JP2522734B2 - Method for manufacturing plant fiber reinforced composite pipe - Google Patents

Method for manufacturing plant fiber reinforced composite pipe

Info

Publication number
JP2522734B2
JP2522734B2 JP3319350A JP31935091A JP2522734B2 JP 2522734 B2 JP2522734 B2 JP 2522734B2 JP 3319350 A JP3319350 A JP 3319350A JP 31935091 A JP31935091 A JP 31935091A JP 2522734 B2 JP2522734 B2 JP 2522734B2
Authority
JP
Japan
Prior art keywords
fiber
paper
synthetic resin
pipe
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3319350A
Other languages
Japanese (ja)
Other versions
JPH05157184A (en
Inventor
善史 加藤
博明 林
宏隆 小川
暁男 鈴村
明太郎 遠藤
雅道 西宇
賢次 境田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Seishi Kk
JITENSHA SANGYO SHINKO KYOKAI
Original Assignee
Daifuku Seishi Kk
JITENSHA SANGYO SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Seishi Kk, JITENSHA SANGYO SHINKO KYOKAI filed Critical Daifuku Seishi Kk
Priority to JP3319350A priority Critical patent/JP2522734B2/en
Publication of JPH05157184A publication Critical patent/JPH05157184A/en
Application granted granted Critical
Publication of JP2522734B2 publication Critical patent/JP2522734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、植物繊維強化複合パイ
プの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a plant fiber reinforced composite pipe.

【0002】[0002]

【従来の技術】炭素繊維等の化学繊維を主体とし、これ
に合成樹脂を含浸して得たた繊維強化複合材料によるパ
イプは、金属(例えば鉄やアルミニウム)製パイプの代
わりに、航空機部品、スポーツ・レジャー用品、或いは
一般産業分野の部品に幅広く使用される傾向にある。
2. Description of the Related Art Pipes made of fiber-reinforced composite material obtained by impregnating synthetic fibers with chemical fibers such as carbon fibers are used in place of metal (for example, iron or aluminum) pipes instead of aircraft parts. It tends to be widely used for sports / leisure products and parts in general industrial fields.

【0003】この炭素繊維パイプは、炭素繊維を合成樹
脂に含浸して得た複合材料をパイプ状に成形することに
より製作している。また和紙を含めた紙を主体とし、こ
れに合成樹脂を含浸して得た繊維強化複合材料をパイプ
状に成形することも従来公知である。
This carbon fiber pipe is manufactured by molding a composite material obtained by impregnating carbon fiber into a synthetic resin into a pipe shape. It is also conventionally known that a paper including a Japanese paper is mainly used and a fiber-reinforced composite material obtained by impregnating the paper with a synthetic resin is formed into a pipe shape.

【0004】[0004]

【発明が解決しようとする課題】前記のように炭素繊維
等の化学繊維に合成樹脂を含浸して得た繊維強化複合材
料は、化学繊維と合成樹脂との接着界面に化学的反応が
なくて、物理的なアンカー効果により接合されているだ
けであり、化学的な結合に関して明確な理論がない。
As described above, the fiber-reinforced composite material obtained by impregnating the synthetic resin into the chemical fiber such as carbon fiber has no chemical reaction at the adhesive interface between the chemical fiber and the synthetic resin. , They are only joined by the physical anchor effect, and there is no clear theory regarding chemical bonding.

【0005】またこの繊維強化複合材料は、化学繊維自
体の伸びがごく少量であることから、炭素繊維と合成樹
脂との接着界面で衝撃的に層間剥離が起きて、パイプに
適用した場合には、耐衝撃性の脆さや合成樹脂の脆性破
断等に問題があった。また前記和紙を含めた紙に合成樹
脂を含浸して得た複合材料は、密度が低くて、合成樹脂
と複合化した場合、複合材料中の繊維体積含有率が小さ
く、そのため、引張強度や弾性率が低くなって、パイプ
に適用するのが不向きであった。
Further, in this fiber-reinforced composite material, since the elongation of the chemical fiber itself is very small, when the carbon fiber and the synthetic resin are applied to a pipe due to shock delamination at the adhesive interface. However, there were problems such as brittleness of impact resistance and brittle fracture of synthetic resin. Further, the composite material obtained by impregnating the paper including the above-mentioned Japanese paper with the synthetic resin has a low density, and when compounded with the synthetic resin, the fiber volume content in the composite material is small, and therefore, the tensile strength and elasticity The rate was so low that it was not suitable for pipe applications.

【0006】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、炭素繊維等の化学繊維
に合成樹脂を含浸して得た繊維強化複合材料製パイプに
比べて耐衝撃性を向上でき、和紙を含めた紙に合成樹
脂を含浸して得た繊維強化複合材料製パイプに比べて引
張強度や弾性率を向上できる植物繊維強化複合パイプの
製造方法を提供しようとする点にある。
The present invention has been proposed in view of the above problems, and its object is to make it more resistant than a pipe made of a fiber-reinforced composite material obtained by impregnating a synthetic resin into a chemical fiber such as carbon fiber. An object of the present invention is to provide a method for producing a plant fiber-reinforced composite pipe that can improve impact strength and can improve tensile strength and elastic modulus as compared with a fiber-reinforced composite material pipe obtained by impregnating paper including Japanese paper with a synthetic resin. In point.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の植物繊維強化複合パイプの製造方法は、
木類靱皮繊維、麻類靱皮繊維、及び葉繊維の中から選ん
だ1種類または複数種類の植物繊維をアルカリなどの薬
液で蒸煮して得られたバルブ化繊維に合成繊維を混合し
て、スラリー状にし、これを抄紙機へ送り、乾燥秤量1
0〜100g/m2 の範囲で抄紙、乾燥した後、所望の
幅の細いテープ状にスリットするか、撚り加工して、糸
状紙にし、この糸状紙をフィラメントワインデイング装
置にセットして、同装置内で熱硬化合成樹脂を含浸し、
次いでこの含浸した複合材料を芯材に巻き付けて、パイ
プ状にし、次いでこれらの芯材とパイプ状複合材料とを
熱硬化合成樹脂の硬化温度まで加熱して、熱硬化合成樹
脂を硬化させることを特徴としている。
In order to achieve the above object, the method for producing a plant fiber reinforced composite pipe of the present invention comprises:
A synthetic fiber is mixed with valved fiber obtained by steaming one or more kinds of plant fibers selected from wood bast fiber, hemp bast fiber, and leaf fiber with a chemical solution such as alkali, and slurry. And send it to the paper machine, dry weighing 1
After making paper in the range of 0 to 100 g / m 2 and drying, it is slit into a thin tape with a desired width or twisted to form a filamentous paper, and this filamentous paper is set in a filament winding device, Impregnated with thermosetting synthetic resin in the device,
Then, the impregnated composite material is wrapped around a core material to form a pipe, and then the core material and the pipe-shaped composite material are heated to the curing temperature of the thermosetting synthetic resin to cure the thermosetting synthetic resin. It has a feature.

