5 , MnO 2 and CoO 2 , transition metal chalcogen compounds and complexes thereof with Li (Li complex oxides; LiMnO 2 , LiMn 2 O 4 ,
LiCoO 2 etc.), a one-dimensional graphitized product which is a thermal polymer of an organic substance, carbon fluoride, graphite, or a conductive polymer having an electrical conductivity of 10 −2 S / cm or more, specifically polyaniline, polypyrrole, Polyazulene, polyphenylene, polyacetylene, polyacene,
Polymers such as polyphthalocyanine, poly-3-methylthiophene, polypyridine, and polydiphenylbenzidine, and derivatives thereof can be mentioned, but they show high cycle characteristics even at a discharge depth of 100%, and are comparatively superior to inorganic materials. It is preferable to use a conductive polymer that is resistant to discharge. In addition, since the conductive polymer is a plastic in terms of moldability, it is possible to take advantage of a characteristic that has not been available in the past. Although the conductive polymer has the above advantages, the secondary battery using the conductive polymer as the positive electrode has a low volume energy density due to the low density of the active material. In order to perform a smooth charge / discharge reaction, an excessive amount of electrolyte is necessary for the electrode reaction, and since the change in the electrolyte concentration with the charge / discharge reaction is large, there is a large change in the electrolyte resistance. There is a problem that a liquid is required. This is disadvantageous in improving the energy density.

【0009】これに対し、体積エネルギー密度の高い活
物質として、上記無機カルコゲナイド化合物、無機酸化
物を正極に用いることが考えられるが、これらは充放電
に伴う電極反応でカチオンの電極中の拡散速度が遅く急
速充放電が難しく、且つ、過放電に対し可逆性が悪く、
サイクル寿命が低下するという問題点がある。また、無
機活物質はそのままでは成形することが難しいため、結
着剤として四弗化エチレン樹脂粉末等を用いて加圧成形
することが多いが、その場合電極の機械的強度は充分と
は言えないとともに、過放電についてもリチウムイオン
が過剰に蓄積されると結晶構造の破壊がおこり二次電池
としても機能をはたさなくなる。このような不具合を解
決するため、有機および無機の複合活物質を使用するこ
とが考えられる。この場合、使用される高分子活物質と
してはいずれも電気化学ドーピングにより高い電気伝導
度を示し、電極材料としては10-2S/cm以上の電気
伝導度を有することが要求される。また、イオンの拡散
性においても高いイオン伝導度が要求される。これらの
高分子材料は、電気伝導度の高さが集電能を有し、高分
子としての結着能を持ち、更には活物質としても機能す
る。また導電性高分子は卑な電位において絶縁化するた
め、この複合正極が過放電状態になった時にも、導電性
高分子が絶縁化するため内部に含む無機活物質に必要以
上のリチウムイオンが蓄積されるのを防ぎ、無機活物質
の結晶構造の破壊を防いでいる。結果として実質上過放
電に強い電極を構成できることとなる。複合正極に用い
られる導電性高分子とは、活物質としての能力を有す
る、電解液に溶解しない、高分子材料間の結着性を
有している、導電性を示す材料であり、結着剤として
無機活物質を固定する。このとき、無機活物質は導電性
高分子に全体を包括される形となり、その結果、無機活
物質の周りすべてが導電性を帯びることとなる。このよ
うな導電性高分子としてはポリアセチレン、ポリピロー
ル、ポリチオフェン、ポリアニリン、ポリジフェニルベ
ンジジンなどのレドックス活性材料をあげることができ
るが、特に含窒素化合物において顕著な効果がみられ
る。これらの導電性高分子材料には、導電性もさること
ながらイオンの拡散性においても高いイオン導電性が要
求される。これらのなかでも重量あたりの電気容量が比
較的大きく、しかも汎用非水電解液中で、比較的安定に
充放電を行うことのできる点でポリピロール、ポリアニ
リンあるいはこれらの共重合体がこのましい。さらに好
ましくはポリアニリンである。複合正極にもちいる無機
活物質は電位平坦性に優れるものが好ましく、具体的に
は、V,Co,Mn,Ni等の遷移金属の酸化物あるい
は前記遷移金属とアルカリ金属との複合酸化物を例示す
ることができ、電解液に安定な電極電位、電圧平坦性、
エネルギー密度を考慮すると結晶性バナジウム酸化物が
好ましく、特に、五酸化バナジウムが好ましい。その理
由は、結晶性五酸化バナジウムの放電曲線の電位平坦部
が、上記導電性高分子のアニオンの挿入、脱離にともな
う電極電位に比較的近いところにあることによる。
On the other hand, it is conceivable to use the above-mentioned inorganic chalcogenide compound or inorganic oxide in the positive electrode as an active material having a high volume energy density. However, these are diffusion rates of cations in the electrode due to an electrode reaction accompanying charging and discharging. Is slow, rapid charge / discharge is difficult, and reversibility against over-discharge is poor,
There is a problem that the cycle life is reduced. In addition, since it is difficult to mold the inorganic active material as it is, it is often molded by pressure using a tetrafluoroethylene resin powder or the like as a binder, but in that case, the mechanical strength of the electrode can be said to be sufficient. In addition, with respect to overdischarge, if lithium ions are excessively accumulated, the crystal structure will be destroyed, and the secondary battery will not function. In order to solve such a problem, it is possible to use an organic and inorganic composite active material. In this case, the polymer active material used is required to exhibit high electrical conductivity due to electrochemical doping, and the electrode material is required to have an electrical conductivity of 10 −2 S / cm or more. Also, high ionic conductivity is required in terms of diffusivity of ions. These polymer materials have a high electric conductivity to have a current collecting ability, a binding ability as a polymer, and also function as an active material. In addition, since the conductive polymer is insulated at a low potential, even when the composite positive electrode is in an overdischarged state, the conductive polymer is insulated so that unnecessary lithium ions are contained in the inorganic active material contained therein. It prevents accumulation and prevents destruction of the crystal structure of the inorganic active material. As a result, an electrode that is substantially resistant to overdischarge can be formed. The conductive polymer used for the composite positive electrode is a material that has the ability as an active material, does not dissolve in an electrolytic solution, has a binding property between polymer materials, and exhibits conductivity. An inorganic active material is fixed as an agent. At this time, the inorganic active material becomes a form that is entirely covered by the conductive polymer, and as a result, the entire area around the inorganic active material becomes conductive. Examples of such a conductive polymer include redox active materials such as polyacetylene, polypyrrole, polythiophene, polyaniline, and polydiphenylbenzidine. Particularly, a nitrogen-containing compound is particularly effective. These conductive polymer materials are required to have high ionic conductivity in terms of not only conductivity but also diffusion of ions. Among them, polypyrrole, polyaniline and copolymers thereof are preferred because they have a relatively large electric capacity per weight and can be charged and discharged relatively stably in a general-purpose nonaqueous electrolyte. More preferred is polyaniline. The inorganic active material used for the composite positive electrode is preferably one having excellent potential flatness, and specifically, an oxide of a transition metal such as V, Co, Mn, or Ni or a composite oxide of the above transition metal and an alkali metal is used. Examples of the electrode potential stable in the electrolytic solution, voltage flatness,
Taking energy density into consideration, crystalline vanadium oxide is preferable, and vanadium pentoxide is particularly preferable. The reason is that the potential flat portion of the discharge curve of crystalline vanadium pentoxide is relatively close to the electrode potential associated with the insertion and desorption of the anion of the conductive polymer.

