JP2526250B2 - Fuel control device for internal combustion engine - Google Patents

Fuel control device for internal combustion engine

Info

Publication number
JP2526250B2
JP2526250B2 JP62174105A JP17410587A JP2526250B2 JP 2526250 B2 JP2526250 B2 JP 2526250B2 JP 62174105 A JP62174105 A JP 62174105A JP 17410587 A JP17410587 A JP 17410587A JP 2526250 B2 JP2526250 B2 JP 2526250B2
Authority
JP
Japan
Prior art keywords
fuel
amount
correction
fuel supply
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62174105A
Other languages
Japanese (ja)
Other versions
JPS6419143A (en
Inventor
博通 三輪
正明 内田
佳久 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62174105A priority Critical patent/JP2526250B2/en
Publication of JPS6419143A publication Critical patent/JPS6419143A/en
Application granted granted Critical
Publication of JP2526250B2 publication Critical patent/JP2526250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、内燃機関の燃料制御装置で、特に学習制
御を行うものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel control device for an internal combustion engine, which particularly performs learning control.

(従来の技術) 燃料制御装置に学習機能を付与した装置が提案されて
いる(特開昭55−96339号公報参照)。これはL−ジェ
トロニック方式の燃料噴射機関に対する空燃比制御に適
用させたもので、基本パルス幅Tp(=K×Qa/N、ただ
し、Kは定数,Qaは吸入空気量,Nは回転数)をフィード
バック補正係数αと学習補正係数KBLRCとで補正した式 Ti=Tp×COEF×α×KBLRC+Ts にて噴射パルス幅Tiが求められる。ここにTiは1点火サ
イクル当たりに必要となる燃料噴射量に相当する噴射弁
駆動のパルス幅、Tpは一定の基本空燃比を得るための噴
射量に相当するパルス幅である。そして、基本空燃比に
は理論空燃比が採用されるのであるが、基本空燃比は設
定値にしかすぎず実際には両空燃比の間にずれを生じ
る。このずれは、両空燃比の偏差に基づいて計算される
αにより解消される。COEFは特性の運転条件を改善する
ための各種補正係数(例えば混合比補正係数KMR等)の
総和、Tsは電圧補正分の無効パルス幅である。
(Prior Art) A device in which a fuel control device is provided with a learning function has been proposed (see JP-A-55-96339). This is applied to the air-fuel ratio control for the L-Jetronic fuel injection engine, and the basic pulse width Tp (= K × Qa / N, where K is a constant, Qa is the intake air amount, and N is the number of revolutions. ) Is corrected by the feedback correction coefficient α and the learning correction coefficient KBLRC, the injection pulse width Ti is calculated by the formula Ti = Tp × COEF × α × KBLRC + Ts. Here, Ti is a pulse width of the injection valve drive corresponding to the fuel injection amount required for one ignition cycle, and Tp is a pulse width corresponding to the injection amount for obtaining a constant basic air-fuel ratio. The theoretical air-fuel ratio is adopted as the basic air-fuel ratio, but the basic air-fuel ratio is only a set value, and in reality there is a deviation between the two air-fuel ratios. This deviation is eliminated by α calculated based on the deviation of both air-fuel ratios. COEF is the sum of various correction coefficients (for example, the mixing ratio correction coefficient KMR) for improving the operating condition of the characteristic, and Ts is the invalid pulse width for the voltage correction.

一方、KBLRC(≦1)の記憶される学習領域は、運転
変数の代表値(基本パルス幅Tpと回転数N)を座標軸と
して多数の小領域(この小領域を以下「エリア」と称
す。)に分割されており、各エリア毎に個別に学習値の
更新(学習)が行なわれる。たとえば、TpとNが同一エ
リア内にあり、所定の条件(フィードバック制御中でフ
ィードバックが数周期サンプリングされること等)が成
立したとき(学習条件が成立したとき)に学習が行なわ
れる。この場合、学習補正係数は空燃比センサから得ら
れる値LMD(数周期サンプリングされる間のαの最大と
最小の中間値)とそのエリアに現在まで入っていた学習
補正係数(KBLRC(旧))とを変数とする数式にて計算
される値であり、計算された値(学習補正係数KBLRC
(新))が改めて同一エリアに格納される。
On the other hand, the learning area in which KBLRC (≦ 1) is stored has a large number of small areas (hereinafter referred to as “areas”) with the representative value of the operation variable (the basic pulse width Tp and the rotation speed N) as the coordinate axis. The learning value is updated (learned) individually for each area. For example, learning is performed when Tp and N are in the same area and a predetermined condition (for example, feedback is sampled for several cycles during feedback control) is satisfied (when the learning condition is satisfied). In this case, the learning correction coefficient is the value LMD obtained from the air-fuel ratio sensor (the maximum and minimum intermediate value of α during sampling for several cycles) and the learning correction coefficient that has been in the area up to now (KBLRC (old)). It is a value calculated by a mathematical expression that uses and as variables, and the calculated value (learning correction coefficient KBLRC
(New)) is stored again in the same area.

