JPH01216047A - Method and device of controlling air-fuel ratio for engine - Google Patents

Method and device of controlling air-fuel ratio for engine

Info

Publication number
JPH01216047A
JPH01216047A JP63039409A JP3940988A JPH01216047A JP H01216047 A JPH01216047 A JP H01216047A JP 63039409 A JP63039409 A JP 63039409A JP 3940988 A JP3940988 A JP 3940988A JP H01216047 A JPH01216047 A JP H01216047A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039409A
Other languages
Japanese (ja)
Inventor
Junichi Ishii
潤市 石井
Matsuo Amano
松男 天野
Nobuo Sato
信夫 佐藤
Nobuo Kurihara
伸夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63039409A priority Critical patent/JPH01216047A/en
Priority to US07/310,200 priority patent/US4934328A/en
Priority to EP89102754A priority patent/EP0330934B1/en
Priority to DE8989102754T priority patent/DE68900263D1/en
Priority to KR1019890002191A priority patent/KR930006056B1/en
Priority to CA000591759A priority patent/CA1293554C/en
Publication of JPH01216047A publication Critical patent/JPH01216047A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve air-fuel ratio control precision during transient running, by a method wherein, based on an detecting output for an exhaust gas compo nent, proportional computation and integrating computation are effected to perform feedback control of an air-fuel ratio, and according to a computing result of each computation, a learning factor is determined to correct an air-fuel ratio. CONSTITUTION:During running of an engine, a control circuit 60 computes a fundamental fuel injection time from an intake air amount and the number of revolutions of an engine, and by multiplying its result by a set air-fuel ratio factor, a fuel injection time is determined so that a target air-fuel ratio is obtained. By means of a feedback control amount by an exhaust gas sensor 142, a fuel injection amount is corrected to determine a final fuel injection time, by which an injector 12 is controlled. The feedback control amount is computed by means of a proportional gain, an integrating gain, and a differenti ating gain. In this case, from a computing result of the integrating gain, a steady learning factor is computed, and based on the learning factor, an air-fuel ratio is corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジンの空燃比制御方法および装置に係り、
特に排気ガス成分に基づきエンジンへ供給される空燃比
をフィードバック制御する制御方法および装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an engine air-fuel ratio control method and device;
In particular, the present invention relates to a control method and apparatus for feedback controlling the air-fuel ratio supplied to an engine based on exhaust gas components.

〔従来の技術〕[Conventional technology]

一般のエンジンの混合気制御は例えば特開昭58−25
540号に開示の如く、エンジンが所定の運転状態での
排気ガスの成分の検出値に基づくフィードバック制御量
がら空燃比補正係数の学習量を決定していた。
For example, the mixture control of a general engine is disclosed in Japanese Patent Application Laid-open No. 58-25.
As disclosed in No. 540, the learning amount of the air-fuel ratio correction coefficient is determined from the feedback control amount based on the detected value of the exhaust gas component under a predetermined operating state of the engine.

エンジン制御に使用される計算機およびこの計算機を含
む制御システムの能力向上に伴ってエンジンの特定の運
転状態のみならず、さらに広範囲の運転状態での学習制
御が望まれている。
As the capabilities of computers used for engine control and control systems including these computers improve, learning control is desired not only for specific operating conditions of the engine but also for a wider range of operating conditions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の空燃比フィードバックシステムでは排気ガスセン
サの出力から混合気がリッチであるか、リーンであるか
のみを決定し、この決定に基づいて混合気の空燃比をフ
ィードバック制御していた。
In conventional air-fuel ratio feedback systems, only whether the air-fuel mixture is rich or lean is determined from the output of the exhaust gas sensor, and the air-fuel ratio of the air-fuel mixture is feedback-controlled based on this determination.

しかしこれでは制御が理論空燃比での制御中心となり5
制御端度や制御の応答性で問題がある。特にエンジン制
御においては、理論空燃比(λ;1)以外のリーン状態
での運転あるいはリッチ状態での運転が必要となる。現
状のフィードバック制御システムではこれらの要求に十
分に対応していくことが困難である。
However, in this case, control is centered on the stoichiometric air-fuel ratio, and 5
There are problems with control accuracy and control responsiveness. Particularly in engine control, it is necessary to operate in a lean state or in a rich state other than the stoichiometric air-fuel ratio (λ; 1). It is difficult to adequately meet these demands with current feedback control systems.

本発明の目的は理論空燃比以外の運転状態においても混
合気を高精度に制御可能なフィードバック制御方法およ
び装置を提供することである。
An object of the present invention is to provide a feedback control method and device that can control the air-fuel mixture with high precision even in operating conditions other than the stoichiometric air-fuel ratio.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題解決のため1つの方式はエンジンの排気ガス成
分を検出し、その検出出力に基づいてエンジンへ供給さ
れる燃料と空気の混合気の空燃比をフィードバック制御
する空燃比制御方法において、上記排気ガス検出出力に
基づき比例・積分演算処理を行なって上記フィードバッ
ク制御を行なうと共に、上記比例演算結果と上記積分演
算結果に各々に基づいて学習を行なう。
One system for solving the above problem is an air-fuel ratio control method in which the exhaust gas components of the engine are detected and the air-fuel ratio of the mixture of fuel and air supplied to the engine is feedback-controlled based on the detected output. The feedback control is performed by performing proportional/integral calculation processing based on the gas detection output, and learning is performed based on the proportional calculation results and the integral calculation results, respectively.

〔作用〕[Effect]

本発明では排気ガス成分の検出値を目標値との偏差によ
って比例積分フィードバック制御を行なうと共に、比例
分と積分分について各々学習制御を行なう、このため、
比例分の学習制御ではエンジンの過渡的な運転状態の制
御精度を向上でき、積分分の学習制御でエンジンの定常
状態での制御精度を向上できる。
In the present invention, proportional-integral feedback control is performed based on the deviation of the detected value of the exhaust gas component from the target value, and learning control is performed separately for the proportional component and the integral component.
Proportional component learning control can improve the control accuracy in transient engine operating conditions, and integral component learning control can improve control accuracy in the steady state of the engine.

〔実施例〕〔Example〕

以下1本発明の1実施例を図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

自動車ガソリンエンジンは運転状態を総合的に制御して
、排ガスの状態を良好にし、燃費の改善が図れるように
マイクロコンピュータを使用した制御装置により、エン
ジンの運転状態を表わす各種センサからの信号を取り込
み、燃料供給量や点火時期など種々の制御を行なって、
最適なエンジンの運転状態が得られるようにした電子式
エンジン制御装置(以下、EECという)が使用される
ようになってきている。
In order to comprehensively control the operating conditions of automobile gasoline engines, improve exhaust gas conditions, and improve fuel efficiency, a control device using a microcomputer captures signals from various sensors that indicate the engine's operating conditions. , performs various controls such as fuel supply amount and ignition timing,
2. Description of the Related Art Electronic engine control devices (hereinafter referred to as EECs) that enable optimal engine operating conditions have come into use.

このようなEECを燃料噴射タイプの内燃機関に適用し
たシステムの一例を第2図で説明する。
An example of a system in which such EEC is applied to a fuel injection type internal combustion engine will be explained with reference to FIG.

第2図はエンジンの制御系全体を概括的に示した一部所
面図で、吸入空気はエアクリーナ2.スロットルチャン
バ4.吸気管6を通り、シリンダ8に供給される。シリ
ンダ8で燃焼したガスは。
Fig. 2 is a partial partial view schematically showing the entire engine control system, and the intake air is supplied to the air cleaner 2. Throttle chamber 4. It passes through the intake pipe 6 and is supplied to the cylinder 8. The gas burned in cylinder 8.

排気管10を通り、大気中へ排出される。It passes through the exhaust pipe 10 and is discharged into the atmosphere.

スロットルチャンバ4には、燃料を噴射するためのイン
ジェクタ12が設けられ、このインジェクタ12から噴
出した燃料はスロットルチャンバ4の空気通路内で霧化
され、吸入空気と混合されて混合気を形成し、吸気管6
を通って、吸気弁20の開弁により、シリンダ8へ供給
される。
The throttle chamber 4 is provided with an injector 12 for injecting fuel, and the fuel injected from the injector 12 is atomized within the air passage of the throttle chamber 4 and mixed with intake air to form an air-fuel mixture. Intake pipe 6
The air is supplied to the cylinder 8 by opening the intake valve 20.

絞り弁14は、アクセルペダルと機械的に連動するよう
に構成され、運転者により駆動される。
The throttle valve 14 is configured to be mechanically interlocked with the accelerator pedal and is driven by the driver.

スロットルチャンバ4の絞り弁14の上流には空気通路
22が設けられ、電気的発熱体からなる熱式空気流量計
等からなる流量センサ24が配設され、空気流速に応じ
て変化する電気信号AFを出力する。
An air passage 22 is provided upstream of the throttle valve 14 of the throttle chamber 4, and a flow rate sensor 24 made of a thermal air flow meter made of an electric heating element is provided, and an electric signal AF that changes depending on the air flow velocity is provided. Output.

インジェクタ12には、燃料タンク30からフューエル
ポンプ32を介して加圧された燃料が常時供給され、制
御回路60からの・噴射信号がインジェクタ12に与え
られたとき、インジェクタ12から吸入管6に燃料が噴
射される。
The injector 12 is constantly supplied with pressurized fuel from the fuel tank 30 via the fuel pump 32, and when an injection signal from the control circuit 60 is given to the injector 12, fuel is supplied from the injector 12 to the suction pipe 6. is injected.

吸気弁20から吸入された混合気はピストン50により
圧縮され、各シリンダに設けられた点火プラグ(図示し
てない)によるスパークにより燃焼し、この燃焼は運動
エネルギに変換される。
The air-fuel mixture taken in from the intake valve 20 is compressed by the piston 50 and combusted by a spark from a spark plug (not shown) provided in each cylinder, and this combustion is converted into kinetic energy.

シリンダ8は冷却水54により冷却される。この冷却水
の温度は水温センサ56により計測され、この計測値T
Wはエンジン温度として利用される。
The cylinder 8 is cooled by cooling water 54. The temperature of this cooling water is measured by a water temperature sensor 56, and this measured value T
W is used as engine temperature.

各シリンダの排気管の集合部10には、吸入混合気の空
燃比A/ F (Air Fuel Ratio)に基
づいたまたは比例した信号を出力する空燃比センサ(排
気ガスセンサ)が取付けられている。
An air-fuel ratio sensor (exhaust gas sensor) that outputs a signal based on or proportional to the air-fuel ratio A/F (Air Fuel Ratio) of the intake air-fuel mixture is attached to the collecting part 10 of the exhaust pipe of each cylinder.

ま′た、図示しないクランク軸にはエンジンの回転に応
じて各シリンダの工程である基準クランク角度毎に基準
角信号を発生し、さらに一定角度(例えば0.5度)毎
にポジション信号を出力するクランク角センサが設けら
れている。
In addition, a reference angle signal is generated on the crankshaft (not shown) at each reference crank angle, which is the process of each cylinder, according to the rotation of the engine, and a position signal is also output at each fixed angle (for example, 0.5 degrees). A crank angle sensor is provided.

このクランク角センサの出力、水温センサ56の出力信
号TW、排気ガスセンサ142の出力信号及びエアフロ
ーセンサからの電気信号AFはマイクロコンピュータか
らなる制御回路60に入り。
The output of the crank angle sensor, the output signal TW of the water temperature sensor 56, the output signal of the exhaust gas sensor 142, and the electric signal AF from the air flow sensor enter a control circuit 60 consisting of a microcomputer.

インジェクタ12や点火回路62を制御する入力となる
It serves as an input to control the injector 12 and ignition circuit 62.