【0010】本発明の電池に用いられる負極材料として
は炭素質材料が用いられる。炭素質負極活物質としては
グラファイト、ピッチコークス、合成高分子、天然高分
子の焼成体が挙げられるが、本発明では、フェノー
ル、ポリイミドなどの合成高分子、天然高分子を400
〜800℃の還元雰囲気で焼成することにより得られる
絶縁性乃至半導体炭素体、石炭、ピッチ、合成高分
子、あるいは天然高分子を800〜1300℃での還元
雰囲気で焼成することにより得られる導電性炭素体、
コークス、ピッチ、合成高分子、天然高分子を2000
℃以上の温度で還元雰囲気下焼成することにより得られ
るもの、および天然グラファイトなどのグラファイト系
炭素体が用いられるがの炭素体が好ましく、中でもメ
ゾフェーズピッチ、コークスを2500℃以上の還元雰
囲気下焼成してなる炭素体とが電位平坦性に優れ、好ま
しい電極特性を有する。本発明に使用する正極集電体と
しては、例えば、ステンレス鋼、金、白金、ニッケル、
アルミニウム、モリブデン、チタン等の金属シート、金
属箔、金属網、パンチングメタル、エキスパンドメタ
ル、あるいは金属メッキ繊維、金属蒸着線、金属含有合
成繊維等からなる網や不織布があげられる。なかでも電
気伝導度、化学的、電気化学安定性、経済性、加工性等
を考えるとアルミニウム、ステンレスを用いることが特
に好ましい。さらに好ましくは、その軽量性、電気化学
的安定性からアルミニウムが好ましい。さらに本発明に
使用される正極集電体層および負極集電体層の表面は粗
面化してあることが好ましい。粗面化を施すことにより
活物質層の接触面積が大きくなるとともに、密着性も向
上し、電池としてのインピーダンスを下げる効果があ
る。また、塗料溶液を用いての電極作製においては、粗
面化処理を施すことにより活物質と集電体の密着性を大
きく向上させることができる。粗面化処理としてはエメ
リー紙による研磨、ブラスト処理、化学的あるいは電気
化学的エッチングがあり、これにより集電体を粗面化す
ることができる。特にステンレス鋼の場合はブラスト処
理、アルミニウムの場合はエッチング処理したエッチド
アルミニウムが好ましい。アルミニウムはやわらかい金
属であるためブラスト処理では効果的な粗面化処理を施
すことができなくアルミニウム自体が変形してしまう。
これに対してエッチング処理はアルミニウムの変形やそ
の強度を大きく下げることなくミクロのオーダーで表面
を効果的に粗面化することが可能であり、アルミニウム
の粗面化としては最も好ましい方法である。
A carbonaceous material is used as the negative electrode material used in the battery of the present invention. Examples of the carbonaceous negative electrode active material include graphite, pitch coke, synthetic polymer, and a sintered body of natural polymer. In the present invention, synthetic polymer such as phenol and polyimide, or natural polymer is used.
Conductivity obtained by firing an insulating or semiconducting carbon body, coal, pitch, synthetic polymer or natural polymer obtained by firing in a reducing atmosphere at 800 to 1300 ° C. in a reducing atmosphere at 800 to 1300 ° C. Carbon body,
2000 for coke, pitch, synthetic polymer, natural polymer
What is obtained by firing in a reducing atmosphere at a temperature of ℃ or more, and a graphite-based carbon body such as natural graphite is used, but a carbon body is preferable. Among them, mesophase pitch and coke are fired in a reducing atmosphere of 2,500 ° C or more. The resulting carbon body has excellent potential flatness and has favorable electrode characteristics. As the positive electrode current collector used in the present invention, for example, stainless steel, gold, platinum, nickel,
Examples thereof include metal sheets such as aluminum, molybdenum, and titanium, metal foils, metal nets, punching metals, expanded metals, and nets and non-woven fabrics made of metal-plated fibers, metal vapor-deposited wires, metal-containing synthetic fibers, and the like. Of these, aluminum and stainless steel are particularly preferable in consideration of electrical conductivity, chemical stability, electrochemical stability, economic efficiency and workability. Aluminum is more preferable because of its lightness and electrochemical stability. Further, the surfaces of the positive electrode current collector layer and the negative electrode current collector layer used in the present invention are preferably roughened. By roughening, the contact area of the active material layer is increased, and the adhesion is also improved, which has the effect of lowering the impedance of the battery. Further, in the production of an electrode using a coating solution, it is possible to greatly improve the adhesion between the active material and the current collector by subjecting it to a surface roughening treatment. Examples of the surface roughening treatment include polishing with an emery paper, blasting, and chemical or electrochemical etching, whereby the current collector can be roughened. In particular, in the case of stainless steel, blast processing is preferable, and in the case of aluminum, etched aluminum is preferable. Since aluminum is a soft metal, an effective surface roughening cannot be performed by blasting, and aluminum itself is deformed.
On the other hand, the etching treatment can effectively roughen the surface in the order of micrometer without deforming the aluminum or greatly reducing the strength thereof, and is the most preferable method for roughening the aluminum.