(発明が解決しようとする問題点) ところで、このような制御によれば、例えば燃料噴射
弁等の燃料供給手段にバラツキや経時変化等があっても
理論空燃比(目標空燃比)からのずれはフィードバック
制御や学習制御にて補償されることになる。
(Problems to be solved by the invention) By the way, according to such control, deviation from the theoretical air-fuel ratio (target air-fuel ratio) is caused even if the fuel supply means such as the fuel injection valve has variations or changes over time. Is compensated by feedback control and learning control.

ところが、このような制御では、燃料噴射弁の噴射特
性つまり無効時間や流量特性(前述のTsとKに相当す
る)のバラツキ等が大きいと、記憶される学習値KBLRC
が学習領域つまり運転領域によって大きく歪んだ値を取
ることになり、このため学習エリアの選定によっては前
記噴射弁のバラツキ等に的確に対応できず、それほど良
好な制御精度が得られないという問題があった。また、
このように歪んだ学習値だと、例えば過渡運転時のよう
に学習値を読込んだ時点とその学習値を用いて燃料を供
給する時点の運転条件が大幅に異なった場合、フィード
バック制御も追付かず、機関の運転性や排気エミッショ
ンが悪化するという問題があった。
However, in such control, if there are large variations in the injection characteristics of the fuel injection valve, that is, ineffective time and flow rate characteristics (corresponding to the above-mentioned Ts and K), the stored learning value KBLRC is stored.
Is a value that is greatly distorted depending on the learning area, that is, the operation area, and therefore, it is not possible to accurately respond to variations in the injection valve depending on the selection of the learning area, and there is a problem that a very good control accuracy cannot be obtained. there were. Also,
If the learning value is distorted in this way, feedback control will be added if the operating conditions at the time of reading the learning value and when the fuel is supplied using the learning value are significantly different, for example, during transient operation. However, there was a problem that the drivability of the engine and the exhaust emission were deteriorated.

この発明は、このような問題点を解決した燃料制御装
置の提供を目的としている。
An object of the present invention is to provide a fuel control device that solves such problems.

(問題点を解決するための手段) この発明は第1図に示すように、機関の吸入空気量を
検出する手段aと、機関の回転数を検出する手段bと、
これらの運転条件に基づき燃料供給手段cからの燃料供
給量を演算する燃料供給量演算手段dとを備えると共
に、機関に供給された混合気の空燃比を検出する手段e
と、この検出空燃比と目標空燃比との差異に基づき燃料
供給手段cからの燃料供給量をフィードバック補正する
空燃比補正手段fとを備えた内燃機関の燃料制御装置に
おいて、前記空燃比補正手段fによる補正量を記憶する
第一の記憶手段gと、第一の記憶手段gの低負荷域の記
憶値から前記燃料供給手段cの無効時間の補正量を演算
する手段hと、この補正量を記憶する第二の記憶手段i
と、第一の記憶手段gの高負荷域の記憶値から前記燃料
供給手段cの流量特性値の補正量を演算する手段jと、
この補正量を記憶する第三の記憶手段kと、第二,第三
の記憶手段i,kの記憶値により前記燃料供給手段cから
の燃料供給量を修正する燃料供給量修正手段lとを設け
る。
(Means for Solving the Problems) As shown in FIG. 1, the present invention comprises means a for detecting the intake air amount of the engine, means b for detecting the number of revolutions of the engine, and
A fuel supply amount calculation means d for calculating the fuel supply amount from the fuel supply means c based on these operating conditions, and means e for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine.
And an air-fuel ratio correction means f for feedback-correcting the fuel supply amount from the fuel supply means c based on the difference between the detected air-fuel ratio and the target air-fuel ratio, the air-fuel ratio correction means The first storage means g for storing the correction amount by f, the means h for calculating the correction amount of the ineffective time of the fuel supply means c from the stored value of the first storage means g in the low load region, and the correction amount. Second storage means i for storing
And a means j for calculating a correction amount of the flow rate characteristic value of the fuel supply means c from the stored value in the high load region of the first storage means g,
A third storage means k for storing this correction amount and a fuel supply amount correction means 1 for correcting the fuel supply amount from the fuel supply means c by the stored values of the second and third storage means i, k. Set up.