さらに、スロットルチャンバ4には絞り弁14を跨いで
吸気管6に連通ずるバイパス26が設けられ、このバイ
パス26には開閉制御されるバイパスバルブ61が設け
られている。
Further, the throttle chamber 4 is provided with a bypass 26 that communicates with the intake pipe 6 across the throttle valve 14, and this bypass 26 is provided with a bypass valve 61 that is controlled to open and close.

このバイパスバルブ61はパルス電流によって開閉制御
され、そのリフト量によりバイパス26の断面積が制御
され、バイパス26を介してシリンダへ供給される空気
量が制御される。
This bypass valve 61 is controlled to open and close by a pulse current, and its lift amount controls the cross-sectional area of the bypass 26, thereby controlling the amount of air supplied to the cylinder via the bypass 26.

EGR制御制御0に排気管10と吸入管6との間の通路
を制御し、排気管10から吸入管6へのEGR量を制御
する。
EGR control Control 0 controls the passage between the exhaust pipe 10 and the suction pipe 6, and controls the amount of EGR from the exhaust pipe 10 to the suction pipe 6.

第3図はマイコンを用いた制御システムの全体構成図で
、セントラル・プロセッシング・ユニット102(以下
CPUと記す)とリード・オンリ・メモリ104(以下
ROMと記す)とランダム・アクセス・メモリ106(
以下RAMと記す)と入出力回路108は制御回路60
を構成する。
FIG. 3 is an overall configuration diagram of a control system using a microcomputer, which includes a central processing unit 102 (hereinafter referred to as CPU), a read-only memory 104 (hereinafter referred to as ROM), and a random access memory 106 (hereinafter referred to as ROM).
(hereinafter referred to as RAM) and the input/output circuit 108 are the control circuit 60
Configure.

上記CPU102はROM104内に記憶された各種の
プログラムにより、入出力回路108からの入力データ
に基づき制御値を演算し、その演算結果を再び入出力回
路108へ戻す。これらの演算に必要な中間的な記憶は
RAM106を使用する。CPU102. ROM10
4゜RAM106 、入出力回路108間の各種データ
のやり取りはデータ・バスとコントロール・バスとアド
レス・バスからなるパスライン110によって行なわれ
る。
The CPU 102 calculates a control value based on input data from the input/output circuit 108 using various programs stored in the ROM 104, and returns the calculation result to the input/output circuit 108 again. RAM 106 is used for intermediate storage necessary for these operations. CPU102. ROM10
Exchange of various data between the 4° RAM 106 and the input/output circuit 108 is performed by a path line 110 consisting of a data bus, a control bus, and an address bus.

入出力回路108には第1のアナログ・ディジタル・コ
ンバータ122(以下ADC1と記す)と第2のアナロ
グ・ディジタル・コンバータ124(以下ADC2と記
す)と角度信号処理回路126と1ビツト情報を入出力
する為のディスクリート入出力回路128(以下DIO
と記す)との入力手段を持つ。
The input/output circuit 108 inputs and outputs 1-bit information to a first analog-digital converter 122 (hereinafter referred to as ADC1), a second analog-digital converter 124 (hereinafter referred to as ADC2), and an angle signal processing circuit 126. Discrete input/output circuit 128 (hereinafter referred to as DIO) for
).

ADClにはバッテリ電圧検出センサ132(以下VB
Sと記す)と冷却水温センサ56(以下TWSと記す)
と空燃比センサ142(以下A/FSと記す)とスロッ
トルセンサ14o(以下0TH8と記す)との出力がマ
ルチ・プレクサ162(以下MPXと記す)に加えられ
、MPX162により、この内の1つを選択してアナロ
グ・ディジタル・変換回路164(以下ADCと記す)
へ入力する。ADC164の出力であるディジタル値は
レジスタ166(以下REGと記す)に保持される。
ADCl has a battery voltage detection sensor 132 (hereinafter referred to as VB
(hereinafter referred to as TWS) and cooling water temperature sensor 56 (hereinafter referred to as TWS)
The outputs of the air-fuel ratio sensor 142 (hereinafter referred to as A/FS) and the throttle sensor 14o (hereinafter referred to as 0TH8) are applied to the multiplexer 162 (hereinafter referred to as MPX), and the MPX 162 selects one of them. Select analog/digital conversion circuit 164 (hereinafter referred to as ADC)
Enter. The digital value that is the output of the ADC 164 is held in a register 166 (hereinafter referred to as REG).

またエアフローセンサ24(以下AFSと記す)はAD
C2・124へ入力され、アナログ・ディジタルコンバ
ータADC2・124変換回路172(以下ADCと記
す)を介してディジタル変換されレジスタ174(以下
REGと記す)へセットされる。
In addition, the air flow sensor 24 (hereinafter referred to as AFS) is
The signal is input to C2.124, is digitally converted via an analog-to-digital converter ADC2.124 conversion circuit 172 (hereinafter referred to as ADC), and is set in a register 174 (hereinafter referred to as REG).

角度センサ146(以下ANGLSと記す)からは基準
クランク角、例えば180@クランク角(4気筒の場合
)を示す信号(以下REFと記す)と微少角、例えば0
.5度クランク角を示す信号(以下PO8と記す)とが
出力され、角度信号処理回路126へ加えられ、ここで
波形整形される。
The angle sensor 146 (hereinafter referred to as ANGLS) outputs a signal (hereinafter referred to as REF) indicating a reference crank angle, for example 180 @ crank angle (in the case of 4 cylinders), and a minute angle, for example 0.
.. A signal indicating a 5-degree crank angle (hereinafter referred to as PO8) is output and applied to the angle signal processing circuit 126, where it is waveform-shaped.

DIO(128)には絞り弁14が全閉位置に戻ってい
るときに動作するアイドル・スイッチ148(以下ID
LE−3Wと記す)とトップ・ギア・スイッチ150(
以下TOP−8Wと記す)とスタータ・スイッチ152
(以下5TART−5Wと記す)とが入力される。
DIO (128) has an idle switch 148 (hereinafter referred to as ID) that operates when the throttle valve 14 has returned to the fully closed position.
LE-3W) and top gear switch 150 (denoted as LE-3W)
(hereinafter referred to as TOP-8W) and starter switch 152
(hereinafter referred to as 5TART-5W) is input.

次にCPUの演算結果に基づくパルス出力回路及び制御
対象について説明する。インジェクタ制御回路1134
(以下INJCと記す)は演算結果のディジタル値Ti
をパルス出力に変換する回路である。従って燃料噴射量
に相当したパルス幅を有するパルスINJがINJC1
134で作られ、ANDゲート1136を介してインジ
ェクタ12へ印加される。
Next, a pulse output circuit and a controlled object based on the calculation results of the CPU will be explained. Injector control circuit 1134
(hereinafter referred to as INJC) is the digital value Ti of the calculation result
This is a circuit that converts the output into pulse output. Therefore, the pulse INJ having a pulse width corresponding to the fuel injection amount is INJC1
134 and applied to the injector 12 via an AND gate 1136.

点火パルス発生回路1138 (以下IGNCと記す)
は点火時期を示すディジタル信号をセットするレジスタ
(以下ADVと記す)と点火コイルの一次電流通電開始
時間をセットするレジスタ(以下DWLと記す)を有し
、CPUよりこれらデータがセットされる。セットされ
たデータに基づいてパルスIGNが作られ、点火コイル
に一次電流を供給するための点火回路62へANDゲー
ト1140を介してこのパルスIGNが加えられる。
Ignition pulse generation circuit 1138 (hereinafter referred to as IGNC)
has a register (hereinafter referred to as ADV) for setting a digital signal indicating the ignition timing and a register (hereinafter referred to as DWL) for setting the primary current energization start time of the ignition coil, and these data are set by the CPU. A pulse IGN is generated based on the set data and is applied via an AND gate 1140 to the ignition circuit 62 for supplying the primary current to the ignition coil.

バイパスバルブ61の開弁率は制御回路(以下l5CC
と記す)1142からANDゲート1144を介して加
えられるパルスISOによって制御される。 l5CC
1142はパルス幅をセットするレジスタl5CDとパ
ルス周期をセットするレジスタl5CPとを持っている
The opening rate of the bypass valve 61 is controlled by the control circuit (hereinafter referred to as 15CC).
) 1142 through an AND gate 1144. l5CC
1142 has a register l5CD for setting the pulse width and a register l5CP for setting the pulse period.

EGR制御弁90を制御するEGR量制御パルス発生回
路1178 (以下EGRCと記す)にはパルスのデユ
ーティを表わす値をセットするレジスタEG’RDとパ
ルスの周期を表わす値をセットするレジスタEGRPと
を有している。このEGRCの出力パルスEGRはAN
Dゲート1156を介してトランジスタ90に加えられ
る。
The EGR amount control pulse generation circuit 1178 (hereinafter referred to as EGRC) that controls the EGR control valve 90 has a register EG'RD for setting a value representing a pulse duty and a register EGRP for setting a value representing a pulse period. are doing. This EGRC output pulse EGR is AN
is applied to transistor 90 via D-gate 1156.

また、1ビツトの入出力信号は回路DIO(128)に
より制御される。入力信号としてはIDLE−3W信号
、5TART−3W信号。
Further, the 1-bit input/output signal is controlled by the circuit DIO (128). Input signals are IDLE-3W signal and 5TART-3W signal.

TOP−3W信号がある。また、出力信号としては燃料
ポンプを開動するためのパルス出方信号がある。このD
IOは端子を入力端子として使用するかを決定するため
のレジスタDDR192と、出力データをラッチするた
めのレジスタDOUT194とが設けられている。
There is a TOP-3W signal. Further, the output signal includes a pulse output signal for opening the fuel pump. This D
The IO is provided with a register DDR192 for determining whether a terminal is used as an input terminal, and a register DOUT194 for latching output data.

モードレジスタ1160は入出力回路108内部の色々
な状態を指令する命令を保持するレジスタ(以下MOD
と記す)であり、例えばこのモードレジスタ1160に
命令をセットすることによりANDゲート1136,1
140,1144.   。
The mode register 1160 is a register (hereinafter referred to as MOD) that holds instructions for commanding various states inside the input/output circuit 108.
For example, by setting an instruction in this mode register 1160, the AND gates 1136, 1
140,1144. .

1156を総て動作状態にさせたり、不動作状態にさせ
たりする。このようにMODレジスタ1160に命令を
セットすることにより、INJCやIGNC。
All 1156 are activated or deactivated. By setting the command in the MOD register 1160 in this way, INJC and IGNC.

rsccの出力の停止や起動を制御できる。You can control the stop and start of rscc output.

DIO(128)にはフューエル・ポンプ32を制御す
るための信号DIOIが出力される。
A signal DIOI for controlling the fuel pump 32 is output to DIO (128).

従って、このようなEECを適用すれば、空燃比の制御
など内燃機関に関するほとんど全ての制御を適切に行な
うことができ、自動車用として厳しい排ガス規制も充分
にクリア可能である。
Therefore, if such EEC is applied, almost all controls related to the internal combustion engine, such as air-fuel ratio control, can be appropriately performed, and the strict exhaust gas regulations for automobiles can be fully satisfied.

第2図及び第3図で示したEECでは、インジェクタ1
2による燃料の噴射がエンジンの回転に同期して行なわ
れ、燃料噴射量の制御は、1回の噴射動作におけるイン
ジェクタ12の開弁時間、つまり燃料噴射時間Tiの制
御によって行なわれる。
In the EEC shown in FIGS. 2 and 3, injector 1
The fuel injection according to No. 2 is performed in synchronization with the rotation of the engine, and the fuel injection amount is controlled by controlling the valve opening time of the injector 12 in one injection operation, that is, the fuel injection time Ti.

そこで、本発明の実施例では、この燃料噴射時間Tiを
次のように定めている。
Therefore, in the embodiment of the present invention, this fuel injection time Ti is determined as follows.