【0008】[0008]

【作用】(a)前記従来のように炭素繊維等の化学繊維
に合成樹脂を含浸して得られた繊維強化複合材料は、化
学繊維と合成樹脂との接着界面に化学的反応がなくて、
物理的なアンカー効果により接合されているだけであ
り、化学的な結合に関して明確な理論がない。しかもこ
の繊維強化複合材料は、化学繊維自体の伸びがごく少量
であることから、炭素繊維と合成樹脂との接着界面で衝
撃的に層間剥離が起きて、パイプに適用した場合には、
耐衝撃性の脆さや合成樹脂の脆性破断等に問題があっ
た。(b)また前記従来のように和紙を含めた紙に合成
樹脂を含浸して得られた複合材料は、密度が低くて、合
成樹脂と複合化した場合、複合材料中の繊維体積含有率
が小さく、そのため、引張強度や弾性率が低くなって、
パイプに適用するのに不向きであったが、本発明の植物
繊維強化複合パイプの製造方法は前記のように木類靱皮
繊維、麻類靱皮繊維、及び葉繊維の中から選んだ1種類
または複数種類の植物繊維をアルカリなどの薬液で蒸煮
して得られたバルブ化繊維に合成繊維を混合して、スラ
リー状にし、これを抄紙機へ送り、乾燥秤量10〜10
0g/m2 の範囲で抄紙、乾燥した後、所望の幅の細い
テープ状にスリットするか、撚り加工して、糸状紙に
し、この糸状紙をフィラメントワインデイング装置にセ
ットして、同装置内で熱硬化合成樹脂を含浸し、次いで
この含浸した複合材料を芯材に巻き付けて、パイプ状に
し、次いでこれらの芯材とパイプ状複合材料とを熱硬化
合成樹脂の硬化温度まで加熱して、熱硬化合成樹脂を硬
化させるので、合成樹脂と複合化したとき、パイプ中の
繊維体積含有率が高くなり、高い引張強度や弾性率が得
られて、炭素繊維等の化学繊維に合成樹脂を含浸して
得られた繊維強化複合材料製パイプに比べて耐衝撃性が
向上し、和紙を含めた紙に合成樹脂を含浸して得られ
た繊維強化複合材料製パイプに比べて引張強度や弾性率
が向上する。
(A) The fiber-reinforced composite material obtained by impregnating a synthetic resin into a chemical fiber such as carbon fiber as described above has no chemical reaction at the adhesive interface between the chemical fiber and the synthetic resin,
They are only joined by the physical anchor effect, and there is no clear theory of chemical bonding. Moreover, in this fiber-reinforced composite material, since the elongation of the chemical fiber itself is very small, delamination occurs at impact at the adhesive interface between the carbon fiber and the synthetic resin, and when applied to a pipe,
There was a problem in brittleness of impact resistance and brittle fracture of synthetic resin. (B) Further, the composite material obtained by impregnating a paper including Japanese paper with a synthetic resin as described above has a low density, and when composited with a synthetic resin, the fiber volume content in the composite material is Small, so the tensile strength and elastic modulus are low,
Although not suitable for application to pipes, the method for producing a plant fiber reinforced composite pipe of the present invention is one or more selected from wood bast fibers, hemp bast fibers, and leaf fibers as described above. Synthetic fibers are mixed with valved fibers obtained by steaming various kinds of plant fibers with a chemical solution such as alkali to form a slurry, which is then sent to a paper machine and dried and weighed 10 to 10
After making paper in the range of 0 g / m 2 and drying it, slit it into a tape with a desired width or twist it into a filamentous paper, set this filamentous paper in a filament winding machine, and in the same machine. With the thermosetting synthetic resin is impregnated, then the impregnated composite material is wrapped around a core material to form a pipe, and then these core material and pipe-shaped composite material are heated to the curing temperature of the thermosetting synthetic resin, Since thermosetting synthetic resin is hardened, when compounded with synthetic resin, the fiber volume content in the pipe becomes high, high tensile strength and elastic modulus are obtained, and synthetic fiber is impregnated with chemical fiber such as carbon fiber. The impact resistance is improved compared to the fiber reinforced composite pipe obtained by the above, and the tensile strength and elastic modulus are higher than those of the fiber reinforced composite pipe obtained by impregnating paper including Japanese paper with synthetic resin. Is improved.

【0009】[0009]

【実施例】次に本発明の植物繊維強化複合パイプの製造
方法を図1〜図4に示す実施例により説明する。先ず植
物繊維により作成される糸状紙について説明する。 (1)原料繊維 本発明の筒形複合材料の補強材として使用する糸状紙の
主原料は、パルプ化植物繊維である。植物繊維として
は、木類靱皮繊維、麻類靱皮繊維および葉繊維から選ば
れる。この他に少量の木材パルプ、あるいは製紙用とし
て公知の合成繊維や合成パルプが混合使用される。
EXAMPLES Next, a method for producing a plant fiber reinforced composite pipe of the present invention will be described with reference to the examples shown in FIGS. First, the filamentous paper made of plant fibers will be described. (1) Raw Material Fiber The main raw material of the filamentous paper used as the reinforcing material of the tubular composite material of the present invention is pulped plant fiber. The plant fiber is selected from wood bast fiber, hemp bast fiber and leaf fiber. In addition to this, a small amount of wood pulp or a known synthetic fiber or synthetic pulp for papermaking is mixed and used.