(作用) 燃料供給手段cのバラツキや経時変化に対しては、そ
の補正分を空燃比補正手段fによるフィードバック補正
量から求めることが可能であり、そのバラツキ等により
燃料供給手段cの応答性つまり無効時間(駆動電圧によ
る)が変化するが、この変化分は低負荷域に大きな値を
取る。また、燃料供給手段cの流量特性のバラツキは高
負荷域と低負荷域とで近似したものとなる。
(Operation) With respect to variations and changes with time of the fuel supply means c, the correction amount can be obtained from the feedback correction amount by the air-fuel ratio correction means f, and the responsiveness of the fuel supply means c, that is, the variation, can be obtained. The ineffective time (depending on the drive voltage) changes, but this change has a large value in the low load region. Further, the variation in the flow rate characteristic of the fuel supply means c becomes similar between the high load region and the low load region.

したがって、低負荷域のフィードバック補正量と高負
荷域のフィードバック補正量から、それぞれ燃料供給手
段cの無効時間の補正量と流量特性値の補正量を分離し
て演算、学習し、これらの学習値(記憶値)により燃料
供給手段cからの燃料供給量を修正するため、燃料供給
手段cにバラツキ等があっても、各学習値が運転領域に
よって大きく歪んだ値を取ることはなく、供給空燃比と
目標空燃比との差異を小さくすることができ、このため
定常運転時や過渡運転時にかかわらず、燃料供給が応答
良く的確に制御されると共に、さらにはフィードバック
制御を行わないオープン制御時でも精度の良い燃料供給
制御が可能となる。
Therefore, from the feedback correction amount in the low load region and the feedback correction amount in the high load region, the correction amount of the dead time of the fuel supply means c and the correction amount of the flow rate characteristic value are separately calculated and learned, and these learned values are obtained. Since the fuel supply amount from the fuel supply means c is corrected by the (memorized value), even if the fuel supply means c varies, each learned value does not take a value greatly distorted depending on the operating region, and the supply space It is possible to reduce the difference between the fuel ratio and the target air-fuel ratio, so that the fuel supply can be controlled accurately and responsively even during steady operation or transient operation, and even during open control without feedback control. Accurate fuel supply control is possible.

(実施例) 第2図はこの発明をL−ジェトロニック方式の燃料噴
射機関に適用した機械的な構成を表している。同図にお
いて、吸入空気量Qaを検出するセンサ(例えばフラップ
式のエアフローメータ)1、クランク角の単位角度及び
基準位置を検出するセンサ(クランク角センサ)2、実
際の空燃比を検出するセンサ(空燃比センサ)3が機関
各部に設けられる。ここに、所定時間の間に入力するク
ランク角の単位角度信号をカウントすることにより回転
数Nが求められる。また、4は水温センサ、5は絞り弁
開度センサ、6はノックセンサ、7はバッテリ、8は車
速センサ、9はキースイッチである。
(Embodiment) FIG. 2 shows a mechanical configuration in which the present invention is applied to an L-Jetronic fuel injection engine. In the figure, a sensor (for example, a flap type air flow meter) that detects the intake air amount Qa, a sensor (crank angle sensor) 2 that detects a unit angle and a reference position of a crank angle, and a sensor that detects an actual air-fuel ratio ( An air-fuel ratio sensor) 3 is provided in each part of the engine. The rotation speed N is obtained by counting the unit angle signal of the crank angle input during a predetermined time. Further, 4 is a water temperature sensor, 5 is a throttle valve opening sensor, 6 is a knock sensor, 7 is a battery, 8 is a vehicle speed sensor, and 9 is a key switch.

これらセンサ類からの信号はすべてコントロールユニ
ット10に入力され、該ユニット10では各種運転変数に基
づき燃料噴射弁11の燃料噴射量制御を行う。
All signals from these sensors are input to the control unit 10, and the unit 10 controls the fuel injection amount of the fuel injection valve 11 based on various operating variables.

第3図はコントロールユニット10をマイクロコンピュ
ータで構成した場合のブロック構成図である。すなわ
ち、インターフェース(I/O)12、CPU13、ROM14、RAM1
5、電源を切断しても記憶情報を保持できる不揮発性RAM
(BURAM)16の他、各種信号のうちアナログ信号をデジ
タル信号に変換するA−Dコンバータ(ADC)17が付属
されている。
FIG. 3 is a block diagram when the control unit 10 is composed of a microcomputer. That is, interface (I / O) 12, CPU13, ROM14, RAM1
5.Non-volatile RAM that can retain stored information even when the power is turned off
In addition to the (BURAM) 16, an AD converter (ADC) 17 for converting an analog signal of various signals into a digital signal is attached.

次に、コントロールユニット10にて実行される制御内
容を第4図〜第8図のフローチャートに基づいて説明す
る。
Next, the control contents executed by the control unit 10 will be described based on the flowcharts of FIGS.