T*”Krert” TR(1+β)−COEF+TS
・・・(1) TP=に−QA/N          ・・・(2)
K vex : 1 /λ            ・
・・(3)ここで、k:インジェクタによって決まる係
数QA:吸入空気流量 N:エンジン回転速度 TP:基本燃料噴射時間 β:操作量 C0EF:各種補正係数の和 TS:バッテリ電圧補正時間 λ:空気過剰係数 xrel:設定空燃比係数 即ち、吸入空気量QAとエンジン回転速度Nから(2)
式により基本燃料噴射時間TPを演算し、設定空燃比係
数xrezを掛けて、はぼ目標空燃比となるような燃料
噴射時間にして、最終的には、排気ガスセンサによるフ
ィードバック操作量βにより修正して燃料噴射時間Ti
 を求める。操作量βの演算は、エンジンのむだ時間や
時定数及びサンプリング周期を考慮すると、エンジン回
転毎の回転同期で行なうことが良い、この操作量βを差
分方程式で表現すると次式となる。
T*”Krert” TR(1+β)-COEF+TS
...(1) TP=to-QA/N ...(2)
K vex: 1/λ・
...(3) Here, k: Coefficient determined by the injector QA: Intake air flow rate N: Engine speed TP: Basic fuel injection time β: Manipulated amount C0EF: Sum of various correction coefficients TS: Battery voltage correction time λ: Air Excess coefficient xrel: Set air-fuel ratio coefficient, that is, from intake air amount QA and engine rotation speed N (2)
The basic fuel injection time TP is calculated using the formula, multiplied by the set air-fuel ratio coefficient fuel injection time Ti
seek. Considering the dead time, time constant, and sampling period of the engine, it is preferable to calculate the manipulated variable β in synchronization with each engine rotation. Expressing the manipulated variable β using a difference equation, the following equation is obtained.

β= K P−e n+ΣKI−en +KD(an 
−en −1)・・・(4) ここでKPは比例ゲイン、KIは積分ゲイン。
β=K P-e n+ΣKI-en +KD(an
-en -1)...(4) Here, KP is proportional gain and KI is integral gain.

KDは微分ゲインg enは今回の偏差g en  1
は前回の偏差である。また上記第4式でKP・enは比
例項βP、ΣKI−enは積分項βi。
KD is the differential gain g en is the current deviation g en 1
is the previous deviation. Furthermore, in the fourth equation above, KP·en is a proportional term βP, and ΣKI−en is an integral term βi.

K D (e n  e n  1 )は微分項βdで
ある。
K D (e n e n 1 ) is the differential term βd.

本実施例では操作量βを基準として、センサやアクチュ
エータなどにおける特性のばらつきや経時変化の補償や
加速、減速などの運転性、エミッションの改善を学習制
御で行なうものである。
In this embodiment, using the manipulated variable β as a reference, learning control is performed to compensate for variations in characteristics of sensors, actuators, etc. and changes over time, and to improve driveability such as acceleration and deceleration, and emissions.

操作量βの大きな変動は、定常的には、演算時のオーバ
フローや設定空燃比の変更による空燃比の変動になり、
過渡的には、燃料の輸送遅れにより空燃比の変動になる
On a regular basis, large fluctuations in the manipulated variable β result in fluctuations in the air-fuel ratio due to overflow during calculation or changes in the set air-fuel ratio.
In a transient manner, the air-fuel ratio fluctuates due to fuel transport delays.

まず、センサ・アクチュエータなどの特性のばらつきや
経時変化を補償する定常学習について説明する。排気ガ
スセンサ(A/Fセンサ)142は排ガス中の酸素濃度
に比例した出力を発生する。
First, we will explain steady-state learning that compensates for variations in characteristics of sensors, actuators, etc. and changes over time. The exhaust gas sensor (A/F sensor) 142 generates an output proportional to the oxygen concentration in the exhaust gas.

この排気ガスセンサが示す空燃比と目標空燃比の偏差e
nにより(4)式で操作量βを演算し、(1)式で燃料
噴射時間Tiを計算して必要な燃料量をシリンダに入れ
、目標空燃比になるようにフィードバック制御する。こ
の操作量βで積分項の関係する操作量βiの動きを第4
図に示す、ここで、操作量βiが上限値(U、L)を越
えているか、又は下限値(L、L)より下にあるときに
、零からの偏差βCを定常学習量とする。この定常学習
量βCの演算は排気ガスセンサ142によるフィードバ
ック制御を行なう全領域で実施する。ここで、第5図に
定常学習量βCを書き込むテーブルを示す。このテーブ
ルは基本燃料噴射時間TPとエンジン回転速度Nとで決
まる分−割烹にβCを書き込むようにしている。この学
習のタイミングは、分割点が変らないときで、操作量β
iが上・下限値の範囲外にあるときに行なう、ここでは
、上・下限値を設けているが、上・下限値をなくしても
、学習はできる。この場合、操作量βiが上・下限値を
越えるかどうかにまったく無関係に目標値(ここではゼ
ロ)との偏差βCで第5図のテーブルを書き替えること
になる。第5図に示すような分割領域毎に学習を行なう
が、定常学習マツプの全領域にわたって学習されるには
非常に長い時間が必要である。このため、未学習の分割
領域は学習している領域を参考にして作成する必要があ
る。
Deviation e between the air-fuel ratio indicated by this exhaust gas sensor and the target air-fuel ratio
The manipulated variable β is calculated using equation (4) based on n, and the fuel injection time Ti is calculated using equation (1), the necessary amount of fuel is put into the cylinder, and feedback control is performed so that the target air-fuel ratio is achieved. With this manipulated variable β, the movement of the manipulated variable βi related to the integral term can be expressed as
As shown in the figure, when the manipulated variable βi exceeds the upper limit value (U, L) or is below the lower limit value (L, L), the deviation βC from zero is defined as the steady learning amount. This calculation of the steady learning amount βC is performed in all regions where feedback control by the exhaust gas sensor 142 is performed. Here, FIG. 5 shows a table in which the steady learning amount βC is written. In this table, βC is written in the interval determined by the basic fuel injection time TP and the engine rotational speed N. The timing of this learning is when the dividing point does not change and the operation amount β
This is performed when i is outside the range of the upper and lower limits. Here, upper and lower limits are provided, but learning can be performed even if the upper and lower limits are eliminated. In this case, the table in FIG. 5 is rewritten with the deviation βC from the target value (zero here), regardless of whether the manipulated variable βi exceeds the upper or lower limit values. Although learning is performed for each divided area as shown in FIG. 5, it takes a very long time to learn over the entire area of the steady learning map. Therefore, it is necessary to create unlearned divided regions with reference to the learned region.

この作成法について説明する。This creation method will be explained.

第6図に定常学習マツプ作成のために、定常学習マツプ
の分割領域と同じ領域数を持つバツファマツプと比較マ
ツプの構成を示す。
FIG. 6 shows the configuration of a buffer map and a comparison map having the same number of regions as the divided regions of the steady learning map for creating the steady learning map.

第7図に学習マツプ作成ルーチンをブロック図で示す。FIG. 7 shows a block diagram of the learning map creation routine.

(1)式では、定常学習マツプと比較マツプは全てクリ
ヤされており、バッファマツプに学習量を書き込んで行
く。但し、この時点では、バッファマツプに二重書き込
みはしない。(2)でバッファマツプの書き込み個数が
C個になったら、バッファマツプの内容を比較マツプに
転送し、(3)でバッファマツプに書き込んであるC個
の内容を参考にして、バッファマツプの未学習の領域を
作成し、その内容を学習マツプに転送する。
In equation (1), the steady learning map and comparison map are all cleared, and the learning amount is written to the buffer map. However, at this point, double writing to the buffer map is not performed. When the number of writes to the buffer map reaches C in (2), transfer the contents of the buffer map to the comparison map, and refer to the C contents written to the buffer map in (3) to Create a learning area and transfer its contents to the learning map.

(4)では比較マツプの内容をバッファマツプに再転送
する。この時点から、燃料噴射時間の計算に定常学習マ
ツプの学習量βCの値を使用する。(5)以降では、学
習値を定常学習マツプとバッファマツプの両方に書き込
み、バッファマツプと比較マツプの内容を比較する。こ
の比較した内容の違いが、ある個数になると、(6)〜
(8)において、(2)〜(4)と同様な作業内容を行
なう、ここで、Cはたとえば1であり、1の場合は特殊
な学習値もありうるので、学習値βCの半分の値を学習
値とするような重味付けを行う。又、Cが2の場合は、
学習値βCの3/4の値を学習値とする。Cが3以上の
場合は学習値βCそのものを学習値とする。
In (4), the contents of the comparison map are retransferred to the buffer map. From this point on, the value of the learning amount βC of the steady learning map is used to calculate the fuel injection time. From (5) onwards, the learned values are written into both the steady learning map and the buffer map, and the contents of the buffer map and comparison map are compared. When the difference in the compared contents reaches a certain number, (6) ~
In (8), perform the same work as in (2) to (4). Here, C is, for example, 1, and in the case of 1, there may be a special learning value, so the value is half of the learning value βC. Weighting is performed such that the learning value is set as the learning value. Also, if C is 2,
Let the value of 3/4 of the learning value βC be the learning value. When C is 3 or more, the learned value βC itself is used as the learned value.

ここでは、定常学習マツプ、バッファマツプ及び比較マ
ツプで説明しているが、定常学習マツプだけで1分割点
を荒くして、常に学習するようにしてもよい。
Here, explanation is given using a steady learning map, a buffer map, and a comparison map, but it is also possible to use only a steady learning map and make the division points coarser so that constant learning is performed.

次に、定常学習係数(学習量)βCの学習ルーチンの一
実施例を第8図によって説明する。このフローチャート
にしたがった処理はエンジン始動後、ステップ300か
らステップ338まで、所定の周期で繰り返される。ま
ず、ステップ302で空燃比フィードバック制御が入っ
ているか否かを判定し、結果がYesの場合はステップ
304に進む。結果がNoの場合はステップ338に進
む。
Next, an example of a learning routine for the steady learning coefficient (learning amount) βC will be described with reference to FIG. The process according to this flowchart is repeated at a predetermined cycle from step 300 to step 338 after the engine is started. First, in step 302, it is determined whether air-fuel ratio feedback control is on, and if the result is Yes, the process proceeds to step 304. If the result is No, proceed to step 338.

ステップ304では、操作量βiのチエツクを行ない、
上・下限値の範囲外であれば、ステップ306に進み、
範囲内であればステップ336に進む。ステップ306
では学習値βCの演算を行う。すなわち、操作量βiは
符号材の操作量であるので、操作量βiそのものが定常
学習βCとなる。
In step 304, the manipulated variable βi is checked,
If it is outside the range of the upper and lower limit values, proceed to step 306,
If it is within the range, the process advances to step 336. Step 306
Now, the learning value βC is calculated. That is, since the manipulated variable βi is the manipulated variable of the code material, the manipulated variable βi itself becomes the steady learning βC.

ステップ316では、第5図に示すエンジン回転数の回
転軸と燃料噴射時間の負荷軸より学習マツプの分割点を
計算する。ステップ318では、−周期前に計算した分
割点と今回の分割点が変化しているかどうかを見る0分
割点が変化していない場合は、ステップ320でカウン
タをインクリメントする。ステップ322では、カウン
タがnになったらステップ324で、バッファマツプの
分割点の値をβCに加算し、リミッタチエツクする。ス
テップ326で学習マツプを作成中ならステップ336
に進む0作成中でないなら、ステップ328で最初の学
習マツプ作成が完了のチエツクを行なう、完了していれ
ば、ステップ330で学習マツプに学習値βCを格納し
、積分項を零にする。これにより、第4図に示す操作量
βiの動きは零付近で動くことになる。最初の学習マツ
プ作成が完了していないならば、ステップ332でバッ
ファマツプの分割領域は既に学習しているなら、二重書
き込みしないで、ステップ336に進む、学習していな
いなら、ステップ334でバッファマツプに学習値βC
を格納し、ステップ334でカウンタをクリアする。
In step 316, division points of the learning map are calculated from the rotation axis of the engine speed and the load axis of the fuel injection time shown in FIG. In step 318, it is checked whether the current dividing point has changed from the dividing point calculated -period ago. If the 0 dividing point has not changed, the counter is incremented in step 320. In step 322, when the counter reaches n, in step 324, the value of the dividing point of the buffer map is added to βC, and the limiter is checked. If the learning map is being created in step 326, step 336
If 0 is not being created, a check is made in step 328 to see if the first learning map creation is complete. If it is completed, the learning value βC is stored in the learning map in step 330, and the integral term is set to zero. As a result, the operation amount βi shown in FIG. 4 moves around zero. If the creation of the first learning map has not been completed, step 332 indicates that the divided areas of the buffer map have already been learned, do not double write and proceed to step 336; if not, step 334 Learning value βC on map
is stored, and the counter is cleared in step 334.