【0011】本発明に使用する電解液としては有機非水
系極性溶媒を使用するが、有機非水系極性溶媒として非
プロトン性で且つ、高誘電率のものが好ましい。その具
体例としては、プロピレンカーボネート、エチレンカー
ボネート、γ−ブチルラクトン、ジメチルスルホキシ
ド、ジメチルホルムアミド、ジメトキシエタン、ジメト
キシカーボネート、ジエトキシカーボネート等を挙げる
ことができるが、これらに限定されない。有機非水系極
性溶媒は1種類のみを使用してもまたは2種類以上混合
して使用してもよい。電解質濃度は、使用する正極、電
解質及び有機非水系極性溶媒の種類などによって異なる
ので一概に規定することはできないが、通常、0.1か
ら10モル/リットルの範囲とするのがよい。本発明に
用いる固体電解質としては例えば無機系ではAgCl,
AgBr,AgI,LiIなどの金属ハロゲン化物、R
bAg45,RbAg44CNイオン伝導体などが挙げ
られる。また、有機系では、ポリエチレンオキサイド、
ポリプロピレンオキサイド、ポリビニリデンフルオライ
ド、ポリアクリロニトリルなどをポリマーマトリクスと
して電解質塩を溶解せしめた複合体、あるいはこれらの
架橋体、低分子ポリエチレンオキサイド、ポリエチレン
イミン、クラウンエーテルなどのイオン解離基をポリマ
ー主鎖にグラフト化した高分子固体電解質が挙げられ
る。あるいは高分子量重合体に前記電解液を含有した構
造を有するゲル状高分子固体電解質が挙げられる。ゲル
状高分子固体電解質は、通常の電解液に重合性化合物を
加え、熱あるいは光により重合を行い電解液を固体化す
るものである。より具体的には、WO91/14294
記載のものが用いられる。重合性化合物としてアクリレ
ート(例えばメトキシジエチルグリコールメタアクリレ
ート、メトキシジエチレングリコールジアクリレート)
系化合物を過酸化ベンゾイル、アゾビスイソブチロニト
リル、メチルベンゾイルホルメート、ベンゾインイソプ
ロピルエーテル等の重合開示剤を用い重合させ電解液を
固体化するものである。このような固体電解質の中でイ
オン伝導度、可とう性の点からゲル状高分子固体電解質
を用いることが好ましい。ゲル状固体電解質に用いる電
解質塩としては特に制限はないが、非水溶媒に溶解し、
高いイオン伝導度を示すものが用いられる。このような
ものとしては、例えば、カチオンとしてはアルカリ金属
イオンが例示できる。アニオンとしてはCl-,Br-
-,SCN-,ClO4 -,BF4 -,PF6 -,SbF6 -
CF3SO3 -,(CF3SO22-が例示できる。好ま
しくはLiN(CF3SO22と前式(I)および/ま
たは(II)で示されるテトラフルオロボレートの塩より
なる混合電解質である。また電解液としては有機非水系
極性溶媒を使用するが、有機非水系極性溶媒として非プ
ロトン性で且つ、高い誘電率のものが好ましい。その具
体例としては、プロピレンカーボネート、γ−ブチルラ
クトン、ジメチルスルホキシド、ジメチルホルムアミ
ド、エチレンカーボネート、ジメトキシエタン、ジメチ
ルカーボネート、ジエチルカーボネート等を挙げること
ができる。有機非水系極性溶媒は1種類のみを使用して
もまたは2種類以上混合して使用してもよい。好ましく
はプロピレンカーボネート、エチレンカーボネート、ジ
メチルカーボネートの2種以上の混合溶媒である。電解
質濃度は、使用する正極、電解質及び有機非水系極性溶
媒の種類などによって異なるので一概に規定することは
できないが、通常、0.1〜10モル/リットルの範囲
とするのがよい。本発明の電池においてはセパレーター
を使用することもできる。セパレーターとしては、電解
質溶液のイオン移動に対して低抵抗であり、且つ、溶液
保持に優れたものを使用するのがよい。そのようなセパ
レーター例としては、ガラス繊維、フィルター、ポリエ
ステル、テフロン、ポリフロン、ポリプロピレン等の高
分子繊維からなる不織布フィルター、ガラス繊維とそれ
らの高分子繊維を混用した不織布フィルターなどを挙げ
ることができる。
An organic non-aqueous polar solvent is used as the electrolytic solution used in the present invention, and an organic non-aqueous polar solvent which is aprotic and has a high dielectric constant is preferable. Specific examples thereof include, but are not limited to, propylene carbonate, ethylene carbonate, γ-butyl lactone, dimethyl sulfoxide, dimethylformamide, dimethoxyethane, dimethoxycarbonate, and diethoxycarbonate. The organic non-aqueous polar solvent may be used alone or in combination of two or more. The electrolyte concentration cannot be unconditionally specified because it varies depending on the positive electrode used, the electrolyte and the type of the organic non-aqueous polar solvent, etc., but is usually in the range of 0.1 to 10 mol / liter. Examples of the solid electrolyte used in the present invention include AgCl in an inorganic system,
Metal halides such as AgBr, AgI, LiI, R
Examples thereof include bAg 4 I 5 and RbAg 4 I 4 CN ionic conductors. Also, in organic systems, polyethylene oxide,