第4図は燃料噴射量(噴射パルス幅)Tiの演算ルーチ
ンで、吸入空気量Qaと、機関回転数Nと、噴射定数KCON
ST(予め設定される)と、燃料噴射弁11の流量特性値の
補正量KLCD1とから次式(1)により基本噴射量(基本
パルス幅)Tpが算出され(ステップ40〜44)、 Tp=(KCONST×KLCD1)×(Qa/N) …(1) このTpと、燃料噴射弁11の駆動電圧による無効時間
(無効パルス幅)Tsと、その無効時間の補正量KLCD3
と、各種補正係数の総和COEFと、基準補正量KLCD2と、
空燃比センサ3によるフィードバック補正係数αとから
次式(2)により燃料噴射量Tiが算出される(ステップ
45〜53)。
FIG. 4 is a routine for calculating the fuel injection amount (injection pulse width) Ti. The intake air amount Qa, the engine speed N, and the injection constant KCON.
From ST (preset) and the correction amount KLCD1 of the flow rate characteristic value of the fuel injection valve 11, the basic injection amount (basic pulse width) Tp is calculated by the following equation (1) (steps 40 to 44), Tp = (KCONST x KLCD1) x (Qa / N) (1) This Tp, the invalid time (invalid pulse width) Ts due to the drive voltage of the fuel injection valve 11, and the correction amount KLCD3 for the invalid time.
And the total COEF of various correction factors, the reference correction amount KLCD2,
From the feedback correction coefficient α by the air-fuel ratio sensor 3, the fuel injection amount Ti is calculated by the following equation (2) (step
45-53).

Ti=Tp×COEF×KLCD2×α+(Ts+KLCD3) …(2) ここで、各補正量KLCD1、KLCD2、KLCD3はフィードバ
ック補正係数αによる補正量の学習値KLCDから分離学習
した値である(後述する)。
Ti = Tp × COEF × KLCD2 × α + (Ts + KLCD3) (2) Here, each correction amount KLCD1, KLCD2, KLCD3 is a value learned separately from the learning value KLCD of the correction amount by the feedback correction coefficient α (described later). .

各種補正係数COEFは、混合比補正係数(高負荷時増量
補正係数)KMR、水温補正係数KTW等の総和で、これらは
第5図のように基本噴射量Tp、機関回転数N、機関冷却
水温Tw等に応じて予め設定したマップ値から読出される
と共に、この場合COEFにフィードバック制御域かどうか
を判別する変数KTRMが加えられ、フィードバック制御域
のときにCOEF=KTRM(KMR=0)が選定されるようにし
ている(ステップ60〜66)。ただし、フィードバック制
御域以外ではKTRM=0を取り、このとき第4図のルーチ
ンにおけるフィードバック補正係数αは1.0に設定され
る。
The various correction coefficients COEF are the sum of the mixture ratio correction coefficient (high load increase correction coefficient) KMR, water temperature correction coefficient KTW, etc. These are the basic injection amount Tp, engine speed N, engine cooling water temperature as shown in FIG. It is read from a map value set in advance according to Tw, etc., and in this case, COEF is added with a variable KTRM that determines whether it is in the feedback control range, and COEF = KTRM (KMR = 0) is selected in the feedback control range. (Steps 60-66). However, KTRM = 0 is taken outside the feedback control region, and at this time, the feedback correction coefficient α in the routine of FIG. 4 is set to 1.0.

また、燃料噴射弁11の無効時間Tsは、第6図のように
所定電圧(例えば14V)のときのTsと、駆動電圧VBと、
比例定数DTSとから算出される(ステップ70〜73)。
Further, as shown in FIG. 6, the ineffective time Ts of the fuel injection valve 11 is Ts at a predetermined voltage (for example, 14V), the drive voltage VB,
It is calculated from the proportionality constant DTS (steps 70 to 73).

次に、フィードバック補正係数αによる補正量の学習
値KLCDの演算と、この学習値KLCDから分離学習される各
補正量KLCD1〜KLCD3の演算であるが、学習値KLCDは補正
量KLCD1(1データ)とKLCD2(マップ値)との乗算値と
等しく、この場合KLCD2の学習エリアと同一エリアに分
割された学習マップに記憶されると共に、フィードバッ
ク制御が行なわれているときには学習値KLCDは更新され
る。
Next, the learning value KLCD of the correction amount by the feedback correction coefficient α and the respective correction amounts KLCD1 to KLCD3 separately learned from the learning value KLCD are calculated. The learning value KLCD is the correction amount KLCD1 (1 data). Is equal to the multiplication value of KLCD2 (map value) and is stored in a learning map divided into the same learning area as KLCD2 in this case, and the learning value KLCD is updated when feedback control is performed.