このようにして、ガソリンエンジンなどにおける燃料制
御方式において、特に燃料制御系のセンサ、アクチュエ
ータなどの特性のばらつきや経年変化に対して、特別な
調整を要せず、常に最適な空燃比にすることができる。
In this way, in the fuel control system for gasoline engines, etc., it is possible to always maintain the optimal air-fuel ratio without the need for special adjustments, especially in response to variations in the characteristics of fuel control system sensors, actuators, etc. and changes over time. Can be done.

次に、第7図で説明した学習マツプの作成ルーチンを第
9図のフローチャートによって説明する。
Next, the learning map creation routine explained in FIG. 7 will be explained with reference to the flowchart in FIG.

ステップ350で、最初の学習マツプを作成したか否か
を判定する。作成がまだなら、ステップ354に進み、
バッファマツプの書き込み個数のチエツクを行う。学習
個数が1〜3個に応じて、重味付けをしてステップ35
6に進むが、学習をしていないなら、ステップ370に
向う、ステップ350で最初の学習マツプを作成したな
ら、ステップ352でバッファマツプと比較マツプのデ
−タの違いをチエツクする。バッファマツプと比較マツ
プでその内容にQ個の違いがあるなら、ステップ356
に進み、定常学習マツプの作成を行なう。その内容にQ
個の違いがないなら、ステップ370に向う。
At step 350, it is determined whether the first learning map has been created. If it has not yet been created, proceed to step 354;
Check the number of buffer map writes. Add weight according to the number of learning items from 1 to 3 and proceed to step 35.
6, but if no learning is being performed, the process proceeds to step 370. If the first learning map is created in step 350, the difference in data between the buffer map and the comparison map is checked in step 352. If there are Q differences in content between the buffer map and the comparison map, step 356
Proceed to step 2 and create a steady learning map. Q about the content
If there is no difference, proceed to step 370.

ステップ356で、マツプ作成中のフラグをセットし、
学習結果の書き込みを禁止する。ステップ358で、バ
ッファマツプの内容を比較マツプに転送し、ステップ3
60で、バッファマツプを使用して、定常学習マツプの
作成を行う。ステップ362で1作成したバッファマツ
プの内容を学習マツプに転送し、ステップ364で、比
較マツプの内容とバッファマツプに転送する。ステップ
366で学習マツプを作成したというフラグをセットす
る。このフラグは、ステップ350での判定に使用する
。ステップ368では、ステップ356でセットした。
At step 356, a map creation flag is set;
Prohibit writing learning results. In step 358, the contents of the buffer map are transferred to the comparison map, and step 3
At 60, a steady learning map is created using the buffer map. In step 362, the contents of the created buffer map are transferred to the learning map, and in step 364, the contents of the comparison map and the buffer map are transferred to the learning map. At step 366, a flag indicating that the learning map has been created is set. This flag is used for the determination in step 350. In step 368, the settings were made in step 356.

マツプ作成中フラグをリセットする。Reset the map creation flag.

次に、過渡状態における基本燃料噴射時間tpと比例項
に関係する操作量βpの関係を第10図に示す。
Next, FIG. 10 shows the relationship between the basic fuel injection time tp and the manipulated variable βp related to the proportional term in a transient state.

過渡状態の変化は、第10(1)図に示す如く基本燃料
噴射時間tpの時間当りの変化量Δ’rpで知ることが
できる。このΔTpが増加方向にある加速期間及び減少
方向の減速期間では第10(2)図に示す如く操作量β
pが極値aやbを示す、これらの極値a、bが上限値(
K、U、L)を超えたり、下限値(K、L、L)以下の
とき、加速学習量βaや減速学習量βdとする。
Changes in the transient state can be determined by the amount of change Δ'rp in the basic fuel injection time tp, as shown in FIG. 10(1). During the acceleration period when this ΔTp is increasing and the deceleration period when it is decreasing, the manipulated variable β
p indicates the extreme values a and b, and these extreme values a and b are the upper limit values (
K, U, L) or below the lower limit (K, L, L), the acceleration learning amount βa or deceleration learning amount βd is set.

第11図と第12図に、加速学習マツプと減速学習マツ
プを示す、これらのマツプは、基本燃料噴射時間の変化
ΔTpとエンジン回転数Nからなるマツプであり、加速
及び減速期間の時間当たりの最大変化量ΔTpを検出し
た時点のエンジン回転数Nから分割点を計算し、その後
の極値における学習値βaやβdをそれぞれのマツプに
書き込む。
Figures 11 and 12 show an acceleration learning map and a deceleration learning map. These maps are made up of the basic fuel injection time change ΔTp and the engine rotational speed N, and the acceleration and deceleration period per hour. A dividing point is calculated from the engine speed N at the time when the maximum change amount ΔTp is detected, and learned values βa and βd at subsequent extreme values are written in each map.

第1図に過渡学習の一実施例をフローチャートで説明す
る。
FIG. 1 describes an example of transient learning using a flowchart.

ステップ400で、学習マツプは使用許可状態にあるか
否かも調べ、使用禁止ならステップ424へ向う、使用
許可状態ならステップ402に進み。
In step 400, it is also checked whether the learning map is allowed to be used, and if the use is prohibited, the process proceeds to step 424, and if the use is allowed, the process proceeds to step 402.

空燃比フィードバック制御のチエツクを行ない、制御中
ならステップ404へ、制御中でないならステップ42
4に進む、ステップ404では、加速又は減速学習マツ
プの作成中かどうかを調べ、作成中ならステップ424
へ、作成中でないなら、ステップ406に進む、ステッ
プ406では、加速又は減速状態のチエツクを行い、加
減速状態ならステップ408に進む、加減速状態でない
ならステップ424に進む、ここで、加減速の判定は基
本燃料噴射時間の変化Δtpが所定値と比較して行う、
ステップ408では、操作量βは第10図に示す上・下
限値(KUL、KLL)内にあるか否かを判定する。上
・下限値内にあれば、ステップ424に向う、結果がN
Oであればステップ410に進む、ステップ410では
、操作量βpを過渡学習量とする。
Check the air-fuel ratio feedback control, and if it is under control, go to step 404; if not, go to step 42
4. In step 404, it is checked whether an acceleration or deceleration learning map is being created, and if it is being created, step 424 is performed.
If it is not being created, proceed to step 406. In step 406, the acceleration or deceleration state is checked. If the acceleration or deceleration is in progress, proceed to step 408. If the acceleration or deceleration is not in progress, proceed to step 424. Here, the acceleration or deceleration state is checked. The determination is made by comparing the change Δtp in the basic fuel injection time with a predetermined value.
In step 408, it is determined whether the manipulated variable β is within upper and lower limit values (KUL, KLL) shown in FIG. If it is within the upper and lower limits, proceed to step 424 and the result is N.
If O, the process proceeds to step 410. In step 410, the manipulated variable βp is set as the transient learning amount.

ステップ416では、加減速を検出した時点のエンジン
回転数Nとその時の基本燃料噴射時間の変化ΔTpより
分割点を計算する。ステップ418では、加減速を検出
した時点が加速か減速かの判定を行い、加速ならステッ
プ420で、加速学習マツプに加速学習値βpを加算し
、減速ならステップ422で、減速学習マツプに減速学
習値βdを加算する。
In step 416, a dividing point is calculated from the engine rotational speed N at the time when acceleration/deceleration is detected and the change ΔTp in the basic fuel injection time at that time. In step 418, it is determined whether the detected acceleration or deceleration is acceleration or deceleration. If acceleration, the acceleration learning value βp is added to the acceleration learning map in step 420, and if it is deceleration, the deceleration learning value βp is added to the deceleration learning map in step 422. Add the value βd.

ここでは、過渡学習マツプは加速及び減速学習マツプを
それぞれ1個で説明しているが、負荷の大きさによって
、2〜3個のマツプを持つことにより、より精密な空燃
比制御が可能となる。
Here, the transient learning map is explained as one acceleration learning map and one deceleration learning map, but depending on the size of the load, having two to three maps allows for more precise air-fuel ratio control. .

上記の定常学習及び過渡学習を入れた。燃料噴射時間T
iは(1)式より次のようになる。
The above steady learning and transient learning were included. Fuel injection time T
From equation (1), i is as follows.

T i =KrecT P (1+β+βC+βdyn
)COEF+TS・・・(4) ここで、βC:定常学習値 βdyn :過渡学習値 過渡学習値βdynは加速学習値βa又は減速学習値β
dのどちらかを使うことになるが、エンジンの定常運転
状態では定常学習値βCのみを使う。
T i =KrecT P (1+β+βC+βdyn
) COEF+TS...(4) Here, βC: Steady learning value βdyn: Transient learning value Transient learning value βdyn is acceleration learning value βa or deceleration learning value β
d, but only the steady learning value βC is used in the steady operating state of the engine.

本実施例では、学習量は符号材の操作量そのものとした
が、ある限界値との差としても、何ら学習効果には変り
がない。
In this embodiment, the learning amount is the manipulation amount of the code material itself, but even if it is a difference from a certain limit value, the learning effect will not change in any way.

次に本発明の他の実施例を図を用いて説明する。Next, another embodiment of the present invention will be described using the drawings.

先に説明第1式から第3式で燃料供給量が演算される。First, the fuel supply amount is calculated using the first to third equations.

この第1式から第3式において空燃比センサを使用した
自動車のフィードバック制御においても、比例・積分・
微分動作で精密な空燃比制御が行なうことが望ましい、
そこで、マイクロコンピュータを使った操作量βの演算
は、エンジンのむだ時間や時定数及びサンプリング周期
を考慮すると、エンジン回転に同期して行なうことがよ
い。
In equations 1 to 3, proportional, integral,
It is desirable to perform precise air-fuel ratio control using differential operation.
Therefore, in consideration of the dead time, time constant, and sampling period of the engine, it is preferable to calculate the manipulated variable β using a microcomputer in synchronization with the engine rotation.

この操作量βを差分方程式で表現すると次式となる。When this manipulated variable β is expressed by a difference equation, it becomes the following equation.