Polypropylene oxide, polyvinylidene fluoride, polyacrylonitrile, etc. are used as a polymer matrix to dissolve the electrolyte salt, or crosslinked products of these, ion-dissociating groups such as low molecular weight polyethylene oxide, polyethyleneimine and crown ether are used as the polymer main chain. Examples include grafted polymer solid electrolytes. Alternatively, a gelled polymer solid electrolyte having a structure in which the high molecular weight polymer contains the electrolytic solution is used. The gelled polymer solid electrolyte is a solid electrolyte that is obtained by adding a polymerizable compound to an ordinary electrolytic solution and polymerizing the compound by heat or light. More specifically, WO91 / 14294
The ones described are used. Acrylate as a polymerizable compound (eg methoxydiethyl glycol methacrylate, methoxydiethylene glycol diacrylate)
A system compound is polymerized using a polymerization disclosing agent such as benzoyl peroxide, azobisisobutyronitrile, methylbenzoyl formate, and benzoin isopropyl ether to solidify the electrolytic solution. Among such solid electrolytes, it is preferable to use a gel polymer solid electrolyte from the viewpoint of ionic conductivity and flexibility. The electrolyte salt used for the gelled solid electrolyte is not particularly limited, but is dissolved in a non-aqueous solvent,
Those exhibiting high ionic conductivity are used. Examples of such a cation include an alkali metal ion. As the anion, Cl , Br ,
I , SCN , ClO 4 , BF 4 , PF 6 , SbF 6 ,
Examples include CF 3 SO 3 and (CF 3 SO 2 ) 2 N . A mixed electrolyte composed of LiN (CF 3 SO 2 ) 2 and a salt of tetrafluoroborate represented by the above formulas (I) and / or (II) is preferable. Although an organic non-aqueous polar solvent is used as the electrolytic solution, an organic non-aqueous polar solvent that is aprotic and has a high dielectric constant is preferable. Specific examples thereof include propylene carbonate, γ-butyl lactone, dimethyl sulfoxide, dimethylformamide, ethylene carbonate, dimethoxyethane, dimethyl carbonate, diethyl carbonate and the like. The organic non-aqueous polar solvent may be used alone or in combination of two or more. Preferred is a mixed solvent of two or more kinds of propylene carbonate, ethylene carbonate and dimethyl carbonate. The concentration of the electrolyte varies depending on the type of the positive electrode, the electrolyte and the organic non-aqueous polar solvent to be used, and cannot be unconditionally specified. However, it is usually preferable to be in the range of 0.1 to 10 mol / l. A separator can also be used in the battery of the present invention. As the separator, it is preferable to use a separator that has a low resistance to the movement of ions of the electrolyte solution and is excellent in retaining the solution. Examples of such a separator include a glass fiber, a filter, a non-woven fabric filter made of polymer fibers such as polyester, Teflon, polyflon, and polypropylene, and a non-woven fabric filter made by mixing glass fibers and these polymer fibers.