即ち、学習値KLCDは第7図の演算ルーチンにより、補
正量KLCD1、KLCD2から算出される一方、KLCD2を読込ん
だときの学習エリア(Qa/N,N)が記憶され(ステップ80
〜83)、このとき同一エリア(Qa/N,N)にてフィードバ
ック制御が行なわれていれば(COEF=KTRM)、比例積分
されるフィードバック補正係数αの最大と最小(数周期
サンプリングされる)の中間値LMDの偏差ΔLMD=LMD−
1.0が算出され、このΔLMDと学習ゲインLRG(ΔLMDに対
して割付けたマップ値)と前回のKLCD-1(ステップ83で
の算出値と等しい)から次式(3)により今回のKLCDが
求められ、同一の学習マップエリアの値が更新される
(ステップ84〜88)。
That is, the learning value KLCD is calculated from the correction amounts KLCD1 and KLCD2 by the calculation routine of FIG. 7, while the learning area (Qa / N, N) when KLCD2 is read is stored (step 80).
~ 83), if feedback control is performed in the same area (Qa / N, N) at this time (COEF = KTRM), the maximum and minimum of the feedback correction coefficient α that is proportionally integrated (sampled for several cycles) Deviation of the mean value of LMD ΔLMD = LMD−
1.0 is calculated, and the current KLCD is calculated from the ΔLMD, learning gain LRG (map value assigned to ΔLMD), and the previous KLCD -1 (equal to the value calculated in step 83) by the following equation (3). , The value of the same learning map area is updated (steps 84 to 88).

KLCD=KLCD-1+LRG×ΔLMD …(3) そして、この学習値KLCDから分離学習される各補正量
KLCD1〜KLCD3の演算は第8図のルーチンにて行なわれ
る。なお、第8図中A,Bは負荷領域を設定するための基
準値である。
KLCD = KLCD −1 + LRG × ΔLMD (3) Then, each correction amount separated and learned from this learning value KLCD
The calculation of KLCD1 to KLCD3 is performed in the routine shown in FIG. In addition, A and B in FIG. 8 are reference values for setting the load region.

まず、機関の負荷を表すQa/Nが基準値Aよりも大きい
所定高負荷域において、第7図のルーチン(ステップ8
8)にてKLCDを学習した学習エイア数が所定数nあれ
ば、これらのエリアから読込んだ各KLCDが基準値1.0と
比較され、これらの偏差がそれぞれ正値あるいは負値の
同一方向にあるときに、その偏差の絶対値|KLCD−1.0|
が最小となるKLCDをKLCD(k)として選出する。(100
〜105)。そして、このKLCD(k)と学習ゲインGKC(KL
CD(k)−1.0に対して割付けたマップ値)とから次式
(4)により補正量KLCD1(燃料噴射弁11の流量特性値
の補正量)が算出され、記憶される(ステップ114,11
6)。
First, in the predetermined high load range where Qa / N representing the engine load is larger than the reference value A, the routine of FIG.
If the number of learning airs that learned KLCD in 8) is a predetermined number n, each KLCD read from these areas is compared with a reference value of 1.0, and these deviations are in the same positive or negative direction. Sometimes, the absolute value of the deviation | KLCD−1.0 |
The KLCD that minimizes is selected as KLCD (k). (100
~ 105). Then, this KLCD (k) and learning gain GKC (KL
A correction amount KLCD1 (correction amount of the flow characteristic value of the fuel injection valve 11) is calculated from the map value assigned to CD (k) -1.0) by the following equation (4) and stored (steps 114, 11).
6).

KLCD1=(KLCD(k)−1.0)×GTC+1.0 …(4) ここで、燃料噴射弁11の流量特性にバラツキがある場
合、流量は増加もしくは減少のどちらかの傾向を示すよ
うになるので、KLCDの基準値1.0からの偏りが同一方向
にあるときにKLCDから補正量KLCD1を学習することがで
き、またKLCDと基準値1.0との最小偏差から算出するた
め、誤差分の少ないKLCD1が求められる。
KLCD1 = (KLCD (k) −1.0) × GTC + 1.0 (4) Here, if there is variation in the flow rate characteristics of the fuel injection valve 11, the flow rate tends to either increase or decrease. , KLCD can be learned from the correction amount KLCD1 when the deviation from the reference value 1.0 of the KLCD is in the same direction, and since KLCD1 is calculated from the minimum deviation between the KLCD and the reference value 1.0, the KLCD1 with less error is obtained. To be