β=Kp−e+ΣKi−e+Kd・(e−1)−(4)
ここで、Kp:比例ゲイン Ki:積分ゲイン e:偏差 (e−1):現在の偏差の一時刻前の偏差に対する差分
値 本実施例は上記(4)式の比例・積分・微分制御(P 
I D制御)則を用いて燃料噴射時間Ti(燃料噴射量
)を制御する際、空燃比センサの出力を回転同期で各気
筒毎に空燃比を抽出して各気筒間の空燃比のばらつきを
考慮して燃料噴射を行ない、各気筒毎に空燃比を均一化
する。ここで、まず空燃比センサの特徴を示すため、第
13図にリニアな空燃比センサの特性図と空燃比変化に
対する出力特性図を示す。理論空燃比に対する空燃比の
比である空気過剰率に対してセンサの出力電圧は第13
図に示すように連続値として得られるため、リッチ、リ
ーンそして理論空燃比の各空燃比の微小変動に対してそ
れぞれセンサの出力電圧の変動が得られる。これに対し
て第14図に示す従来使用されている理論空燃比近傍で
デジタル的な出力特性を有する酸素センサの場合、空燃
比の微小変動に対して理論空燃比近傍では大きく出力電
圧が変わるが、リーン及びリッチ領域では出力特性が一
定であるため空燃比の変動は検出することはできない。
β=Kp-e+ΣKi-e+Kd・(e-1)-(4)
Here, Kp: proportional gain Ki: integral gain e: deviation (e-1): difference value of the current deviation with respect to the deviation one time before.
When controlling the fuel injection time Ti (fuel injection amount) using the ID control law, the air-fuel ratio is extracted for each cylinder in rotational synchronization with the output of the air-fuel ratio sensor to eliminate variations in the air-fuel ratio between each cylinder. Fuel injection is performed with this in mind, and the air-fuel ratio is made uniform for each cylinder. First, in order to show the characteristics of the air-fuel ratio sensor, FIG. 13 shows a characteristic diagram of a linear air-fuel ratio sensor and an output characteristic diagram with respect to changes in the air-fuel ratio. The output voltage of the sensor is the 13th with respect to the excess air ratio, which is the ratio of the air-fuel ratio to the stoichiometric air-fuel ratio.
As shown in the figure, since it is obtained as a continuous value, variations in the output voltage of the sensor can be obtained for each minute variation in the air-fuel ratio of rich, lean, and stoichiometric air-fuel ratios. On the other hand, in the case of the conventionally used oxygen sensor shown in Fig. 14, which has digital output characteristics near the stoichiometric air-fuel ratio, the output voltage changes greatly near the stoichiometric air-fuel ratio in response to minute fluctuations in the air-fuel ratio. Since the output characteristics are constant in the lean and rich regions, fluctuations in the air-fuel ratio cannot be detected.

以上の物理的特性によりリニアな空燃比センサを用いる
ことにより空燃比の変動を検出が可能となり、またセン
サの応答速度が早いため気筒毎の空燃比変化が検出でき
る。第16図に各気筒毎に空燃比の取り込みのチャート
を示し、第15図に信号処理のフローを示す0本実施例
では回転に同期して各気筒毎の空燃比を検出して各気筒
毎に燃料噴射制御を行なう。
Due to the above-mentioned physical characteristics, it is possible to detect fluctuations in the air-fuel ratio by using a linear air-fuel ratio sensor, and since the sensor has a fast response speed, it is possible to detect changes in the air-fuel ratio for each cylinder. Fig. 16 shows a chart for taking in the air-fuel ratio for each cylinder, and Fig. 15 shows the signal processing flow. In this embodiment, the air-fuel ratio of each cylinder is detected in synchronization with the rotation, and Performs fuel injection control.

第15図において回転同期のタスク500に入いると、
ステップ′510で回転同期で気筒別空燃比取り込みを
実施する1次にステップ512で過去最新の残りの気筒
の空燃比を使って全気筒平均空燃比を算出する。ステッ
プ514でこの全気筒平均空燃比を用いて比例・積分・
微分制御則の操作制御量を算出し、ステップ516で本
空燃比制御における基本操作制御量とする0次に次回燃
料噴射に対する気筒別空燃比補正係数をエンジン回転速
度Nとエンジン負荷Tp及び次回燃料噴射に対応する気
筒に対して検索する0次回の燃料噴射時間Tiはこれら
の処理で得られた係数を用いてステップ518で算出す
る0次にステップ520でエンジン運転状態の定常性を
判定する。定常性とはエンジンが加減速状態ではなく安
定して回転している状態である。定常であれば気筒別空
燃比補正係数の学習を行なう。この処理に先立ち、各気
筒別の空燃比の平均空燃比からの偏差をステップ522
で算出し、該平均空燃比からの偏差に基づく気筒別空燃
比補正係数をステップ524で算出し、定常状態にある
エンジン回転数Nと負荷’rpに対する気筒別空燃比補
正係数マツプをステップ526で更新し、次回の検索に
備える0以上の処理において気筒別空燃比の補正係数を
ステップ518で算出するまでが回転同期処理のなかで
行なわれ、それ以降のステップ520〜526までの処
理は他の優先度の低いタスクで行なってもよい。
When entering the rotation synchronization task 500 in FIG.
First, in step '510, the air-fuel ratios for each cylinder are captured in rotational synchronization.In step 512, the average air-fuel ratio of all cylinders is calculated using the latest air-fuel ratios of the remaining cylinders. In step 514, this all-cylinder average air-fuel ratio is used to calculate proportional, integral,
The operation control amount of the differential control law is calculated, and in step 516, the cylinder-specific air-fuel ratio correction coefficient for the 0th next fuel injection, which is set as the basic operation control amount in the main air-fuel ratio control, is calculated based on the engine rotation speed N, the engine load Tp, and the next fuel injection. The 0th fuel injection time Ti to be searched for the cylinder corresponding to the injection is calculated in step 518 using the coefficients obtained in these processes.Then, in step 520, the stationarity of the engine operating state is determined. Steady state is a state in which the engine is rotating stably, rather than in a state of acceleration or deceleration. If it is steady, the cylinder-specific air-fuel ratio correction coefficient is learned. Prior to this process, the deviation of the air-fuel ratio for each cylinder from the average air-fuel ratio is calculated in step 522.
In step 524, a cylinder-by-cylinder air-fuel ratio correction coefficient is calculated based on the deviation from the average air-fuel ratio, and in step 526, a cylinder-by-cylinder air-fuel ratio correction coefficient map is calculated for engine speed N and load 'rp in a steady state. Updating and calculating the correction coefficient for each cylinder air-fuel ratio in step 518 in the process of 0 or more in preparation for the next search is performed in the rotation synchronization process, and the subsequent processes from steps 520 to 526 are performed by other processes. This may be done with lower priority tasks.

第16図に気筒別空燃比取り込み及び各気筒の行程のタ
イムチャート図をしめす。ここでは4気筒の場合を例に
あげ説明する。第16図(イ)のREFは気筒信号であ
り、特にこの場合第1気筒の点火時期に対応した気筒信
号はパルス幅が広くしてあり、気筒判別信号として用い
ている。第1気筒及び他の気筒の行程は第16図(ハ)
、(ホ)。
FIG. 16 shows a time chart of the intake of air-fuel ratio by cylinder and the stroke of each cylinder. Here, the case of 4 cylinders will be explained as an example. REF in FIG. 16(a) is a cylinder signal, and in particular, in this case, the cylinder signal corresponding to the ignition timing of the first cylinder has a wide pulse width and is used as a cylinder discrimination signal. The strokes of the first cylinder and other cylinders are shown in Figure 16 (c).
, (ho).

(へ)、(ト)に示すようになっているので、排気集合
部に設置されたリニアな特性を持つ空燃比センサが検出
する排気ガスの対応気筒は(4)の如くになり、例えば
気筒判別信号の立ち上がりで空燃比を取り込んだ場合、
第4気筒の空燃比となる。
As shown in (f) and (g), the corresponding cylinders of the exhaust gas detected by the air-fuel ratio sensor with linear characteristics installed in the exhaust gas collecting section are as shown in (4). For example, the cylinder If the air-fuel ratio is taken in at the rising edge of the discrimination signal,
This is the air-fuel ratio of the fourth cylinder.

同様にして次の気筒信号の立ち上がりである(す)の信
号に同期して取込むとその取込まれた信号の気筒は第2
気筒、その次は第1気筒、第3気筒となる。また気筒判
別信号の立ち上がりの回転同期処理で算出される気筒別
補正係数は、第2気筒の燃料噴射に反映される。これら
の処理の順序を対応させて気筒別燃料噴射を行なうこと
により気筒別空燃比制御ができる。
Similarly, if the next cylinder signal is captured in synchronization with the rising edge of the signal (su), the cylinder of that captured signal will be the second cylinder.
cylinder, then the first cylinder, and then the third cylinder. Further, the cylinder-specific correction coefficient calculated by rotation synchronization processing at the rise of the cylinder discrimination signal is reflected in the fuel injection of the second cylinder. By performing fuel injection for each cylinder by matching the order of these processes, air-fuel ratio control for each cylinder can be performed.

第17図は上記タイミングチャート及び第15図は燃料
噴射量制御の概略フロー図をもとにした気筒別燃料噴射
量制御の詳細タイムチャート図である。回転同期のタス
ク500に入るとまずステップ532で気筒信号REF
のカウント値を入力する。ここで気筒判別立ち上がりの
際にこのカウント値は゛′0″リセットされる。つまり
1゛0”。
FIG. 17 is a detailed time chart of fuel injection amount control for each cylinder based on the above timing chart and FIG. 15 is a schematic flowchart of fuel injection amount control. When entering the rotation synchronization task 500, first in step 532 the cylinder signal REF is input.
Enter the count value. At the start of cylinder discrimination, this count value is reset to ``0'', that is, 1''0''.

“1”、′2”、3”の4つの値をとり、それぞれ第1
気筒、第3気筒、第4気筒、第2気筒の点火に対応する
識別番号である0次に、ステップ534で回転同期気筒
別空燃比の取り込みを行ない、取り込んだ空燃比の気筒
識別番号をステップ536で、算出し、記憶しておく。
It takes four values “1”, '2”, and 3”, and each
0, which is the identification number corresponding to the ignition of the cylinder, 3rd cylinder, 4th cylinder, and 2nd cylinder. Next, in step 534, the air-fuel ratio for each rotationally synchronized cylinder is captured, and the cylinder identification number of the captured air-fuel ratio is used in step 534. At 536, it is calculated and stored.

次に、それまでに取り込まれた各気筒の空燃比から全気
筒平均空燃比をステップ538で算出する。この全気筒
平均空燃比を使ってステップ540で基本操作制御量の
算出を行なう、この際、第4式で示した比例・積分・微
分制御則を使って基本操作制御量を計算する。更に次回
燃料噴射量の気筒別空燃比の補正係数をステップ542
で算出するが、先ず対象気筒の識別番号の算出を行ない
、その際のエンジン回転数Nと負荷’rp及び該気筒識
別番号により補正係数の検索を行ない、その結果をセッ
トしておく、上記で得られた該気筒別空燃比補正係数及
びステップ540で算出された基本操作制御量を使って
燃料噴射量算出を行なう。基本演算式は(1)式による
が、ここでは操作制御量を基本操作制御量と気筒別空燃
比補正係数の和を使うことを特徴としている。
Next, in step 538, the average air-fuel ratio of all cylinders is calculated from the air-fuel ratio of each cylinder taken in so far. Using this all-cylinder average air-fuel ratio, the basic operation control amount is calculated in step 540. At this time, the basic operation control amount is calculated using the proportional, integral, and differential control law shown in equation 4. Furthermore, the correction coefficient of the air-fuel ratio for each cylinder for the next fuel injection amount is determined in step 542.
First, calculate the identification number of the target cylinder, search for the correction coefficient using the engine rotation speed N, load 'rp, and the cylinder identification number, and set the result. The fuel injection amount is calculated using the obtained cylinder-by-cylinder air-fuel ratio correction coefficient and the basic operation control amount calculated in step 540. The basic calculation formula is based on equation (1), and the feature here is that the sum of the basic operation control amount and the air-fuel ratio correction coefficient for each cylinder is used as the operation control amount.