【0010】木類靱皮繊維には、こうぞ、みつまた、が
んぴ、桑などの繊維がある。これらの原木から剥ぎとっ
た樹皮を、アルカリ等の薬液により蒸煮して、パルプ化
繊維を製造する。麻類靱皮繊維には、亜麻、苧麻、大
麻、ジュート、ケナフ等の繊維がある。これらの茎から
醗酵などの方法により繊維束を分離し、アルカリなどの
薬液により蒸煮して、パルプ化繊維を製造する。
The wood bast fibers include fibers such as kozo, mitsumata, ganpi and mulberry. The bark peeled off from these raw trees is steamed with a chemical such as an alkali to produce pulped fibers. Hemp bast fibers include flax, ramie, hemp, jute, kenaf and the like. Fiber bundles are separated from these stems by a method such as fermentation and steamed with a chemical such as an alkali to produce pulped fibers.

【0011】葉繊維は、マニラ麻やザイザル麻の葉から
葉肉を取り除き、残った葉脈などの繊維をアルカリなど
の薬液により蒸煮して、パルプ化繊維を製造する。これ
らの靱皮繊維や葉繊維からのパルプ製造技術について
は、紙パルプ技術協会編『クラフトパルプ・非木材パル
プ』昭和42年3月: 紙パルプ技術協会発行: に詳しく
記載されている。
Leaf fibers are produced by removing mesophyll from leaves of Manila hemp and sisal hemp and steaming the remaining fibers such as veins with a chemical solution such as alkali to produce pulped fibers. Pulp manufacturing technology from these bast fibers and leaf fibers is described in detail in "Craft Pulp / Non-Wood Pulp", March 1972: Published by The Japan Pulp and Paper Technology Association, edited by the Japan Pulp and Paper Technology Association.

【0012】製紙用として公知の合繊繊維には、レーヨ
ン、ビニロン、ポリエステル、ナイロン、アクリル、ア
ラミド等の有機繊維およびガラス繊維、炭素繊維等の無
機繊維がある。これらのうち、有機繊維は、繊度0.1
〜5デニール、長さ3〜13mmであって、水となじみ
がよく、水に分散可能な仕上げ剤を付着したものであ
る。
Known synthetic fibers for papermaking include organic fibers such as rayon, vinylon, polyester, nylon, acrylic and aramid, and inorganic fibers such as glass fiber and carbon fiber. Of these, organic fibers have a fineness of 0.1.
It has a denier of 5 to 5 and a length of 3 to 13 mm, is well compatible with water and has a finish dispersible in water attached thereto.

【0013】無機繊維は、繊維径3〜13μm、長さ3
〜13mmのものを使用するのが好適である。合成パル
プは、ポリマーを溶解状態または溶融状態から強い力を
加えながら固体化させて、細いフイプリル状にしたもの
で、市販されているポリオレフインバルブやアラミドバ
ルブを使用する。
The inorganic fiber has a fiber diameter of 3 to 13 μm and a length of 3
It is preferable to use one having a thickness of 13 mm. The synthetic pulp is a fine fibril formed by solidifying a polymer from a molten state or a molten state while applying a strong force, and a commercially available polyolefin valve or aramid valve is used.

【0014】パルプ化例(a) 靱皮繊維として、風乾白皮みつまたを一夜水に浸した後
に、平釜に投入し、15%の苛性ソーダおよび15倍の
水を加えて加熱し、1.5時間煮沸する。これを脱液、
水洗し、ビータで分散させてから、次亜塩素酸ソーダで
漂白し、水洗後に除塵機を通し、脱水してウエットパル
プシートを得た。
Pulping Example (a) As a bast fiber, an air-dried white leather mitsumata was soaked in water overnight, then placed in a flat kettle, heated with 15% caustic soda and 15 times water for 1.5 hours. Boil. Deliquoring this,
It was washed with water, dispersed with a beater, bleached with sodium hypochlorite, washed with water, passed through a dust remover and dehydrated to obtain a wet pulp sheet.

【0015】パルプ化例(b) 葉繊維として、マニラ麻を15%の苛性ソーダ及び水と
ともに地球形の蒸解釜に入れ、圧力5.5kg/cm2
の加圧下で6時間蒸気加熱してパルプ化する。これを脱
液、水洗し、次亜塩素酸ソーダで漂白し、水洗後に除塵
機を通し、脱水してウエットパルプシートを得た。 (2)抄紙 上記のようにして得られたパルプ化植物繊維は、水に分
散されて、ビーターやリフアイナーを用いて所望の叩解
度に叩解される。
Pulping example (b) As leaf fibers, Manila hemp was placed in a global digester with 15% caustic soda and water at a pressure of 5.5 kg / cm 2.
Steam heating under pressure for 6 hours to pulp. This was drained, washed with water, bleached with sodium hypochlorite, washed with water, passed through a dust remover, and dehydrated to obtain a wet pulp sheet. (2) Papermaking The pulped plant fiber obtained as described above is dispersed in water and beaten to a desired beating degree using a beater or a refiner.