他方、Qa/Nが基準値A,Bよりも小さい所定低負荷域で
は、この低負荷域にてKLCDを学習した学習エリア数が所
定数nあれば、これらのエリアから読込んだ各KLCDがス
テップ105にて選出したKLCD(k)と比較され、これら
の偏差がそれぞれ正値あるいは負値の同一方向にあると
きに、その偏差の絶対値|KLCD−KLCD(k)|が最小と
なるKLCDをKLCD(s)として選出する(ステップ101,10
6〜110)。そして、KLCD(k)とKLCD(s)の差ΔKLCD
から学習ゲインGTS(ΔKLCDに対して割付けたマップ
値)を読出し、このGTSと前回のKLCD3-1から補正量KLCD
3(燃料噴射弁11の無効時間の補正量)が算出され、記
憶される(ステップ111〜113,115)。
On the other hand, in a predetermined low load area where Qa / N is smaller than the reference values A and B, if the number of learning areas where KLCD is learned in this low load area is a predetermined number n, each KLCD read from these areas Compared with KLCD (k) selected in step 105, when these deviations are in the same direction of positive value or negative value, respectively, the absolute value | KLCD-KLCD (k) | of the deviation is the minimum KLCD. Is selected as KLCD (s) (steps 101, 10)
6-110). And the difference between KLCD (k) and KLCD (s) ΔKLCD
Correction amount KLCD the learning gain GTS (map value assigned relative DerutaKLCD) reading, from the GTS and the previous KLCD3 -1 from
3 (correction amount of the invalid time of the fuel injection valve 11) is calculated and stored (steps 111 to 113, 115).

ここで、低負荷域のKLCDから求めたKLCD(s)はKLCD
1の補正分を含むものであり、また高負荷域のKLCDから
求めたKLCD(k)は高負荷域と低負荷域とで近似した値
を取るため、KLCD(s)とKLCD(k)の差からKLCD3
(1データ)を学習することができる。
Here, KLCD (s) obtained from KLCD in the low load range is KLCD.
Since it includes a correction amount of 1, and KLCD (k) obtained from KLCD in the high load range takes an approximate value in the high load range and the low load range, KLCD (s) and KLCD (k) Difference from KLCD3
(1 data) can be learned.

なお、ステップ101,106の条件を満たさないときは学
習は行わず、前回のKLCD1、KLCD3が読込まれる(ステッ
プ117,118)。
If the conditions of steps 101 and 106 are not satisfied, learning is not performed and the previous KLCD1 and KLCD3 are read (steps 117 and 118).

そして、基準補正量KLCD2の演算であるが、これはKLC
D3からKLCDの補正分H3KLCDを求め、KLCDにH3KLCDを加え
たものをKLCD1により除算することを求められ、記憶さ
れる(ステップ119〜121)。このH3KLCDは第9図,第10
図のようにKLCD3と負荷Qa/Nに対して設定されたマップ
値LとKを乗算して求められる。
And the calculation of the reference correction amount KLCD2, which is KLC
The correction amount H3KLCD of KLCD is obtained from D3, and the addition of H3KLCD to KLCD is required to be divided by KLCD1 and stored (steps 119 to 121). This H3K LCD is shown in Figs.
It is obtained by multiplying the map values L and K set for the KLCD3 and the load Qa / N as shown in the figure.

このKLCD2は、KLCDをKLCD3により逆補正したものつま
りKLCD2から低負荷域におけるKLCD3分の補正量を分離さ
せたものであり、このため学習の進行にかかわらず学習
マップの各エリアに記憶されるKLCD2は歪みの少ない値
となる。
This KLCD2 is obtained by inversely correcting KLCD by KLCD3, that is, by separating the correction amount for KLCD3 in the low load region from KLCD2, and therefore KLCD2 stored in each area of the learning map regardless of the progress of learning. Is a value with less distortion.

なお、ステップ102,104,107,109の条件を満たさない
ときはH3KLCD=0とし(ステップ122)、KLCD2を更新し
ない。
When the conditions of steps 102, 104, 107 and 109 are not satisfied, H3KLCD = 0 is set (step 122) and KLCD2 is not updated.

そして、各補正量KLCD1〜KLCD3を用いて第4図のルー
チンにて燃料噴射量Tiが演算され、燃料噴射弁11の駆動
信号として出力される。
Then, the fuel injection amount Ti is calculated using the correction amounts KLCD1 to KLCD3 in the routine of FIG. 4, and is output as a drive signal for the fuel injection valve 11.