次に、気筒別空燃比補正係数の学習について以下述べる
。先ず定常性評価のために、過去M時点の平−均エンジ
ン回転数と負荷の各々の平均からの偏差が所定の値より
、小さい時定常とし、定常であった場合ステップ548
で、各気筒の定常範囲の気筒固有偏差をステップ550
で各気筒毎に算出する。これらの値を使って気筒別空燃
比補正係数マツプをステップ552で更新する。この際
前の気筒別空燃比補正係数の値に上記気筒固有偏差の定
数倍を加算して、新規の気筒別空燃比補正係数とする。
Next, learning of the air-fuel ratio correction coefficient for each cylinder will be described below. First, for stationarity evaluation, if the deviation from the average of the average engine speed and load at M points in the past is smaller than a predetermined value, it is assumed to be stationary, and if it is stationary, step 548
In step 550, the cylinder specific deviation in the steady range of each cylinder is calculated.
Calculate for each cylinder. Using these values, the cylinder-by-cylinder air-fuel ratio correction coefficient map is updated in step 552. At this time, a constant multiple of the cylinder-specific deviation is added to the previous value of the cylinder-specific air-fuel ratio correction coefficient to obtain a new cylinder-specific air-fuel ratio correction coefficient.

以上をもって本処理を完了する。以上の処理の結果の動
作のタイムチャートを第18図に示す、気筒判別信号の
立ち上がりで、読み込んだ第4気筒の空燃比は3つ先の
気筒信号の演算の際に使われ、更にその後気筒信号のタ
イミングで燃料が噴射されその次の吸入行程で第4気筒
に吸入される。第19図は気筒別空燃比補正係数マツプ
の構成を示したものであり、エンジン回転数と負荷はこ
の場合それぞれ8分割され、各運転領域の気筒別空燃比
補正係数を持つものである。各気筒毎マツプを有するた
め4面のマツプとなる。第20図は本実施例を用いた時
のリニア空燃比センサの出力例を示す。アイ下リングで
各気筒の空燃比のばらつきによりリップルの多い出力信
号が次第にリップルが少なくなり各気筒均−な空燃比と
なっている様子を示す。学習後は当初より均一な空燃比
が実現出来る。更に設定空燃比が変更になり、新たな空
燃比になった際には学習がなされていないので初めは気
筒間の空燃比バラツキがあり、次第に気筒別空燃比補正
係数の学習の効果でリップルが少なくなり全気筒バラツ
キの少ない空燃比出力となる。
This completes this process. The timing chart of the operation as a result of the above processing is shown in Fig. 18. At the rise of the cylinder discrimination signal, the read air-fuel ratio of the fourth cylinder is used to calculate the signal for the three cylinders ahead, and then Fuel is injected at the timing of the signal and sucked into the fourth cylinder during the next intake stroke. FIG. 19 shows the configuration of the air-fuel ratio correction coefficient map for each cylinder. In this case, the engine speed and the load are each divided into eight parts, and each cylinder has an air-fuel ratio correction coefficient for each operating region. Since each cylinder has a map, it becomes a four-sided map. FIG. 20 shows an example of the output of the linear air-fuel ratio sensor when this embodiment is used. The ring below the eye shows how the output signal, which has a lot of ripple due to variations in the air-fuel ratio of each cylinder, gradually becomes less ripple and the air-fuel ratio of each cylinder becomes even. After learning, a more uniform air-fuel ratio can be achieved than at the beginning. Furthermore, when the set air-fuel ratio is changed and a new air-fuel ratio is reached, since no learning has been done, there will initially be variations in the air-fuel ratio between cylinders, and then the ripple will gradually increase due to the effect of learning the air-fuel ratio correction coefficient for each cylinder. This results in an air-fuel ratio output with less variation across all cylinders.

以上の実施例によれば、運転状態にあわせた気筒別空燃
比補正係数のマツプを有するため、あらゆる運転状態に
対して気筒間の空燃比が均一なエンジン運転が実現出来
るため、設定空燃比を大きくでき、燃費の低減が図れ、
且つ空燃比が均一なため回転変動が少ないため、特にア
イドリング時や低回転時に回転変動やサージの少ないエ
ンジン制御ができるという効果がある。
According to the above embodiment, since there is a map of air-fuel ratio correction coefficients for each cylinder according to the operating conditions, it is possible to realize engine operation in which the air-fuel ratio among the cylinders is uniform under all operating conditions. Can be made larger and reduce fuel consumption.
In addition, since the air-fuel ratio is uniform, there is little rotational fluctuation, so there is an effect that the engine can be controlled with little rotational fluctuation and surge, especially when idling or at low rotational speeds.

本実施例のなかで、気筒別空燃比補正係数はエンジン回
転数と負荷に対するマツプでなくそれぞれ一個のメモリ
を持ち、気筒別の燃料補正を行なっても有効であり、よ
り簡素な構成で気筒別燃料補正ができる効果がある。
In this embodiment, the cylinder-by-cylinder air-fuel ratio correction coefficient has a memory for each engine speed and load, rather than a map, and is effective even when cylinder-by-cylinder fuel correction is performed. This has the effect of making fuel correction possible.

前記本発明の一実施例では、第13図に示した特性が示
唆するように完全な直線性がないので空気過剰率(空燃
比)を求める際は折れ線近似等を用いて計算する必要が
あったそのため、エンジン回転数と負荷等による気筒別
空燃比補正係数マツプがある方が望ましかった。しかし
ながら十分な直線性を有する空燃比センサを使用するこ
とにより、リアルタイムで空気過剰率(空燃比)を検出
できるため、気筒間の空燃比の値を直接取得できるため
、それまで噴射した燃料と燃焼結果の空燃比から、壁面
付着の燃料を算出できるためマツプの回転数及び負荷の
分割数を少なくでき、少ない記憶容量で正確な気筒別空
燃比制御が実現出来る。
In the embodiment of the present invention, as the characteristics shown in FIG. 13 suggest, there is no perfect linearity, so when calculating the excess air ratio (air-fuel ratio), it is necessary to calculate using a polygonal line approximation. Therefore, it would have been desirable to have an air-fuel ratio correction coefficient map for each cylinder based on engine speed, load, etc. However, by using an air-fuel ratio sensor with sufficient linearity, the excess air ratio (air-fuel ratio) can be detected in real time, and the air-fuel ratio value between the cylinders can be directly obtained. Since the fuel adhering to the wall surface can be calculated from the resulting air-fuel ratio, the rotational speed of the map and the number of load divisions can be reduced, and accurate cylinder-by-cylinder air-fuel ratio control can be realized with a small memory capacity.

第21図に気筒別空燃比補正係数算出のフローを示す0
本実施例によれば、正確な燃料付着を算出できるため、
より制御性のいい(均一になるまでの時間が短縮できる
)エンジン制御が実現できるという効果がある。
Figure 21 shows the flow of calculating the air-fuel ratio correction coefficient for each cylinder.
According to this embodiment, since accurate fuel adhesion can be calculated,
This has the effect of realizing engine control with better controllability (the time required to achieve uniformity can be shortened).

本発明によれば、各気筒毎に空燃比を平滑化するように
気筒別空燃比制御を行なうため各気筒毎の燃料の壁面付
着による気筒間のバラツキがなくなるため、アイドル時
のラフネス低減が図れ、また希薄燃焼においてはリーン
リミットが、各気筒間空燃比が均一化するため拡大でき
るという効果がある。
According to the present invention, cylinder-by-cylinder air-fuel ratio control is performed to smooth the air-fuel ratio for each cylinder, so there is no variation between cylinders due to fuel adhesion to the wall surface of each cylinder, and roughness at idle can be reduced. Also, in lean combustion, the lean limit can be expanded because the air-fuel ratio among the cylinders becomes uniform.

第22図と第23図にさらに他の実施例を示す。Still other embodiments are shown in FIGS. 22 and 23.

第22図で回転同期の割込処理570に入ると、気筒別
空燃比取り込みをステップ572で実施する。次に過去
最新のそれぞれの気筒の空燃比を使って全気筒平均空燃
比をステップ574で算出する。この全気筒平均空燃比
を用いて比例・積分・微分制御則の操作量βをステップ
576で算出し。
When the rotation synchronization interrupt process 570 is entered in FIG. 22, the air-fuel ratio for each cylinder is captured in step 572. Next, in step 574, the average air-fuel ratio of all cylinders is calculated using the latest air-fuel ratio of each cylinder. Using this all-cylinder average air-fuel ratio, the manipulated variable β of the proportional/integral/derivative control law is calculated in step 576.

本空燃比制御における基本操作量とする。次に、エンジ
ン回転数Nと負荷Tpから位相カウンタ設定をステップ
578で行なう。これは、噴射した燃料の輸送遅れ、燃
料付着、吸排気弁のオーバラップ及び排気バルブがら空
燃比センサの設置されている排気集合部までの長さなど
を考慮した量要な処理である0次に、今回の燃料噴射に
対する気筒別空燃比補正係数をステップ580で検索し
、今回の燃料噴射時間Tiは以上の処理で得られた係数
を用いて、第1式により算出する。この結果をステップ
582でパルス発生回路1134ヘセツトする。
This is the basic manipulated variable in this air-fuel ratio control. Next, in step 578, a phase counter is set based on the engine speed N and the load Tp. This is a zero-order process that takes into consideration factors such as transportation delay of injected fuel, fuel adhesion, overlap of intake and exhaust valves, and the length from the exhaust valve to the exhaust gas collecting part where the air-fuel ratio sensor is installed. Next, the cylinder-by-cylinder air-fuel ratio correction coefficient for the current fuel injection is searched for in step 580, and the current fuel injection time Ti is calculated by the first equation using the coefficients obtained in the above processing. This result is set in the pulse generation circuit 1134 in step 582.

第33図に優先度の低いタスクで行なう気筒別空燃比補
正係数演算の概略フロー図を示す。タスク600に入る
と、燃料カット中かどうかの判断をステップ602で行
ない、加減速状態かどうかをステップ604で調べる。
FIG. 33 shows a schematic flowchart of the cylinder-by-cylinder air-fuel ratio correction coefficient calculation performed in a low-priority task. When entering task 600, it is determined in step 602 whether or not fuel is being cut, and in step 604 it is checked whether the vehicle is in an acceleration/deceleration state.

どちらでもないときに、回転割込で処理している平均空
燃比と各気筒空燃比の偏差計算をステップ606で行な
い、気筒別空燃比補正係数の演算をステップ608で行
なう、燃料カット及び加減速状態のときは、気筒別の空
燃比は時々刻々変化しているので補正係数の演算は行な
わない、しかし、気筒別の燃料計算時は変化以前の気筒
別空燃比補正係数を使用することは何ら差し支えない。
When neither is the case, the deviation between the average air-fuel ratio and the air-fuel ratio of each cylinder, which is processed by rotation interrupt, is calculated in step 606, and the air-fuel ratio correction coefficient for each cylinder is calculated in step 608. Fuel cut and acceleration/deceleration are performed. In this state, the air-fuel ratio for each cylinder is changing from moment to moment, so the correction coefficient is not calculated.However, when calculating the fuel for each cylinder, there is no need to use the air-fuel ratio correction coefficient for each cylinder before the change. No problem.

本実施例によれば、気筒間の空燃比変動が大きくなるス
ロットル開度40″以上でも、選択的に気筒別空燃比補
正係数を使用するので、あらゆる定常運転状態に対して
、気筒間の空燃比が均一にすることができる。このため
、トルク変動が少なくなり、回転変動もそれによって少
なくなるので、特にアイドリングの低回転化が計られる
。又、パワー領域では、回転変動による充填効率の変化
もなくなるので、エンジン性能を最大限に制御できると
いう効果がある。
According to this embodiment, since the cylinder-specific air-fuel ratio correction coefficient is selectively used even when the throttle opening is 40'' or more, where the air-fuel ratio fluctuation between cylinders becomes large, the air-fuel ratio correction coefficient between cylinders is The fuel ratio can be made uniform. Therefore, torque fluctuations are reduced, and rotational fluctuations are also reduced thereby, making it possible to lower idling speeds in particular. Also, in the power range, changes in charging efficiency due to rotational fluctuations can be achieved. This has the effect of maximizing control over engine performance.