【0016】また必要に応じて異種のバルブ化植物繊維
を混合したり、合成バルブや合成繊維を混合するか、湿
潤強力向上剤等の添加薬品を混合する。これらの混合
は、パルパー、ビーター、飯盒ポーチャーの中で適宜行
われる。次いでこのように配合されたスラリーを抄紙機
に流送し、乾燥秤量が10〜100g/cm2 の範囲で
抄紙、乾燥されて巻き取られる。抄紙機には、長網、短
網、傾斜ワイヤー網、円網等の各種形式の抄紙機が使用
される。中でも、円網抄紙機は、繊維が縦方向に配向す
るので、細長く糸状紙にスリットした後の強度が高くな
る利点がある。また抄紙の際にドクター刃を用いてクレ
ープ処理した紙は、嵩高になり、樹脂の含浸性が向上す
る。 (3)スリット 上記の巻き取られた紙をマイクロスリッターにかけて、
所望の幅の細いテープ状にスリットし、糸状紙にして、
ポビンに巻き取る。マイクロスリッターとしてはシヤー
カット式のスリッターが最適である。
If necessary, different types of valved plant fibers are mixed, synthetic valves or synthetic fibers are mixed, or an additive chemical such as a wet strength improver is mixed. These are appropriately mixed in a pulper, a beater, and a rice porcher. Next, the slurry thus blended is sent to a paper machine, and the paper is dried in a dry weight range of 10 to 100 g / cm 2 , dried and wound. As the paper machine, various types of paper machines such as long-mesh, short-mesh, inclined wire net, and circular net are used. Among them, in the cylinder paper machine, the fibers are oriented in the longitudinal direction, so that there is an advantage that the strength becomes high after slitting the filament paper in a slender shape. Further, the paper creped with a doctor blade during papermaking becomes bulky, and the resin impregnation property is improved. (3) Slit Put the rolled paper on a micro slitter,
Slit into a thin tape of the desired width, make a filament paper,
Take it up on a pobin. A shear-cut type slitter is most suitable as a micro slitter.

【0017】糸状紙にスリットされる原紙の厚さおよび
幅は、複合材料の品質設計に応じて可能な範囲で設定さ
れる。厚さは上記の範囲から、また幅は0.3〜20m
mが糸材として好ましい。 (4)より(撚り) 筒形複合材料を製造するフィラメントワインディング工
程において、糸状紙の樹脂含浸と、含浸後の走行やワイ
ンディングを安定的に行わせるために、糸状紙により
(撚り)を加えるのが好ましい。ねん糸は、通常ねん糸
機を用いて、速度を低く設定することにより問題なく製
作できる。適切なより数は、糸状紙の厚さや太さにより
異なるが、通常の衣料用糸よりは低く設定することによ
り、樹脂含浸後や走行性、作業性に良い結果が得られ
る。
The thickness and width of the base paper slit into the filamentous paper are set within a possible range according to the quality design of the composite material. The thickness is within the above range and the width is 0.3 to 20 m.
m is preferable as the thread material. (4) (Twisting) In the filament winding process for producing a tubular composite material, (twisting) is added by filamentous paper in order to stably impregnate the filamentous paper with the resin and to perform running and winding after impregnation. Is preferred. The thread can be normally produced by using a threading machine and setting the speed low. The appropriate twist depends on the thickness and thickness of the filamentous paper, but by setting it lower than the usual yarn for clothing, good results can be obtained after resin impregnation, running and workability.

【0018】[0018]

【表1】 糸状紙例(a) みつまたウエントバルブシートを水に分散し、その絶乾
重量の1%の湿潤強力向上剤を添加したスラリーを調製
した。これに少量の粘剤を用いて円網抄紙機により抄紙
した。得られたみつまた紙の特性は、表1の例1の通り
であった。
[Table 1] Filamentous Paper Example (a) A mitsumata or Went valve sheet was dispersed in water, and a slurry was prepared by adding 1% of the absolute dry weight of the wet strength improver. A small amount of a sticky agent was used for paper making with a cylinder paper machine. The properties of the obtained mitsumata paper were as shown in Example 1 of Table 1.

【0019】この紙を幅2mmにスリットし、500T
/mのより(撚り)を加えて、みつまたの糸状紙を作製
した。 糸状紙例(b) 表1の例1のみつまたウエットバルブシートの代わり
に、マニラ麻ウエットバルブシートを用いて同様に抄紙
した。得られたマニラ紙の特性は、表1の例2の通りで
ある。さらに表1の例1と同様にスリットおよびより
(撚り)加工して、マニラ紙の糸状紙を得た。
This paper is slit into a width of 2 mm and 500 T
(Twist) of / m was added to prepare a thread-shaped paper for honey-comb. Filamentous paper example (b) Paper was made in the same manner using only Manila hemp wet valve sheet instead of the wet valve sheet of Example 1 in Table 1. The characteristics of the obtained Manila paper are as shown in Example 2 of Table 1. Further, in the same manner as in Example 1 in Table 1, slitting and twisting were performed to obtain a filament paper of Manila paper.

【0020】糸状紙例(c) 表1の例2に使用したマニラ麻ウエットバルブシート
に、径7μm、長さ6mmのPAN径炭素繊維を、乾燥
重量比9: 1になるように混合し、湿潤強力向上剤を添
加して例1と同様に抄紙した。得られた炭素繊維混杪紙
の特性を表1の例3に記載した。さらに表1の例1と同
様にスリットおよびより(撚り)加工して、混杪糸状紙
を得た。
Example of filamentous paper (c) The Manila hemp wet valve seat used in Example 2 of Table 1 was mixed with PAN diameter carbon fiber having a diameter of 7 μm and a length of 6 mm in a dry weight ratio of 9: 1 and wet. A paper was made in the same manner as in Example 1 with the addition of the strength improver. The characteristics of the obtained carbon fiber-blended paper are described in Example 3 of Table 1. Further, in the same manner as in Example 1 in Table 1, slitting and twisting (twisting) were performed to obtain a mixed thread-like paper.

【0021】炭素繊維は剛性著しくが大で、また接着性
はあまり高くないので、紙特性や糸状紙強度には原糸特
性が充分に反映されない結果を示した。ただし樹脂の浸
透は良くて、複合材料の補強材として繊維特性の効果が
認められた。上記の方法より作成された糸状紙をフィラ
メントワインディング装置の原料送出部にセットして、
糸状紙に糸状紙の有する引張強度限度内にて目的に応じ
て適度に張力をかける。
Since the carbon fiber has a remarkably high rigidity and the adhesiveness is not so high, the results show that the original fiber characteristics are not sufficiently reflected in the paper characteristics and the thread-like paper strength. However, the penetration of the resin was good, and the effect of fiber properties was recognized as a reinforcing material for the composite material. Set the filamentous paper created by the above method in the raw material feeding part of the filament winding device,
Appropriate tension is applied to the filamentous paper according to the purpose within the tensile strength limit of the filamentous paper.