このように構成したため、機関の実空燃比を検出する
空燃比センサ3によるフィードバック補正量の学習値KL
CDから、燃料噴射弁11のバラツキや経時変化等に対する
補正つまり燃料噴射弁11の流量特性値の補正量KLCD1、
燃料噴射弁11の無効時間の補正量KLCD3および基準補正
量KLCD2が分離して求められ、これらの学習値KLCD1〜KL
CD3により燃料噴射量Tiが修正される。
With this configuration, the learning value KL of the feedback correction amount by the air-fuel ratio sensor 3 that detects the actual air-fuel ratio of the engine
From the CD, correction for variations in the fuel injection valve 11 and changes over time, that is, the correction amount KLCD1, of the flow rate characteristic value of the fuel injection valve 11,
The correction amount KLCD3 and the reference correction amount KLCD2 of the invalid time of the fuel injection valve 11 are obtained separately, and these learned values KLCD1 to KL are obtained.
The fuel injection amount Ti is corrected by CD3.

このため、燃料噴射弁11のバラツキ等が大きい場合で
も、各補正量KLCD1〜KLCD3により燃料噴射量Tiを要求噴
射量に近付けることができ、即ち各補正量KLCD1〜KLCD3
の学習によりKLCDが第11図に示すように基準値1.0に近
付くのであり、したがって実空燃比と目標空燃比との差
異は小さくなるため、空燃比センサ3によるフィードバ
ック制御を応答良く行うことができると共に、フィード
バック制御を行わないオープン制御時にも燃料供給を的
確に制御することができる。
Therefore, even if the fuel injection valve 11 has large variations, the correction amounts KLCD1 to KLCD3 can bring the fuel injection amount Ti close to the required injection amount, that is, the correction amounts KLCD1 to KLCD3.
As a result, the KLCD approaches the reference value 1.0 as shown in FIG. 11, and therefore the difference between the actual air-fuel ratio and the target air-fuel ratio becomes small, so feedback control by the air-fuel ratio sensor 3 can be performed with good response. At the same time, the fuel supply can be accurately controlled even during the open control in which the feedback control is not performed.

また、各補正量KLCD1〜KLCD3を分離して学習するた
め、学習値が運転領域によって歪んだ値を取ることがな
く、このため過渡運転時であってもフィードバック制御
が遅れることはなく、燃料供給の高い制御精度が得ら
れ、この結果定常運転時、過渡運転時およびオープン制
御時にかかわらず、機関の良好な運転性能、排気性能を
確保することができる。
In addition, since each correction amount KLCD1 to KLCD3 is learned separately, the learning value does not take a value that is distorted by the operating region, so feedback control is not delayed even during transient operation, and fuel supply High control accuracy can be obtained, and as a result, good engine operating performance and exhaust performance can be secured regardless of steady operation, transient operation, and open control.