前記本発明の一実施例によれば、位相カウンタはエンジ
ン回転数と負荷から決めているが、燃料の輸送遅れ、燃
料付着、吸排気弁のオーバラップや排気集合部の長さな
どは、エンジン温度、その他条件により種々変る。又、
車種の違いにもよつて変化するので、偏差計算420で
、偏差に上・下限のリミッタを設けて、リミッタを超え
たときに位相カウンタを速めるか遅らして、リミッタに
入るようにすれば、気筒別空燃比を均一化するオートチ
ューニングができる効果がある。
According to the embodiment of the present invention, the phase counter is determined based on the engine speed and load, but factors such as fuel transport delay, fuel adhesion, overlap of intake and exhaust valves, and length of exhaust gas collecting section are determined based on engine speed and load. It varies depending on temperature and other conditions. or,
Since it varies depending on the type of car, if you set upper and lower limiters for the deviation in the deviation calculation 420, and when the limiter is exceeded, the phase counter is accelerated or delayed so that it enters the limiter. This has the effect of enabling auto-tuning to equalize the air-fuel ratio for each cylinder.

第23図の演算は、優先度の低いタスクで計算するよう
にしているが、第22図の回転割込で行なうようにして
もよい。そして、全気筒平均空燃比算出はステップ57
4で示す如く回転割込毎に行なっているが、基準気筒か
ら気筒数分取込んだ後で平均空燃比を算出すれば、制御
精度が向上する。このときは、ステップ606,608
も、平均空燃比の算出したときにだけ、行なうことは当
然である。
Although the calculation in FIG. 23 is performed by a low-priority task, it may also be performed by the rotation interrupt shown in FIG. 22. Then, step 57 calculates the average air-fuel ratio for all cylinders.
Although this is performed every rotation interruption as shown in 4, if the average air-fuel ratio is calculated after taking in the number of cylinders from the reference cylinder, control accuracy will be improved. At this time, steps 606 and 608
Of course, this should be done only when the average air-fuel ratio has been calculated.

又、気筒毎の空燃比取込みメモリを数サイクルにわたっ
て行なえば、回転数のうねりも考慮した気筒別空燃比補
正係数が演算できる。
Furthermore, if the air-fuel ratio reading and memory for each cylinder is carried out over several cycles, it is possible to calculate the air-fuel ratio correction coefficient for each cylinder, taking into account fluctuations in the rotational speed.

本実施例によれば、各気筒毎に空燃比を平滑化するよう
に気筒別空燃比制御を行なうため各気筒毎の燃料の分配
と燃料の壁面付着によるばらつきがなくなるため、アイ
ドル時のラフネス低減が図れると共にそのオートチュー
ニングができる。又、希薄燃焼において、希薄可燃限界
が、各気筒間空燃比を均一化できるため拡大できる。そ
して、気筒間空燃比の制御ができるので、比例・積分・
微分の各ゲインを上げることができ、空燃比の制御性が
向上できる。これにより、トルク変動が少なくなり、振
動低減が図られ、乗心地も向上する効果がある。
According to this embodiment, cylinder-by-cylinder air-fuel ratio control is performed to smooth the air-fuel ratio for each cylinder, eliminating variations in fuel distribution for each cylinder and fuel adhesion to the wall, reducing roughness during idling. This allows for automatic tuning. Furthermore, in lean combustion, the lean flammability limit can be expanded because the air-fuel ratio among the cylinders can be made uniform. And since the air-fuel ratio between cylinders can be controlled, proportional, integral,
Each gain of the differential can be increased, and the controllability of the air-fuel ratio can be improved. This has the effect of reducing torque fluctuations, reducing vibration, and improving riding comfort.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空燃比制御に関係するセンサアクチュ
エータなどの特性のばらつきや経時変化を補償するばか
りでなく、加減速などによる空燃比も高精度に制御でき
る。
According to the present invention, it is possible not only to compensate for variations in characteristics and changes over time of sensors and actuators related to air-fuel ratio control, but also to control the air-fuel ratio by acceleration and deceleration with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過渡学習の一実施例を示すフローチャート、第
2図は電子式エンジン制御装置の一例を示す概略図、第
3図は制御システムを示すブロック図、第4図は定常学
習における操作量βiの動作説明図、第5図は定常学習
マツプの構成図、第6図は定常学習、バッファ及び比較
マツプの配置図、第7図は各マツプの作成状況の説明図
、第8図は定常学習量を示すフローチャート、第9図は
定常学習マツプの作成フローチャート、第10図は加減
速の学習動作を説明する説明図、第11図と第12図は
加減速の学習マツプあ構成図、第13図はリニアな空燃
比センサの特性図と空燃比変化に対する出力特性図、第
14図は酸素センサの特性図と、空燃比変化に対する出
力特性図、第15図は燃料噴射量制御の概略フロー図、
第16図は気筒別空燃比取り込み及び各気筒の行程のタ
イムチャート図、第17図は気筒別燃料噴射量制御のフ
ロー図、第18図は気筒別燃料噴射量制御の詳細タイム
チャート図、第19図は気筒別空燃比偏差マツプの構成
図、第20図は制御例のタイムチャート図、第21図は
直線性のよい空燃比センサを使った気筒別空燃比補正係
数算出のフローチャート図、第22図は回転同期割込処
理による気筒別燃料噴射制御のフローチャート、第23
図は気筒別空燃比補正係数を演算するフローチャートで
ある。 12・・・インジェクタ、24・・・空気流量センサ、
60・・・制御回路、106・・・RAM、142・・
・空燃比センサ、1134・・・インジェクタ制御回路
。 第 I G 第 2 口 第312] 茶5 昭 第7回 ダqri:J 第13図 #150 185P1i−崗を 第210
Fig. 1 is a flowchart showing an example of transient learning, Fig. 2 is a schematic diagram showing an example of an electronic engine control device, Fig. 3 is a block diagram showing a control system, and Fig. 4 is a manipulated variable in steady-state learning. An explanatory diagram of the operation of βi, Fig. 5 is a configuration diagram of a steady learning map, Fig. 6 is a diagram of the arrangement of steady learning, buffer and comparison maps, Fig. 7 is an explanatory diagram of the creation status of each map, and Fig. 8 is a diagram of the steady learning map. Figure 9 is a flowchart showing the amount of learning, Figure 9 is a flowchart for creating a steady learning map, Figure 10 is an explanatory diagram explaining acceleration/deceleration learning operation, Figures 11 and 12 are configuration diagrams of acceleration/deceleration learning map, Figure Figure 13 is a characteristic diagram of a linear air-fuel ratio sensor and an output characteristic diagram with respect to air-fuel ratio changes, Figure 14 is a characteristic diagram of an oxygen sensor and an output characteristic diagram with respect to air-fuel ratio changes, and Figure 15 is a schematic flow of fuel injection amount control. figure,
Fig. 16 is a time chart of cylinder-specific air-fuel ratio intake and stroke of each cylinder, Fig. 17 is a flow diagram of cylinder-specific fuel injection amount control, and Fig. 18 is a detailed time chart of cylinder-specific fuel injection amount control. Fig. 19 is a configuration diagram of a cylinder-specific air-fuel ratio deviation map, Fig. 20 is a time chart of a control example, Fig. 21 is a flowchart of calculating a cylinder-specific air-fuel ratio correction coefficient using an air-fuel ratio sensor with good linearity, FIG. 22 is a flowchart of cylinder-specific fuel injection control using rotation synchronization interrupt processing, No. 23.
The figure is a flowchart for calculating air-fuel ratio correction coefficients for each cylinder. 12... Injector, 24... Air flow sensor,
60...Control circuit, 106...RAM, 142...
- Air-fuel ratio sensor, 1134... Injector control circuit. No. I G No. 2 312] Tea 5 Showa 7th Daqri: J Fig. 13 #150 185P1i-Gang No. 210

Claims (1)

【特許請求の範囲】 1、エンジンの排気ガス成分を検出し、この検出出力に
基づきエンジンへ供給される混合気の空燃比をフィード
バック制御する空燃比制御方法において上記排気ガス検
出出力に基づき比例演算と積分演算を行なつて上記フィ
ードバック制御を行なうと共に、上記比例演算結果と上
記積分演算結果の各々に基づいてそれぞれの学習係数を
求め、この学習係数により上記混合気の空燃比を修正す
ることを特徴とするエンジンの空燃比制御方法。 2、エンジンの排気ガス成分を検出し、この検出結果に
基づきエンジンへ供給される混合気の空燃比をフィード
バック制御する空燃比制御方法において、上記検出結果
とその目標値との偏差に基づきフィードバック係数の比
例分と積分分とを各々演算すると共に、上記比例分の演
算結果からエンジンの過渡運転状態の過渡学習係数を演
算し、上記積分分の演算結果からエンジンの定常運転状
態の定常学習係数を演算し、上記フィードバック係数と
上記学習係数とにより上記混合気の空燃比を修正するこ
とを特徴とするエンジン空燃比制御方法。 3、エンジンの排気ガス成分を検出し、その検出結果に
基づいてエンジンへ供給される混合気の空燃比をフィー
ドバック制御するエンジンの制御方法において、上記検
出結果をエンジンの各気筒について検出し、上記各気筒
毎の検出結果と所定の目標値との差に基づき各気筒間の
ばらつきがなくなるように各気筒に対応した気筒補正係
数を演算し、この気筒補正係数により各気筒毎に混合気
の空燃比を制御することを特徴とするエンジンの空燃比
制御方法。 4、エンジンの排気ガス成分を検出し、その検出結果に
基づいてエンジンへ供給される混合気の空燃比をフィー
ドバック制御するエンジンの制御方法において、各気筒
に対応して排気ガス成分を検出し、上記検出結果から気
筒の平均空燃比を演算し、上記平均空燃比と各気筒に対
応する空燃比とに基づいて各気筒毎に気筒補正係数を演
算し、この気筒補正係数に基づいて各気筒への混合気空
燃比を制御することを特徴とするエンジンの空燃比制御
方法。 5、エンジンの各気筒の排気ガスの集合部に排気ガスの
成分を検出する排気ガスセンサを設け、エンジンの回転
に同期して上記排気ガスセンサの出力から各シリンダに
対応した空燃比の状態を検出する手段と、上記各シリン
ダに対応した空燃比の状態と目標空燃比から各シリンダ
に対応して比例演算と積分演算を行なつて空燃比のフィ
ードバックを行なう手段と、上記積分演算結果から定常
学習値を求める手段と、上記定常学習値によりさらに空
燃比を補正する手段を設けたことを特徴とするエンジン
の空燃比制御装置。
[Claims] 1. In an air-fuel ratio control method that detects engine exhaust gas components and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine based on the detection output, proportional calculation is performed based on the exhaust gas detection output. and performing integral calculations to perform the above-mentioned feedback control, and to obtain respective learning coefficients based on each of the above-mentioned proportional calculation results and the above-mentioned integral calculation results, and correct the air-fuel ratio of the air-fuel mixture using these learning coefficients. Characteristic engine air-fuel ratio control method. 2. In an air-fuel ratio control method that detects engine exhaust gas components and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine based on this detection result, a feedback coefficient is determined based on the deviation between the detection result and its target value. In addition to computing the proportional and integral components of , a transient learning coefficient for the transient operating state of the engine is computed from the computing result of the proportional component, and a steady learning coefficient for the steady operating state of the engine is computed from the computing result of the integral. A method for controlling an engine air-fuel ratio, characterized in that the air-fuel ratio of the air-fuel mixture is corrected using the feedback coefficient and the learning coefficient. 3. In an engine control method that detects engine exhaust gas components and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine based on the detection results, the detection results are detected for each cylinder of the engine, and the Based on the difference between the detection result for each cylinder and a predetermined target value, a cylinder correction coefficient corresponding to each cylinder is calculated to eliminate variations between each cylinder, and this cylinder correction coefficient is used to adjust the air-fuel mixture for each cylinder. An air-fuel ratio control method for an engine, the method comprising controlling a fuel ratio. 4. In an engine control method that detects exhaust gas components of the engine and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine based on the detection result, detecting the exhaust gas components corresponding to each cylinder, Calculate the average air-fuel ratio of the cylinders from the above detection results, calculate the cylinder correction coefficient for each cylinder based on the above average air-fuel ratio and the air-fuel ratio corresponding to each cylinder, and calculate the cylinder correction coefficient for each cylinder based on this cylinder correction coefficient. 1. A method for controlling an air-fuel ratio of an engine, the method comprising: controlling the air-fuel ratio of a mixture. 5. An exhaust gas sensor for detecting exhaust gas components is provided at the exhaust gas collection point of each cylinder of the engine, and the state of the air-fuel ratio corresponding to each cylinder is detected from the output of the exhaust gas sensor in synchronization with the rotation of the engine. means for feeding back the air-fuel ratio by performing proportional calculation and integral calculation for each cylinder based on the state of the air-fuel ratio corresponding to each cylinder and the target air-fuel ratio, and calculating a steady-state learning value from the result of the integral calculation. What is claimed is: 1. An air-fuel ratio control device for an engine, comprising: means for determining the constant learning value; and means for further correcting the air-fuel ratio based on the steady-state learning value.
JP63039409A 1988-02-24 1988-02-24 Method and device of controlling air-fuel ratio for engine Pending JPH01216047A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63039409A JPH01216047A (en) 1988-02-24 1988-02-24 Method and device of controlling air-fuel ratio for engine
US07/310,200 US4934328A (en) 1988-02-24 1989-02-14 Method for feedback controlling air and fuel ratio of the mixture supplied to internal combustion engine
EP89102754A EP0330934B1 (en) 1988-02-24 1989-02-17 Method for feedback controlling air and fuel ratio of the mixture supplied to internal combustion engine
DE8989102754T DE68900263D1 (en) 1988-02-24 1989-02-17 METHOD FOR REGULATING THE FEEDBACK OF THE AIR / FUEL RATIO OF THE MIXTURE SUPPLIED TO A HEAT ENGINE.
KR1019890002191A KR930006056B1 (en) 1988-02-24 1989-02-24 Method for feedback controlling air and fuel ratio of the mixture supplied to internal combustion engine
CA000591759A CA1293554C (en) 1988-02-24 1989-03-22 Method for feedback controlling the air and fuel ratio of the mixture supplied to an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039409A JPH01216047A (en) 1988-02-24 1988-02-24 Method and device of controlling air-fuel ratio for engine