【0022】次いで装置内の樹脂層を通過させて、熱硬
化合成樹脂と体積含有率が適量になるように治具をセッ
トしながら含浸する。次いで同複合材料を同フィラメン
トワインディング装置の回転部にセットした図1に示す
金属製のφ18mmの芯材1に、予めコンピューターに
入力した繊維の積層角度45°、積層数15層、芯材回
転速度15m/分等の条件で、自動的に巻き付ける。こ
の状態を図2に示した。図2(a)が複合材料2の巻き
始め、図2(b)が中間折り返し、図2(c)が複合材
料2の巻き終わりの状態を示している。
Next, the resin is passed through the resin layer in the apparatus and impregnated with the thermosetting synthetic resin while setting a jig so that the volume content is appropriate. Next, the composite material was set in the rotating part of the filament winding device, and the metal core material 1 having a diameter of 18 mm shown in FIG. Automatically wrap under conditions such as 15 m / min. This state is shown in FIG. 2A shows a state where the composite material 2 starts to be wound, FIG. 2B shows an intermediate folded state, and FIG. 2C shows a state where the composite material 2 ends.

【0023】次いで巻き付けられた同複合材料2と芯材
1とを回転型の加熱炉において、80℃の温度で2時
間、加熱して、同複合材料2の熱硬化合成樹脂を硬化さ
せて、自然冷却させ、次いで芯材1を脱芯して、成形品
(植物繊維強化複合パイプ)を取り出す。図3の3が成
形品で、図3は、この成形品3を自転車のフレームに適
用した場合を示している。
Next, the wound composite material 2 and the core material 1 are heated in a rotary heating furnace at a temperature of 80 ° C. for 2 hours to cure the thermosetting synthetic resin of the composite material 2, Allow to cool naturally, then decore the core material 1 and take out the molded product (plant fiber reinforced composite pipe). 3 of FIG. 3 is a molded product, and FIG. 3 shows a case where the molded product 3 is applied to a bicycle frame.

【0024】上記のように複合材料2をフィラメントワ
インディング装置内で、熱硬化性合成樹脂に含浸させ
て、金属製の芯材1に巻き付けるが、同複合材料2の巻
き付けを完了するまでに熱硬化合成樹脂が植物繊維の中
に十分に浸透するため、繊維と樹脂との結合が強固にな
る。さらに同複合材料2を加熱炉で熱硬化性合成樹脂の
硬化温度まで加熱するが、加熱の初期段階では、熱硬化
性合成樹脂が流動性を帯びるため、さらに十分に樹脂が
繊維中へ浸透し、植物繊維の水酸基と熱硬化合成樹脂の
水素基とが積極的に反応して化学的結合がより強靱にな
り、複合パイプの曲げ強度は向上した。
As described above, the composite material 2 is impregnated with the thermosetting synthetic resin in the filament winding apparatus and wound around the metal core material 1. The composite material 2 is thermoset by the time the winding of the composite material 2 is completed. Since the synthetic resin sufficiently penetrates into the plant fiber, the bond between the fiber and the resin becomes strong. Further, the composite material 2 is heated to the curing temperature of the thermosetting synthetic resin in a heating furnace. However, in the initial stage of heating, the thermosetting synthetic resin becomes fluid, so that the resin further penetrates into the fiber. , The hydroxyl group of plant fiber and the hydrogen group of thermosetting synthetic resin reacted positively, the chemical bond became stronger, and the bending strength of the composite pipe was improved.

【0025】図4は、複合パイプの曲げ剛性を測定した
結果を示している。複合パイプの曲げ試験より求められ
る曲げ弾性率は、複合パイプの片端を固定して、固定端
より約5mmの部分に180度対象に2枚の歪ゲージを
張り付け、固定端より200mmの部分に荷重をかけた
ときの歪量から求められる。このとき、積層角度45度
において、体積含有率60%(換算値)のときの複合パ
イプの曲げ弾性率は約11,600MPaである。これ
らのパイプより組み立てられた自転車フレームを図5に
示す。
FIG. 4 shows the result of measuring the bending rigidity of the composite pipe. The flexural modulus obtained from the bending test of the composite pipe is that one end of the composite pipe is fixed, two strain gauges are attached to the part about 5 mm from the fixed end for 180 degrees, and the load is applied to the part 200 mm from the fixed end. It can be obtained from the amount of strain when applied. At this time, at a lamination angle of 45 degrees, the bending elastic modulus of the composite pipe when the volume content rate is 60% (converted value) is about 11,600 MPa. A bicycle frame assembled from these pipes is shown in FIG.

【0026】[0026]