(発明の効果) 以上のように本発明によれば、空燃比補正手段による
高負荷域と低負荷域における補正量から燃料供給手段の
流量特性値および無効時間の補正量を分離して学習し、
この学習値により燃料供給量を修正制御するので、燃料
供給手段のバラツキや経時変化等が大きくても、機関に
要求される供給量との差異を小さくすることができ、し
たがって、定常運転時や過渡運転時にかかわらず空燃比
補正手段によるフィードバック制御を応答良く的確に行
えると共に、フィードバック制御を行わないオープン制
御時でも燃料供給を精度良く制御することができ、機関
の運転性能、排気性能を向上することができる。
(Effect of the Invention) As described above, according to the present invention, the flow rate characteristic value of the fuel supply unit and the correction amount of the dead time are separated and learned from the correction amount in the high load region and the low load region by the air-fuel ratio correction unit. ,
Since the fuel supply amount is corrected and controlled by this learned value, the difference from the supply amount required for the engine can be reduced even if there are large variations in the fuel supply means, changes over time, and the like. The feedback control by the air-fuel ratio correction means can be accurately performed with good response regardless of the transient operation, and the fuel supply can be accurately controlled even during the open control without feedback control, which improves the operating performance and exhaust performance of the engine. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成図、第2図,第3図は本発明の実
施例を示す構成図とコントロールユニットの構成図、第
4図〜第8図は制御内容を示すフローチャート、第9
図,第10図は演算に用いるデータの特性線図、第11図は
学習の進行によるフィードバック補正分の変化を示すグ
ラフである。 1……吸入空気量センサ、2……クランク角センサ、3
……空燃比センサ、10……コントロールユニット、11…
…燃料噴射弁。
FIG. 1 is a configuration diagram of the present invention, FIGS. 2 and 3 are configuration diagrams showing an embodiment of the present invention and configuration diagrams of a control unit, FIGS. 4 to 8 are flow charts showing control contents, and FIG.
Fig. 10 and Fig. 10 are characteristic diagrams of the data used in the calculation, and Fig. 11 is a graph showing the change in the feedback correction amount as the learning progresses. 1 ... Intake air amount sensor, 2 ... Crank angle sensor, 3
...... Air-fuel ratio sensor, 10 ...... Control unit, 11 ...
… Fuel injection valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−48739(JP,A) 特開 昭61−129443(JP,A) 特開 昭62−87645(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-58-48739 (JP, A) JP-A-61-129443 (JP, A) JP-A-62-87645 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関の吸入空気量を検出する手段と、機関
の回転数を検出する手段と、これらの運転条件に基づき
燃料供給手段からの燃料供給量を演算する燃料供給量演
算手段とを備えると共に、機関に供給された混合気の空
燃比を検出する手段と、この検出空燃比と目標空燃比と
の差異に基づき燃料供給手段からの燃料供給量をフィー
ドバック補正する空燃比補正手段とを備えた内燃機関の
燃料制御装置において、前記空燃比補正手段による補正
量を記憶する第一の記憶手段と、第一の記憶手段の低負
荷域の記憶値から前記燃料供給手段の無効時間の補正量
を演算する手段と、この補正量を記憶する第二の記憶手
段と、第一の記憶手段の高負荷域の記憶値から前記燃料
供給手段の流量特性値の補正量を演算する手段と、この
補正量を記憶する第三の記憶手段と、第二,第三の記憶
手段の記憶値により前記燃料供給手段からの燃料供給量
を修正する燃料供給量修正手段とを設けたことを特徴と
する内燃機関の燃料制御装置。
1. A means for detecting an intake air amount of an engine, a means for detecting an engine speed, and a fuel supply amount calculating means for calculating a fuel supply amount from a fuel supply means based on these operating conditions. A means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine, and an air-fuel ratio correction means for feedback-correcting the fuel supply amount from the fuel supply means based on the difference between the detected air-fuel ratio and the target air-fuel ratio. In a fuel control device for an internal combustion engine, comprising: first storage means for storing a correction amount by the air-fuel ratio correction means, and correction of a dead time of the fuel supply means from a stored value in a low load region of the first storage means. Means for calculating the amount, second storage means for storing this correction amount, means for calculating the correction amount of the flow rate characteristic value of the fuel supply means from the stored value of the first storage means in the high load region, Store this correction amount A fuel control device for an internal combustion engine, comprising: a third storage means; and a fuel supply amount correction means for correcting the fuel supply amount from the fuel supply means based on the stored values in the second and third storage means. .
JP62174105A 1987-07-13 1987-07-13 Fuel control device for internal combustion engine Expired - Lifetime JP2526250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62174105A JP2526250B2 (en) 1987-07-13 1987-07-13 Fuel control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62174105A JP2526250B2 (en) 1987-07-13 1987-07-13 Fuel control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6419143A JPS6419143A (en) 1989-01-23
JP2526250B2 true JP2526250B2 (en) 1996-08-21

Family

ID=15972734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62174105A Expired - Lifetime JP2526250B2 (en) 1987-07-13 1987-07-13 Fuel control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2526250B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750157B2 (en) * 1995-08-29 2006-03-01 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JP3644172B2 (en) * 1997-01-16 2005-04-27 日産自動車株式会社 Engine air-fuel ratio control device
JP4940839B2 (en) * 2006-09-04 2012-05-30 株式会社ジェイテクト Steering device

Also Published As

Publication number Publication date
JPS6419143A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
US4703430A (en) Method controlling air-fuel ratio
JPH01216047A (en) Method and device of controlling air-fuel ratio for engine
JP3683357B2 (en) Cylinder air-fuel ratio estimation device for internal combustion engine
JPH01237333A (en) Control device for internal combustion engine
JP2869916B2 (en) Fuel control device for internal combustion engine
JP2526250B2 (en) Fuel control device for internal combustion engine
JPH0833131B2 (en) Air-fuel ratio control device for internal combustion engine
JP2524359B2 (en) Fuel control device for internal combustion engine
JPS63285239A (en) Transient air-fuel ratio learning control device in internal combustion engine
JPH1073049A (en) Individual cylinder air-fuel ratio estimating device for internal combustion engine
JP4827710B2 (en) Control device and method for internal combustion engine
JP3013401B2 (en) Control system for vehicle engine
JPH0615828B2 (en) Fuel injection control device for internal combustion engine
JP2749395B2 (en) Fuel supply control device
JPH0631158Y2 (en) Air-fuel ratio controller for engine
JP2847851B2 (en) Control device for internal combustion engine for vehicles
JPH0615832B2 (en) Air-fuel ratio controller
JPH06173743A (en) Air-fuel ratio learning control method for internal combustion engine
JPH0443837A (en) Air-fuel ratio control device for internal combustion engine
JP2914973B2 (en) Electronic engine control unit
JPH0455234Y2 (en)
JP2514627B2 (en) Air-fuel ratio control device for internal combustion engine
JPH1182077A (en) Intake control system of internal combustion engine
JPH0744748Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0656120B2 (en) Internal combustion engine learning control device