Publications (1)

Publication Number Publication Date
JPH01216047A true JPH01216047A (en) 1989-08-30

Family

ID=12552195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039409A Pending JPH01216047A (en) 1988-02-24 1988-02-24 Method and device of controlling air-fuel ratio for engine

Country Status (6)

Country Link
US (1) US4934328A (en)
EP (1) EP0330934B1 (en)
JP (1) JPH01216047A (en)
KR (1) KR930006056B1 (en)
CA (1) CA1293554C (en)
DE (1) DE68900263D1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800176A1 (en) * 1988-01-07 1989-07-20 Bosch Gmbh Robert CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE
WO1990006428A1 (en) * 1988-12-10 1990-06-14 Robert Bosch Gmbh Adaptive acceleration enrichment for petrol injection systems
US4962741A (en) * 1989-07-14 1990-10-16 Ford Motor Company Individual cylinder air/fuel ratio feedback control system
EP0444674B1 (en) * 1990-02-28 1996-04-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air fuel ratio detecting device
JPH0819871B2 (en) * 1990-02-28 1996-02-28 本田技研工業株式会社 Method for detecting abnormality in fuel supply system of internal combustion engine
JPH03290045A (en) * 1990-04-04 1991-12-19 Mitsubishi Electric Corp Trouble diagnosing device for engine
US5080064A (en) * 1991-04-29 1992-01-14 General Motors Corporation Adaptive learning control for engine intake air flow
DE4228053A1 (en) * 1991-09-30 1993-04-01 Siemens Ag Controlling and matching characteristic curves of cylinders of four stroke IC engine - using control programme to modify conditions for individual cylinders and generate overall performance programme for microprocessor providing electronic control
DE4208002B4 (en) * 1992-03-13 2004-04-08 Robert Bosch Gmbh System for controlling an internal combustion engine
DE4447846B4 (en) * 1993-04-27 2006-06-14 Hitachi, Ltd. Control of IC engine - Has fluctuations in rotational speed during individual power strokes assessed to give combustion state of each cylinder
DE4414727B4 (en) * 1993-04-27 2004-01-29 Hitachi, Ltd. Control method and control unit for multi-cylinder internal combustion engines
DE69408757T2 (en) * 1993-09-13 1998-06-25 Honda Motor Co Ltd Air-fuel ratio detection device for an internal combustion engine
JP3162553B2 (en) * 1993-09-13 2001-05-08 本田技研工業株式会社 Air-fuel ratio feedback control device for internal combustion engine
DE69514128T2 (en) * 1994-02-04 2000-05-31 Honda Motor Co Ltd Air / fuel ratio estimation system for an internal combustion engine
US5427082A (en) * 1994-05-04 1995-06-27 Chrysler Corporation Method of proportional deceleration fuel lean-out for internal combustion engines
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE69627398T2 (en) * 1994-12-30 2003-10-23 Honda Motor Co Ltd Control system for the fuel metering of an internal combustion engine
DE69627218T2 (en) * 1994-12-30 2003-11-06 Honda Motor Co Ltd Control system for the fuel metering of an internal combustion engine
US5632261A (en) * 1994-12-30 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
JP3422393B2 (en) * 1995-02-24 2003-06-30 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
JP3805408B2 (en) * 1995-06-15 2006-08-02 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JPH0949451A (en) * 1995-08-08 1997-02-18 Hitachi Ltd Engine control device
US5651353A (en) * 1996-05-03 1997-07-29 General Motors Corporation Internal combustion engine control
JP3299120B2 (en) * 1996-08-01 2002-07-08 本田技研工業株式会社 Air-fuel ratio estimator for each cylinder of internal combustion engine
US5690087A (en) * 1996-09-13 1997-11-25 Motorola Inc. EGO based adaptive transient fuel compensation for a spark ignited engine
KR100298708B1 (en) * 1997-08-30 2001-10-26 이계안 Method for compensating for amount of air when idle operation
FR2778210B1 (en) * 1998-04-30 2000-12-15 Renault METHOD FOR THE CANCELLATION OF THE VARIATIONS IN THE WEALTH OF THE GASEOUS MIXTURE FROM THE CYLINDERS OF AN INTERNAL COMBUSTION ENGINE
US6148808A (en) * 1999-02-04 2000-11-21 Delphi Technologies, Inc. Individual cylinder fuel control having adaptive transport delay index
IT1321203B1 (en) * 2000-02-01 2003-12-31 Magneti Marelli Spa METHOD FOR CHECKING THE TITLE OF THE AIR - FUEL MIXTURE IN A COMBUSTION ENGINE.
US6382198B1 (en) * 2000-02-04 2002-05-07 Delphi Technologies, Inc. Individual cylinder air/fuel ratio control based on a single exhaust gas sensor
JP3973922B2 (en) * 2002-02-15 2007-09-12 本田技研工業株式会社 Control device
US20040060550A1 (en) * 2002-09-30 2004-04-01 Ming-Cheng Wu Auto-calibration method for a wide range exhaust gas oxygen sensor
JP3998136B2 (en) * 2002-11-28 2007-10-24 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP4205030B2 (en) * 2003-10-06 2009-01-07 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
US8839639B2 (en) * 2010-09-07 2014-09-23 Michael Paul Paulson Air-conditioning clutch override device and method
JP5548114B2 (en) * 2010-12-24 2014-07-16 川崎重工業株式会社 Air-fuel ratio control device and air-fuel ratio control method for internal combustion engine
US11579000B2 (en) * 2018-04-05 2023-02-14 Fanuc Corporation Measurement operation parameter adjustment apparatus, machine learning device, and system
CN115030826B (en) * 2022-06-17 2023-08-18 潍柴动力股份有限公司 Self-learning correction method and device for fuel gas quality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176440A (en) * 1982-04-09 1983-10-15 Mitsubishi Electric Corp Air-fuel ratio controlling method for internal-combustion engine
JPS593129A (en) * 1982-06-29 1984-01-09 Nippon Denso Co Ltd Air-to-fuel ratio control device for individual cylinder of an internal-combustion engine
JPS62203951A (en) * 1986-03-03 1987-09-08 Hitachi Ltd Air-fuel ratio control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122144A (en) * 1981-01-20 1982-07-29 Nissan Motor Co Ltd Air fuel ratio feedback control unit
JPS5825540A (en) * 1981-08-10 1983-02-15 Nippon Denso Co Ltd Air-to-fuel ratio control method
JPS5923046A (en) * 1982-07-27 1984-02-06 Mazda Motor Corp Controller of air-fuel ratio of multi-cylinder engine
JPS59101563A (en) * 1982-11-30 1984-06-12 Mazda Motor Corp Air-fuel ratio controller of multi-cylinder engine
JPS59101564A (en) * 1982-11-30 1984-06-12 Mazda Motor Corp Air-fuel ratio controller of multi-cylinder engine
JPS6043137A (en) * 1983-08-19 1985-03-07 Mazda Motor Corp Fuel control apparatus for engine
US4703430A (en) * 1983-11-21 1987-10-27 Hitachi, Ltd. Method controlling air-fuel ratio
JPS61118535A (en) * 1984-11-14 1986-06-05 Nippon Soken Inc Air-fuel ratio controller for internal-combustion engine
JP2947353B2 (en) * 1986-04-30 1999-09-13 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176440A (en) * 1982-04-09 1983-10-15 Mitsubishi Electric Corp Air-fuel ratio controlling method for internal-combustion engine
JPS593129A (en) * 1982-06-29 1984-01-09 Nippon Denso Co Ltd Air-to-fuel ratio control device for individual cylinder of an internal-combustion engine
JPS62203951A (en) * 1986-03-03 1987-09-08 Hitachi Ltd Air-fuel ratio control method

Also Published As

Publication number Publication date
CA1293554C (en) 1991-12-24
EP0330934B1 (en) 1991-09-18
EP0330934A3 (en) 1989-10-25
US4934328A (en) 1990-06-19
KR890013330A (en) 1989-09-22
KR930006056B1 (en) 1993-07-03
DE68900263D1 (en) 1991-10-24
EP0330934A2 (en) 1989-09-06

Similar Documents

Publication Publication Date Title
JPH01216047A (en) Method and device of controlling air-fuel ratio for engine
US4991102A (en) Engine control system using learning control
US4837698A (en) Method of controlling air-fuel ratio
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
US9068519B2 (en) Control apparatus for internal combustion engine
KR0132675B1 (en) Apparatus and method for controlling a car
JPS6343579B2 (en)
KR900002313B1 (en) Learning control method for internal combustion engines
US6481405B2 (en) Fuel supply control system for internal combustion engine
JP2512789B2 (en) Engine fuel control device
JP2749395B2 (en) Fuel supply control device
JP2914973B2 (en) Electronic engine control unit
JPS62150057A (en) Method of setting basic control quantity of internal-combustion engine
JP2540839B2 (en) Engine fuel supply control device
JPH0631158Y2 (en) Air-fuel ratio controller for engine
JPS62162741A (en) Engine control
JPH06100126B2 (en) Engine air-fuel ratio learning control device
JPS62203951A (en) Air-fuel ratio control method
JPH0735743B2 (en) Air-fuel ratio controller
JP4044978B2 (en) Engine air-fuel ratio control device
JPH0567776B2 (en)
JPH01155042A (en) Fuel supply controller for internal combustion engine
JPH0544553B2 (en)
JPS6338547B2 (en)
JPH01155047A (en) Air-fuel ratio controller