【発明の効果】(a)前記従来のように炭素繊維等の化
学繊維に合成樹脂を含浸して得られた繊維強化複合材料
は、化学繊維と合成樹脂との接着界面に化学的反応がな
くて、物理的なアンカー効果により接合されているだけ
であり、化学的な結合に関して明確な理論がない。しか
もこの繊維強化複合材料は、化学繊維自体の伸びがごく
少量であることから、炭素繊維と合成樹脂との接着界面
で衝撃的に層間剥離が起きて、パイプに適用した場合に
は、耐衝撃性の脆さや合成樹脂の脆性破断等に問題があ
った。(b)また前記従来のように和紙を含めた紙に合
成樹脂を含浸して得られた複合材料は、密度が低くて、
合成樹脂と複合化した場合、複合材料中の繊維体積含有
率が小さく、そのため、引張強度や弾性率が低くなっ
て、パイプに適用するのに不向きであったが、本発明の
植物繊維強化複合パイプの製造方法は前記のように木類
靱皮繊維、麻類靱皮繊維、及び葉繊維の中から選んだ1
種類または複数種類の植物繊維をアルカリなどの薬液で
蒸煮して得られたバルブ化繊維に合成繊維を混合して、
スラリー状にし、これを抄紙機へ送り、乾燥秤量10〜
100g/m2 の範囲で抄紙、乾燥した後、所望の幅の
細いテープ状にスリットするか、撚り加工して、糸状紙
にし、この糸状紙をフィラメントワインデイング装置に
セットして、同装置内で熱硬化合成樹脂を含浸し、次い
でこの含浸した複合材料を芯材に巻き付けて、パイプ状
にし、次いでこれらの芯材とパイプ状複合材料とを熱硬
化合成樹脂の硬化温度まで加熱して、熱硬化合成樹脂を
硬化させるので、合成樹脂と複合化したとき、パイプ中
の繊維体積含有率が高くなり、高い引張強度や弾性率を
得られて、炭素繊維等の化学繊維に合成樹脂を含浸し
て得られた繊維強化複合材料製パイプに比べて耐衝撃性
を向上でき、和紙を含めた紙に合成樹脂を含浸して得
られた繊維強化複合材料製パイプに比べて引張強度や弾
性率を向上できる。
EFFECTS OF THE INVENTION (a) The fiber-reinforced composite material obtained by impregnating a synthetic resin into a chemical fiber such as carbon fiber as in the above-mentioned conventional method has no chemical reaction at the bonding interface between the chemical fiber and the synthetic resin. However, they are only joined by the physical anchor effect, and there is no clear theory regarding chemical bonding. Moreover, this fiber-reinforced composite material has a very small elongation of the chemical fiber itself, so shock delamination occurs at the adhesive interface between the carbon fiber and the synthetic resin, and when applied to pipes, impact resistance There was a problem in brittleness of properties and brittle fracture of synthetic resin. (B) Further, the composite material obtained by impregnating the paper including the Japanese paper with the synthetic resin as described above has a low density,
When compounded with a synthetic resin, the fiber volume content in the composite material is small, and therefore the tensile strength and elastic modulus are low, which is unsuitable for application to pipes, but the plant fiber reinforced composite of the present invention. As described above, the pipe manufacturing method is selected from wood bast fiber, hemp bast fiber, and leaf fiber.
Mix synthetic fibers with bulbed fibers obtained by steaming kinds or multiple kinds of plant fibers with chemicals such as alkali,
Slurry, send to paper machine, dry weighing 10
After making paper in the range of 100 g / m 2 and drying, slit it into a tape with a desired width or twist it into a filamentous paper, set this filamentous paper in a filament winding machine, and in the same machine. With the thermosetting synthetic resin is impregnated, then the impregnated composite material is wrapped around a core material to form a pipe, and then these core material and pipe-shaped composite material are heated to the curing temperature of the thermosetting synthetic resin, Since thermosetting synthetic resin is hardened, when compounded with synthetic resin, the fiber volume content in the pipe becomes high, high tensile strength and elastic modulus are obtained, and synthetic fiber is impregnated with synthetic resin such as carbon fiber. The impact resistance can be improved compared to the fiber reinforced composite material pipe obtained in this way, and the tensile strength and elastic modulus can be improved compared to the fiber reinforced composite material pipe obtained by impregnating paper including Japanese paper with synthetic resin. Can be improved.

【0027】上記効果をさらに補足説明する。プラスチ
ックス等の熱硬化性合成樹脂が植物繊維から作成された
糸状紙へ十分に浸透し、層間剥離が起こり難くなり、そ
のため、自転車や車椅子などにおいては、衝突時、衝撃
をやわらげ人体への危害を最小限にとどめる働きをす
る。植物繊維(または植物繊維と化学繊維との混合物)
から作成された糸状紙は、糸の密度が高くて、繊維の絡
み合っている強度も強いため、糸状紙単体の強度も強
く、複合パイプの引張試験などの強度試験時の破断の形
態が破損しても、破断にいたらないなど、化学繊維単体
の場合に比べて引張強度や弾性率を向上できる。
The above effect will be further supplementarily described. Thermosetting synthetic resin such as plastics penetrates into filamentous paper made from plant fiber sufficiently, and delamination becomes difficult to occur.Therefore, in a bicycle or wheelchair, the impact is softened and the human body is harmed. Function to minimize. Plant fiber (or a mixture of plant fiber and chemical fiber)
Since the filamentous paper made from is high in yarn density and strong intertwined with fibers, the strength of the filamentous paper itself is also strong, and the rupture form during the strength test such as the tensile test of the composite pipe is damaged. However, the tensile strength and elastic modulus can be improved as compared with the case of the chemical fiber alone, such as the fact that it does not break.

【0028】それに加え、植物繊維(または植物繊維と
化学繊維との混合物)から作成された糸状紙は、適度に
撚糸を行うことにより、糸の密度が高くなり、さらに伸
びが生じることから、弾力性が強くなる。そのため、フ
ィラメントワインディングの作業性を向上できる。また
本発明の植物繊維強化複合パイプの製造方法は、植物繊
維または植物繊維と化学繊維とを混合して得られた混合
物よりなる糸状紙をフィラメントワインデイング装置に
セットして、同装置内で熱硬化合成樹脂を含浸し、次い
でこの含浸した複合材料を芯材に巻き付けて、パイプ状
にし、次いでこれらの芯材とパイプ状複合材料とを熱硬
化合成樹脂の硬化温度まで加熱して、パイプ状複合材料
を硬化させるようにしており、フィラメントワインディ
ング装置により得られた複合材料は、繊維が始めから終
わりまで連続しており、通常よく使われているシート状
の繊維(プリプレグ)を芯材に巻き付けて成形する方法
に比べて、糸状紙の密度が高く、繊維をたくさん製品に
入れることができる。そのため、より軽量で、パイプの
剛性が高くなる。また繊維をシート状にする必要がない
ため、成形時間を短くできる上に、製作コストを低減で
きる。
In addition, the filamentous paper made from vegetable fibers (or a mixture of plant fibers and chemical fibers) increases the density of the yarns by appropriately twisting the yarns, and further elongates, so that the elasticity is improved. Becomes stronger. Therefore, workability of filament winding can be improved. Further, the method for producing a plant fiber reinforced composite pipe of the present invention, a filamentous paper made of a mixture of plant fibers or a mixture of plant fibers and chemical fibers is set in a filament winding device, and heat is applied in the device. After impregnated with the cured synthetic resin, the impregnated composite material is wrapped around a core material to form a pipe, and then the core material and the pipe-shaped composite material are heated to the curing temperature of the thermosetting synthetic resin to form a pipe shape. The composite material is made to cure, and the composite material obtained by the filament winding device has continuous fibers from the beginning to the end, and commonly used sheet-like fibers (prepreg) are wrapped around the core material. The density of filamentous paper is higher than that of the method of molding, and more fibers can be added to the product. Therefore, it is lighter and the rigidity of the pipe is higher. Further, since it is not necessary to form the fiber into a sheet, the molding time can be shortened and the manufacturing cost can be reduced.