【0012】[0012]

【実施例】【Example】

実施例1 アニリンを含む3MのHBF4水溶液中で反応極として
20μmのブラスト処理を施した0.9mmφの貫通孔
を有するステンレスシート4×7.5cm(重合部)を
用い、3mA/cm2で両面に重合した。端子は図5の
正極と同じ位置に配置した。このステンレスポリアニリ
ン電極を流水で洗浄した後、0.2N硫酸中、−0.4
V vs SCEまで電位をかけて充分に脱ドーピング
操作を行った。これを20%ヒドラジン水溶液を用いて
還元し、洗浄、乾燥してポリアニリン電極を得た(厚み
660μm)。また、同様な手法で片面のみポリアニリ
ンを重合した正極を2枚作製した。作製した計3枚の正
極を端子部を除き活物質層全体をポリプロピレンポアフ
ィルターを筒状にして全体をおおう様にして固定した。
ついでプロピレンカーボネートとジメトキシエタンの7
/3(体積比)混合液にLiN(CF3SO22を1.
97M、NaBF4を0.03M溶解させた電解液を8
4.9%、エトキシジエチレングリコールアクリレート
14.77%、トリメチロールプロパントリアクリレー
ト0.23%、ベンゾインイソプロピルエーテル0.1
%の割合で混合した溶液をポリアニリンに充分しみこま
せ、高圧水銀灯の光を照射した。電解液は固体化し、圧
力をかけても液がしみ出るようなことはなかった。これ
らを正極部材とした。コークスを2500℃で焼成した
炭素を47.4重量部、ポリビニリデンフルオライド
5.2重量部、n−メチルピロリドン47.4重量部か
らなる塗布用溶液をブラスト処理を施したステンレス鋼
(SUS304)集電体上に塗布し、80℃で乾燥、厚
さ20μmの負極活物質層(4×7.5cm)を両面に
形成した。炭素にリチウムイオンを挿入する操作をした
のち、前記混合液を浸透させ高圧水銀灯を照射し電解液
を完全に固体化した。これを2枚作製し、負極部材とし
た。正極部材と負極部材を図5のような層構成となるよ
うに積層し、1′、5′、9′及び1″、5″、9″及
び3′、7′及び3″、7″をそれぞれ溶接により導通
させた。積層体全体をアルミ心材入り熱融着フィルムで
減圧下封止することにより電池を完成させた。この二次
電池の充放電試験を行ったところ初期容量45mAh
(20mA放電)、40mAh(60mA放電)であ
り、自己放電は8.5%/月、容量が2/3になるまで
のサイクルは305回であった。
Example 1 Using a stainless steel sheet 4 × 7.5 cm (polymerized part) having a through hole of 0.9 mmφ that had been subjected to a blast treatment of 20 μm as a reaction electrode in a 3 M HBF 4 aqueous solution containing aniline, at 3 mA / cm 2 Polymerized on both sides. The terminal was arranged at the same position as the positive electrode in FIG. The stainless polyaniline electrode was washed with running water and then washed with 0.2 N sulfuric acid at -0.4
The potential was applied up to V vs SCE to perform sufficient dedoping operation. This was reduced with a 20% hydrazine aqueous solution, washed and dried to obtain a polyaniline electrode (thickness 660 μm). Further, two positive electrodes in which polyaniline was polymerized on only one surface were produced by the same method. A total of three prepared positive electrodes except the terminal portion were fixed by covering the entire active material layer by forming a polypropylene pore filter into a cylindrical shape.
Then 7 of propylene carbonate and dimethoxyethane
LiN (CF 3 SO 2 ) 2 was added to the 1/3 (volume ratio) mixed solution.
97M, NaBF 4 0.03M dissolved electrolyte 8
4.9%, ethoxydiethylene glycol acrylate 14.77%, trimethylolpropane triacrylate 0.23%, benzoin isopropyl ether 0.1
The polyaniline was thoroughly impregnated with the solution mixed at a ratio of 100%, and the solution was irradiated with light from a high-pressure mercury lamp. The electrolyte was solidified, and the liquid did not exude even when pressure was applied. These were used as positive electrode members. Blast-treated stainless steel (SUS304) consisting of 47.4 parts by weight of carbon obtained by firing coke at 2500 ° C., 5.2 parts by weight of polyvinylidene fluoride, and 47.4 parts by weight of n-methylpyrrolidone. It was applied onto a current collector and dried at 80 ° C. to form a 20 μm-thick negative electrode active material layer (4 × 7.5 cm) on both sides. After inserting lithium ions into carbon, the mixed solution was permeated and irradiated with a high pressure mercury lamp to completely solidify the electrolytic solution. Two sheets of this were produced and used as a negative electrode member. A positive electrode member and a negative electrode member are laminated so as to have a layer structure as shown in FIG. 5, and 1 ′, 5 ′, 9 ′ and 1 ″, 5 ″, 9 ″ and 3 ′, 7 ′ and 3 ″, 7 ″ are stacked. A battery was completed by sealing the entire laminated body under reduced pressure with a heat-sealing film containing an aluminum core material when conducting a charge and discharge test on this secondary battery. The initial capacity was 45 mAh.
(20 mA discharge) and 40 mAh (60 mA discharge), self-discharge was 8.5% / month, and the cycle until the capacity became 2/3 was 305 times.