【0029】特に植物繊維にミツマタを使用し、合成樹
脂に熱硬化性合成樹脂を使用して、フィラメントワイン
ディング装置内の樹脂層で互いに含浸、複合させ、次い
で同複合材料を装置の回転部に取り付けた金属製の芯材
に巻き付けて、巻き付けられた同複合材料と芯材を加熱
炉で熱硬化製樹脂の硬化温度まで加熱して硬化させ、次
いで芯材を脱芯して成形品を取り出す場合には、次の効
果も達成できる。即ち、加熱のはじめの段階では、熱硬
化性合成樹脂が流動性を帯びており、植物繊維の水酸基
と熱硬化性合成樹脂の水素基とが積極的に反応して化学
的結合が強靱になった。そのため、植物繊維強化複合パ
イプの耐衝撃性を向上し、柔軟性を高める等の作用があ
る。さらに破損時においても、繊維と樹脂との密着性が
高いため、脆性的を破損形態を示さず、人体へ危害を及
ぼす危険性を少なくできる。
In particular, using Mitsumata as the plant fiber and thermosetting synthetic resin as the synthetic resin, the resin layers in the filament winding device are impregnated with each other to form a composite, and then the composite material is attached to the rotating part of the device. When wound around a metallic core material, heat the composite material and core material that have been wound up to the curing temperature of the thermosetting resin in a heating furnace to cure, then decore the core material and take out the molded product Can also achieve the following effects. That is, in the first stage of heating, the thermosetting synthetic resin is fluid, and the hydroxyl groups of the plant fiber and the hydrogen groups of the thermosetting synthetic resin react positively to strengthen the chemical bond. It was Therefore, the plant fiber reinforced composite pipe has effects such as improving impact resistance and enhancing flexibility. Further, even when the fiber is broken, the adhesion between the fiber and the resin is high, so that the brittleness does not show a broken form, and the risk of harming the human body can be reduced.

【0030】そして熱硬化合成樹脂に2液性の常温硬化
合成樹脂を使用した場合、硬化時間を短縮するため、常
温硬化合成樹脂を適切な硬化温度まで加熱して、同様に
成形する。その場合、常温硬化合成樹脂は、大半が加熱
されても支障はないし、加熱すると、温度に比例して成
形時間が短縮する傾向を示す。また前記芯材に、金属製
及び繊維強化プラスチック製のパイプを使用した場合、
大部分は芯材をパイプの一部として利用するため、芯材
を抜く行程を省略することができる。
When a two-component room temperature curing synthetic resin is used as the thermosetting synthetic resin, the room temperature curing synthetic resin is heated to an appropriate curing temperature and molded in the same manner in order to shorten the curing time. In this case, most of the room temperature curable synthetic resin does not cause any problem even if it is heated, and when heated, the molding time tends to be shortened in proportion to the temperature. Further, when the pipe made of metal and fiber reinforced plastic is used for the core material,
Since most of the core material is used as part of the pipe, the step of removing the core material can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の植物繊維強化複合パイプの製造方法で
使用する芯材を示す斜視図である。
FIG. 1 is a perspective view showing a core material used in the method for producing a plant fiber reinforced composite pipe of the present invention.

【図2】フィラメントワインディング装置内での複合材
料の芯材に対する巻付け状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a winding state of a composite material around a core material in a filament winding device.

【図3】成形品(植物繊維強化複合パイプ)の使用例を
示す側面図である。
FIG. 3 is a side view showing an example of use of a molded product (plant fiber reinforced composite pipe).

【図4】複合パイプの曲げ剛性の測定結果を示す説明図
である。
FIG. 4 is an explanatory diagram showing a measurement result of bending rigidity of a composite pipe.

【符号の説明】[Explanation of symbols]

1 芯材 2 複合材料 3 成形品(植物繊維強化複合パイプ) 1 Core material 2 Composite material 3 Molded product (plant fiber reinforced composite pipe)