【0013】実施例2 ポリアニリン9.9重量部、結晶性V25 23.1重
量部、n−メチルピロリドン67重量部からなる塗布用
溶液を外装を兼ねるブラスト処理を施したステンレス正
極集電体上に塗布し、120℃で乾燥させた厚さ120
μm(両面)、60μm(片面)の正極活物質を形成し
た。また、負極活物質層を60μm(両面)とした。こ
れ以外は実施例1と同様に電池を作製した。二次電池の
初期容量は60mAh(30mA放電)および55mA
h(90mA放電)であり、自己放電は6.3%/月、
サイクルは371回であった。
Example 2 A stainless steel positive electrode current collector which was blasted with a coating solution consisting of 9.9 parts by weight of polyaniline, 23.1 parts by weight of crystalline V 2 O 5 and 67 parts by weight of n-methylpyrrolidone. A thickness of 120 applied to the body and dried at 120 ° C
A positive electrode active material having a thickness of μm (both sides) and 60 μm (one side) was formed. The negative electrode active material layer was 60 μm (both sides). A battery was produced in the same manner as in Example 1 except for this. Initial capacity of secondary battery is 60mAh (30mA discharge) and 55mA
h (90 mA discharge), self-discharge is 6.3% / month,
The cycle was 371 times.

【0014】実施例3 端子部を図6の様に配置する以外は実施例2と同様に電
池を作製した。二次電池の初期容量は61mAh(30
mA放電)および60mAh(90mA放電)であっ
た。
Example 3 A battery was manufactured in the same manner as in Example 2 except that the terminal portion was arranged as shown in FIG. The initial capacity of the secondary battery is 61 mAh (30
mA discharge) and 60 mAh (90 mA discharge).

【0015】比較例1 端子部を図6の1′、5′、9′と3′、7′とした以
外は実施例2と同様にして電池を作製した。二次電池の
初期容量は60mAh(30mA放電)および40mA
h(90mA放電)であった。
Comparative Example 1 A battery was manufactured in the same manner as in Example 2 except that the terminal portions were 1 ', 5', 9'and 3 ', 7'in FIG. Initial capacity of secondary battery is 60mAh (30mA discharge) and 40mA
It was h (90 mA discharge).

【0016】比較例2 端子部を図7の様にした以外は実施例2と同様に電池を
作製した。二次電池の初期容量は60mAh(30mA
放電)および51mAh(90mA放電)であった。
Comparative Example 2 A battery was manufactured in the same manner as in Example 2 except that the terminal portion was changed as shown in FIG. The initial capacity of the secondary battery is 60 mAh (30 mA
Discharge) and 51 mAh (90 mA discharge).

【0017】比較例3 実施例1の電解質塩を2M LiBF4とする以外は同
様に電池を作製した。二次電池の初期容量は40.5m
Ah(30mA放電)であり、自己放電11%/月、サ
イクルは245回であった。
Comparative Example 3 A battery was prepared in the same manner except that the electrolyte salt used in Example 1 was 2M LiBF 4 . The initial capacity of the secondary battery is 40.5m
It was Ah (30 mA discharge), self-discharge was 11% / month, and the cycle was 245 times.

【0018】実施例4 正極集電体層としてエッチドアルミニウムを使用する以
外は実施例2と同様に電池を作製した。二次電池の初期
容量は61.5mAhであり、自己放電は8.0%/
月、サイクルは315回であった。
Example 4 A battery was prepared in the same manner as in Example 2 except that etched aluminum was used as the positive electrode current collector layer. The initial capacity of the secondary battery is 61.5 mAh and self-discharge is 8.0% /
The cycle was 315 times a month.

【0019】比較例4 電解質塩として2M濃度のLiN(CF3SO22を用
いる以外は実施例4と同様に電池を作製した。二次電池
の初期容量は60.5mAhであったが、サイクル20
回後には16mAhしかなく、分解してみるとアルミの
溶解が起こっていることが判った。
Comparative Example 4 A battery was prepared in the same manner as in Example 4 except that 2M concentration of LiN (CF 3 SO 2 ) 2 was used as the electrolyte salt. The initial capacity of the secondary battery was 60.5 mAh, but the cycle 20
After the turn, there was only 16 mAh, and it was found that dissolution of aluminum occurred when disassembling.

【0020】実施例5 電解質塩として1.98M LiN(CF3SO22
よび0.02M KBF4を用いる以外は実施例2と同
様に電池を作製した。二次電池の初期容量は59.5m
Ahであり、自己放電は7.1%/月、サイクルは36
1回であった。
Example 5 A battery was prepared in the same manner as in Example 2 except that 1.98M LiN (CF 3 SO 2 ) 2 and 0.02M KBF 4 were used as the electrolyte salt. The initial capacity of the secondary battery is 59.5m
Ah, self-discharge is 7.1% / month, cycle is 36
It was once.

【0021】実施例6 電解質塩として1.98M LiN(CF3SO22
よび0.02M テトラブチルアンモニウムテトラフル
オロボレート(C494NBF4を用いる以外は実施例
2と同様に電池を作製した。二次電池の初期容量は62
mAhであり、自己放電は6.8%/月、サイクルは3
81回であった。
Example 6 A battery was prepared in the same manner as in Example 2 except that 1.98M LiN (CF 3 SO 2 ) 2 and 0.02M tetrabutylammonium tetrafluoroborate (C 4 H 9 ) 4 NBF 4 were used as electrolyte salts. Was produced. The initial capacity of the secondary battery is 62
mAh, self-discharge is 6.8% / month, cycle is 3
It was 81 times.

【0022】[0022]

【発明の効果】本発明によれば電流特性に優れ高容量で
あり、自己放電、サイクル特性、耐腐食性に優れるリチ
ウム二次電池を提供することができる。
According to the present invention, it is possible to provide a lithium secondary battery having excellent current characteristics and high capacity, and excellent self-discharge, cycle characteristics, and corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】公知の二次電池の電極、セパレータおよび電極
端子の配置の1例を示す図である。
FIG. 1 is a diagram showing an example of an arrangement of electrodes, separators and electrode terminals of a known secondary battery.

【図2】電極およびセパレータを折りたたんで積層した
場合の公知の二次電池の1例の電極、セパレータおよび
電極端子の配置を示す図である。
FIG. 2 is a diagram showing an arrangement of electrodes, separators and electrode terminals of an example of a known secondary battery when electrodes and separators are folded and laminated.

【図3】本発明の二次電池の電極、セパレータおよび電
極端子の配置の1例を示す図である。
FIG. 3 is a diagram showing an example of the arrangement of electrodes, separators and electrode terminals of the secondary battery of the present invention.

【図4】それぞれ1個の正負極の端子を、正極および負
極集電体の互いに反対側に配置した二次電池の配置を示
す図である。
FIG. 4 is a diagram showing an arrangement of a secondary battery in which one positive and negative electrode terminal is arranged on opposite sides of a positive electrode and a negative electrode current collector, respectively.

【図5】実施例1の二次電池の電極、セパレータおよび
電極端子の配置を示す図である。
5 is a diagram showing an arrangement of electrodes, separators and electrode terminals of the secondary battery of Example 1. FIG.

【図6】実施例3の二次電池の電極、セパレータおよび
電極端子の配置を示す図である。
FIG. 6 is a diagram showing the arrangement of electrodes, separators, and electrode terminals of the secondary battery of Example 3.

【図7】比較例2の二次電池の電極、セパレータおよび
電極端子の配置を示す図である。
7 is a diagram showing the arrangement of electrodes, separators, and electrode terminals of the secondary battery of Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

A 正極 B 正極端子部 C セパレータ層 D 負極 E 負極端子部 1 集電体+正極活物質層 1′ 正極端子部 1″ 正極端子部 2 セパレーター層 3 集電体+負極活物質層 3′ 負極端子部 3″ 負極端子部 4 セパレーター層 5 集電体+正極活物質層 5′ 正極端子部 5″ 正極端子部 6 セパレーター層 7 集電体+負極活物質層 7′ 負極端子部 7″ 負極端子部 8 セパレーター層 9 集電体+正極活物質層 9′ 正極端子部 9″ 正極端子部 A positive electrode B positive electrode terminal portion C separator layer D negative electrode E negative electrode terminal portion 1 current collector + positive electrode active material layer 1 ′ positive electrode terminal portion 1 ″ positive electrode terminal portion 2 separator layer 3 current collector + negative electrode active material layer 3 ′ negative electrode terminal Part 3 ″ negative electrode terminal part 4 separator layer 5 current collector + positive electrode active material layer 5 ′ positive electrode terminal part 5 ″ positive electrode terminal part 6 separator layer 7 current collector + negative electrode active material layer 7 ′ negative electrode terminal part 7 ″ negative electrode terminal part 8 Separator layer 9 Current collector + positive electrode active material layer 9 ′ Positive electrode terminal portion 9 ″ Positive electrode terminal portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片桐 伸夫 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 家地 洋之 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 林 嘉隆 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 井上 智博 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 加幡 利幸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Katagiri 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Hiroyuki Iechi 1-3-6 Nakamagome, Ota-ku, Tokyo In stock company Ricoh (72) Inventor Yoshitaka Hayashi 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh company (72) Inventor Tomohiro Inoue 1-3-6 Nakamagome, Tokyo Ota-ku Ricoh company (72) Inventor Toshiyuki Kabata 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体層、正極活物質層、電解質
層、負極活物質層および負極集電体層の各層よりなる層
構造単位を2個以上有して構成される二次電池におい
て、前記の層構造単位のすべての正極集電体層および負
極集電体層の二ヶ所に電気的導電手段が設けられるとと
もに、該二ヶ所の電気的導電手段が、該電気的導電手段
が設けられる正極集電体層または負極集電体層の周辺部
に沿って3/4L〜Lだけ離れて存在していることを特
徴とする二次電池。(ただし、前記Lは、二ヶ所の電気
的導電手段が、それぞれもっとも離れた位置に存在する
場合の両者間の距離を意味する。)
1. A secondary battery comprising two or more layer structure units each comprising a positive electrode current collector layer, a positive electrode active material layer, an electrolyte layer, a negative electrode active material layer and a negative electrode current collector layer. , All of the positive electrode current collector layer and the negative electrode current collector layer of the layer structure unit are provided with an electrically conducting means, and the two electrically conducting means are provided with the electrically conducting means. A secondary battery, which is present at a distance of 3/4 L to L along a peripheral portion of the positive electrode current collector layer or the negative electrode current collector layer. (However, L means the distance between the two electrically conductive means when the two electrically conductive means are present at the most distant positions.)
【請求項2】 請求項1記載の二次電池において、負極
活物質層が炭素系負極活物質層である二次電池。
2. The secondary battery according to claim 1, wherein the negative electrode active material layer is a carbon-based negative electrode active material layer.
【請求項3】 請求項1または2記載の二次電池におい
て、正極集電体層および負極集電体層が四角形の形状で
あって、二ヶ所の電気的導電手段が四角形の対頂角また
は対向辺に設けられている二次電池。
3. The secondary battery according to claim 1, wherein the positive electrode current collector layer and the negative electrode current collector layer have a quadrangular shape, and the two electrically conductive means have a quadrangular vertical angle or opposite sides. Secondary battery installed in.
【請求項4】 請求項1、2または3記載の二次電池に
おいて、電解質層の電解質として、LiN(CF3
22と下式(I)および/または(II)で表わされる
テトラフルオロボレート塩の少なくとも1種との混合電
解質を用いる二次電池。 【化1】M(BF4)x (I) (R1234)NBF4 (II) (式中、Mはアルカリ金属またはアルカリ土類金属、x
は1または2、R1,R2,R3,R4は同一または相異な
っていてもよいアルキル基)
4. The secondary battery according to claim 1, 2 or 3, wherein LiN (CF 3 S) is used as the electrolyte of the electrolyte layer.
A secondary battery using a mixed electrolyte of O 2 ) 2 and at least one tetrafluoroborate salt represented by the following formula (I) and / or (II). Embedded image M (BF 4 ) x (I) (R 1 R 2 R 3 R 4 ) NBF 4 (II) (wherein M is an alkali metal or alkaline earth metal, x
Is 1 or 2, and R 1 , R 2 , R 3 and R 4 are the same or different alkyl groups)
【請求項5】 請求項1、2、3または4記載の二次電
池において、正極集電体がエッチドアルミニウムである
二次電池。
5. The secondary battery according to claim 1, 2, 3 or 4, wherein the positive electrode current collector is etched aluminum.
JP20838995A 1995-07-24 1995-07-24 Rechargeable battery Expired - Fee Related JP3553697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20838995A JP3553697B2 (en) 1995-07-24 1995-07-24 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20838995A JP3553697B2 (en) 1995-07-24 1995-07-24 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH0935721A true JPH0935721A (en) 1997-02-07
JP3553697B2 JP3553697B2 (en) 2004-08-11