フロントページの続き (72)発明者 小川 宏隆 愛知県名古屋市天白区市塩釜口1丁目 501番地 名城大学 理工学部 交通機 械学科内 (72)発明者 鈴村 暁男 東京都目黒区大岡山2丁目12番1号 東 京工業大学 工学部 生産機械工学科内 (72)発明者 遠藤 明太郎 岐阜県美濃市前野422番地 大福製紙株 式会社内 (72)発明者 西宇 雅道 岐阜県美濃市前野422番地 大福製紙株 式会社内 (72)発明者 境田 賢次 東京都港区高輪3丁目25番23号 京急第 2ビル 旭エンジニアリング株式会社内 (56)参考文献 特開 昭57−167259(JP,A) 自動車産業振興協会技術研究所、研究 発表会予稿集(平3−6)P.33−36Front page continuation (72) Hirotaka Ogawa 1-1501 Shiogamaguchi, Tenpaku-ku, Nagoya-shi, Aichi Prefecture, Faculty of Science and Engineering, Meijo University (72) Akio Suzumura 2-12-1 Ookayama, Meguro-ku, Tokyo No. Tokyo Institute of Technology Faculty of Engineering Department of Industrial Machinery Engineering (72) Inventor Shotaro Endo 422 Maeno City, Mino City, Gifu Prefecture Daifuku Paper Co., Ltd. In-house (72) Inventor Kenji Sakaida 3-25-23 Takanawa, Minato-ku, Tokyo Keikyu Second Building Asahi Engineering Co., Ltd. (56) Reference JP-A-57-167259 (JP, A) Japan Automotive Industry Promotion Association Technical Research Institute, Proceedings of Research Presentations (Head 3-6) 33-36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 木類靱皮繊維、麻類靱皮繊維、及び葉繊
維の中から選んだ1種類または複数種類の植物繊維をア
ルカリなどの薬液で蒸煮して得られたバルブ化繊維に合
成繊維を混合して、スラリー状にし、これを抄紙機へ送
り、乾燥秤量10〜100g/m2 の範囲で抄紙、乾燥
した後、所望の幅の細いテープ状にスリットするか、撚
り加工して、糸状紙にし、この糸状紙をフィラメントワ
インデイング装置にセットして、同装置内で熱硬化合成
樹脂を含浸し、次いでこの含浸した複合材料を芯材に巻
き付けて、パイプ状にし、次いでこれらの芯材とパイプ
状複合材料とを熱硬化合成樹脂の硬化温度まで加熱し
て、熱硬化合成樹脂を硬化させることを特徴とした植物
繊維強化複合パイプの製造方法。
1. A valved fiber obtained by steaming one or more kinds of plant fibers selected from wood bast fiber, hemp bast fiber and leaf fiber with a chemical solution such as an alkali and synthetic fiber. After mixing and making into slurry, this is sent to a paper machine, paper is dried and weighed in the range of 10 to 100 g / m 2 , dried and then slit into a tape with a desired width or twisted to form a thread. Paper, set the filamentous paper in a filament winding machine, impregnate it with thermosetting synthetic resin, and then wrap the impregnated composite material around a core to form a pipe, then these cores And a pipe-shaped composite material are heated to a curing temperature of a thermosetting synthetic resin to cure the thermosetting synthetic resin, which is a method for producing a plant fiber reinforced composite pipe.
JP3319350A 1991-12-03 1991-12-03 Method for manufacturing plant fiber reinforced composite pipe Expired - Lifetime JP2522734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3319350A JP2522734B2 (en) 1991-12-03 1991-12-03 Method for manufacturing plant fiber reinforced composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3319350A JP2522734B2 (en) 1991-12-03 1991-12-03 Method for manufacturing plant fiber reinforced composite pipe

Publications (2)

Publication Number Publication Date
JPH05157184A JPH05157184A (en) 1993-06-22
JP2522734B2 true JP2522734B2 (en) 1996-08-07

Family

ID=18109176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3319350A Expired - Lifetime JP2522734B2 (en) 1991-12-03 1991-12-03 Method for manufacturing plant fiber reinforced composite pipe

Country Status (1)

Country Link
JP (1) JP2522734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235553B2 (en) * 2008-08-01 2013-07-10 王子ホールディングス株式会社 Paper yarn base paper
JP5646270B2 (en) * 2010-10-06 2014-12-24 株式会社東芝 Protective sleeve, rotating electric machine with protective sleeve, manufacturing method of protective sleeve, and manufacturing method of rotating electric machine with protective sleeve
JP6065546B2 (en) * 2012-11-28 2017-01-25 国立大学法人山口大学 Method for forming twisted yarn reinforced composite material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4527478Y1 (en) * 1968-08-21 1970-10-23
JPS57167259A (en) * 1981-04-07 1982-10-15 Daicel Ltd Paper pipe
JPS60110436A (en) * 1983-11-21 1985-06-15 タキロン株式会社 Reinforcing core material for synthetic resin molded shape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
自動車産業振興協会技術研究所、研究発表会予稿集(平3−6)P.33−36

Also Published As

Publication number Publication date
JPH05157184A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JPS6316488B2 (en)
JP7121663B2 (en) Hybrid fabrics for reinforcing composites
CN109070494A (en) The method of continuous composite sandwich structural is produced by pultrusion
DE60203547T2 (en) Wrapped cord
Sathish et al. Experimental testing on mechanical properties of various natural fibers reinforced epoxy hybrid composites
JP2522734B2 (en) Method for manufacturing plant fiber reinforced composite pipe
JP2527392B2 (en) Frame for light vehicle made of natural fiber reinforced composite pipe
JP2016113595A (en) Composite material, formed body, and production method therefor
CN110168152B (en) Fibrous monofilament
US2454830A (en) Tensioned roving and method of
JP2005067064A (en) Fiber-reinforced plastic material using vegetable fiber
JP2994209B2 (en) Paper yarn and knitted fabric using the same
CN115161829A (en) Natural antibacterial anti-mite composite paper yarn and manufacturing method thereof
JPH07165950A (en) Prepreg sheet and fiber-reinforced resin tubular form
CN112064412A (en) Cotton stick body paper and manufacturing method thereof
JPH06500356A (en) Fibrous products and their manufacturing methods
JP2003301397A (en) Base paper for paper yarn
CN112026213A (en) Manufacturing method of super-strong bamboo fiber composite board
Le Harakeke fibre as reinforcement in epoxy matrix composites and its hybridisation with hemp fibre
JPS5994636A (en) String for knitted fabric and woven fabric
WO2023161564A1 (en) Composite and structure, methods for manufacturing the same and uses thereof
JP2006274531A (en) Method for producing kenaf yarn and kenaf yarn produced thereby
CN111421921B (en) Sheath-core fiber/carbon fiber thermoplastic composite material and preparation method thereof
CN112458586B (en) Method for manufacturing core yarn pre-bulked core-spun yarn for asbestos-free brake band
JP7055310B1 (en) How to make yarns, braids, ropes, and yarns

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960305