Family

ID=16555459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20838995A Expired - Fee Related JP3553697B2 (en) 1995-07-24 1995-07-24 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3553697B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311011A (en) * 2007-06-13 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009259634A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, apparatus equipped with battery, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate
JP2011517042A (en) * 2008-04-08 2011-05-26 エルジー・ケム・リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
KR101139016B1 (en) * 2009-06-17 2012-04-26 주식회사 엘지화학 Lithium secondary battery having multi-directional lead-tab structure
WO2012099205A1 (en) * 2011-01-20 2012-07-26 シーケーディ株式会社 Sheet folding device, sheet folding method, sheet positioning device, and sheet fold line forming device
JP2013098502A (en) * 2011-11-07 2013-05-20 Toc Capacita Co Ltd Power storage device and manufacturing method thereof
US8968910B2 (en) 2010-12-20 2015-03-03 Lg Chem, Ltd. Lithium secondary battery having multi-directional lead-tab structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311011A (en) * 2007-06-13 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2011517042A (en) * 2008-04-08 2011-05-26 エルジー・ケム・リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP2013243148A (en) * 2008-04-08 2013-12-05 Lg Chem Ltd Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2009259634A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, apparatus equipped with battery, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate
KR101139016B1 (en) * 2009-06-17 2012-04-26 주식회사 엘지화학 Lithium secondary battery having multi-directional lead-tab structure
US8968910B2 (en) 2010-12-20 2015-03-03 Lg Chem, Ltd. Lithium secondary battery having multi-directional lead-tab structure
WO2012099205A1 (en) * 2011-01-20 2012-07-26 シーケーディ株式会社 Sheet folding device, sheet folding method, sheet positioning device, and sheet fold line forming device
JP2013098502A (en) * 2011-11-07 2013-05-20 Toc Capacita Co Ltd Power storage device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3553697B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
US5900336A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2009076372A (en) Non-aqueous secondary battery
JP2000285929A (en) Solid electrolyte battery
JP2002329495A (en) Lithium secondary battery and production process thereof
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
KR20090080909A (en) Battery
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP3512551B2 (en) Rechargeable battery
JPH0864203A (en) Electrode, manufacture thereof, and secondary battery using it
JPH0950823A (en) Secondary battery
JP3553697B2 (en) Rechargeable battery
JP2004071245A (en) Nonaqueous electrolyte battery
JP4385418B2 (en) Gel electrolyte secondary battery
JPH08222272A (en) Combination battery of nonaqueous electrolyte secondary battery and solar battery
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
JP2004158286A (en) Positive electrode material conjugate containing poly (3, 4-ethylenedioxy thiophene) and lithium secondary battery having positive electrode composed of this conjugate
JPH09237623A (en) Nonaqueous electrolyte secondary battery
JP2004047487A (en) Cathode for lithium secondary battery and lithium secondary battery using the same
JP3573899B2 (en) Non-aqueous electrolyte secondary battery
JPH09320599A (en) Nonaqueous electrolyte secondary battery
JP3316111B2 (en) Manufacturing method of lithium secondary battery
JP4479159B2 (en) Non-aqueous electrolyte battery
JP3512543B2 (en) Non-aqueous electrolyte secondary battery
JPH0973917A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees