JPH07165950A - Prepreg sheet and fiber-reinforced resin tubular form - Google Patents

Prepreg sheet and fiber-reinforced resin tubular form

Info

Publication number
JPH07165950A
JPH07165950A JP5315313A JP31531393A JPH07165950A JP H07165950 A JPH07165950 A JP H07165950A JP 5315313 A JP5315313 A JP 5315313A JP 31531393 A JP31531393 A JP 31531393A JP H07165950 A JPH07165950 A JP H07165950A
Authority
JP
Japan
Prior art keywords
fibers
fiber
paper
resin
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315313A
Other languages
Japanese (ja)
Inventor
Masamichi Nishiu
雅道 西宇
Kazushi Fujimoto
和士 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Seishi Kk
ENG SYST KK
Original Assignee
Daifuku Seishi Kk
ENG SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Seishi Kk, ENG SYST KK filed Critical Daifuku Seishi Kk
Priority to JP5315313A priority Critical patent/JPH07165950A/en
Publication of JPH07165950A publication Critical patent/JPH07165950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a lightweight prepreg with natural fibers as reinforcing material, having practically sufficient mechanical strength and modulus, excellent in impact resistance and vibration damping, moldable into thin-walled or small- diameter tubular forms, and high in producibility. CONSTITUTION:Firstly, an epoxy resin composition is prepared by incorporating Japanese paper with 30 pts.wt. of a bisphenol A-type epoxy resin, 70 pts.wt. of bisphenol F-type epoxy resin, 4 pts.wt. of dicyanamide (DICY) as a curing agent and 4 pts.wt. of dichlorophenyl dimethylurea (DCMU) as an accelerator. Next, a mold releasing paper is coated with this composition followed by laminating with paper and then hot contact bonding with a press roller to effect impregnating the Japanese paper with the resin composition, thus the aimed prepreg is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、植物繊維からなる紙を
強化材としたプリプレグシート及び繊維強化樹脂管状体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg sheet and a fiber-reinforced resin tubular body made of paper made of plant fiber as a reinforcing material.

【0002】[0002]

【従来の技術】近年、繊維強化樹脂に使用する繊維とし
て、炭素繊維、アラミド繊維、あるいはボロン繊維等の
高性能繊維が開発されている。これらを強化繊維とし
た、いわゆる先端複合材料は高強度・高弾性率を有しか
つ軽量であるため、金属の代替として航空宇宙分野から
スポーツ分野まで幅広く利用されている。
2. Description of the Related Art In recent years, high-performance fibers such as carbon fibers, aramid fibers or boron fibers have been developed as fibers used in fiber reinforced resins. Since so-called advanced composite materials using these as reinforcing fibers have high strength and high elastic modulus and are lightweight, they are widely used as substitutes for metals from the aerospace field to the sports field.

【0003】[0003]

【発明が解決しようとする課題】しかし、先端複合材料
は非常に高い強度、弾性率を持つ反面、耐衝撃性、振動
減衰等の性能が全般的に低い。さらに、これら高性能繊
維や先端複合材料は廃棄処理が極めて難しく、大きな環
境問題になっている。
However, although the advanced composite material has very high strength and elastic modulus, it generally has low performance such as impact resistance and vibration damping. Furthermore, it is extremely difficult to dispose of these high-performance fibers and advanced composite materials, which has become a major environmental problem.

【0004】一方、天然繊維も従来から繊維強化樹脂の
強化繊維として使用されている。天然繊維強化樹脂は先
端複合材料とは逆に、強度、弾性率は低いレベルにある
が、耐衝撃性には比較的優れている(例えば、林毅編、
「複合材料工学」、P78 、日科技連、1971)。また、天
然繊維は自然界で分解されること、そして天然繊維強化
樹脂は比較的簡単に焼却できることから、高性能繊維や
先端複合材料に比べて環境に優しい材料であるといえ
る。
On the other hand, natural fibers have been conventionally used as reinforcing fibers for fiber-reinforced resins. Contrary to advanced composite materials, natural fiber reinforced resins have low strength and elastic modulus, but relatively high impact resistance (for example, Takeshi Hayashi,
"Composite Material Engineering", P78, JST, 1971). Also, since natural fibers are decomposed in the natural world and natural fiber reinforced resins can be incinerated relatively easily, it can be said that they are environmentally friendly materials compared to high performance fibers and advanced composite materials.

【0005】天然繊維強化樹脂の例として、マトリック
ス樹脂に天然繊維を混合し、トランスファー成形したゴ
ルフヘッドがある(例えば、日経ニューマテリアル、P6
0 、日経マグロウヒル社、1990年12月24日号) 。また、
特開平4−175347号公報では、楮繊維を熱硬化性
樹脂に混合し、これを金型にセット、硬化後脱型して成
形物を取り出す方法が提案されている。このように、短
繊維をマトリックス樹脂に混合し成形する方法は、成形
が比較的容易で生産性が高い反面、繊維含有率や繊維配
向性を高くすることが難しく、繊維の持つ力学特性を十
分に活かしきれない問題がある。
As an example of the natural fiber reinforced resin, there is a golf head in which a matrix resin is mixed with a natural fiber and transfer molding is performed (eg, Nikkei New Material, P6).
0, Nikkei McGraw-Hill, December 24, 1990). Also,
Japanese Unexamined Patent Publication No. 4-175347 proposes a method of mixing a kozo fiber with a thermosetting resin, setting this in a mold, and curing and releasing the mold to take out a molded product. As described above, the method of mixing short fibers with a matrix resin and molding is relatively easy and has high productivity, but on the other hand, it is difficult to increase the fiber content and the fiber orientation, and the mechanical properties of the fibers are sufficient. There is a problem that can not be fully utilized.

【0006】特開平5−155374号公報、特開平5
−157184号公報では、天然繊維からなる和紙を短
冊状に切断し、適度に加撚して作った紙糸を強化材と
し、これにエポキシ樹脂を含浸させながらフィラメント
ワインディング(FW)して作製したパイプが提案され
ている。紙を紙糸にすることは、シート状の紙に比べ繊
維の密度及び繊維相互の絡み合いが増加し、強度が高く
なるという点でメリットを有する。
Japanese Unexamined Patent Publication Nos. 5-155374 and 5
In Japanese Patent Laid-Open No. 157184/1993, Japanese paper made of natural fibers is cut into strips and appropriately twisted to make a paper thread, which is used as a reinforcing material, and is made by filament winding (FW) while impregnating this with an epoxy resin. Pipes have been proposed. The use of paper yarn as paper has an advantage in that the density of the fibers and the entanglement of the fibers are increased and the strength is increased as compared with the sheet-shaped paper.

【0007】その反面、FW法は強化材の巻き角度を管
状体の長手方向に平行にすることが難しいため、長手方
向の強度、弾性率を考える時に不利である。また、FW
法は糸の交差部を生じるため、その屈曲部に応力集中し
易いという欠点がある。さらに、FW法は糸を隙間なく
巻くことが難しく、上記交差部に生じる隙間を含めて、
樹脂が余分に入り込む余地が多く、繊維含有率が低下し
易い。
On the other hand, in the FW method, since it is difficult to make the winding angle of the reinforcing material parallel to the longitudinal direction of the tubular body, it is disadvantageous when considering the strength and elastic modulus in the longitudinal direction. Also, FW
The method has a drawback in that stress is likely to be concentrated on the bent portion because the method produces a crossing portion of the yarn. Further, in the FW method, it is difficult to wind the yarn without a gap, and the gap generated at the crossing portion is included.
There is a lot of room for resin to enter, and the fiber content tends to decrease.

【0008】また、成形性の点から見れば、FW法は薄
肉あるいは細い管状体の成形に適していない。生産性の
点からは、通常の抄紙工程に紙糸製造工程が余分に入る
上に、FW法はシートワインディング法に比べ生産性が
低いという問題もある。
From the viewpoint of moldability, the FW method is not suitable for molding thin or thin tubular bodies. From the viewpoint of productivity, there is a problem that the paper thread manufacturing process is added to the ordinary papermaking process and the FW method has lower productivity than the sheet winding method.

【0009】紙糸を織物にし、これをプリプレグ化しシ
ートワインディング法で管状体へ成形する方法も考えら
れる。しかし、織物はクリンプが発生し、その部分に応
力集中し易いこと、また生産性が低いこと等の問題があ
る。
A method in which a paper thread is made into a woven fabric, which is prepregized and formed into a tubular body by a sheet winding method is also considered. However, the woven fabric has problems that crimp occurs and stress concentrates easily on the crimp, and productivity is low.

【0010】このように、天然繊維を強化材とした従来
の繊維強化樹脂は、力学特性、成形性、生産性のバラン
スの点で十分に満足できる物ではなかった。そこで、本
発明の目的は、 1)天然繊維を強化材とし、軽量で、実用上十分な強
度、弾性率を持つと供に、耐衝撃性、振動減衰性に優れ
ること 2)薄肉あるいは細い管状体を成形でき、且つ生産性が
高いことを満足できるプリプレグシート及びそのプリプ
レグから成形した繊維強化樹脂管状体を提供することに
ある。
As described above, the conventional fiber reinforced resin using natural fibers as a reinforcing material has not been sufficiently satisfactory in terms of the balance of mechanical properties, moldability and productivity. Therefore, the object of the present invention is to 1) use natural fiber as a reinforcing material, be lightweight, have practically sufficient strength and elastic modulus, and be excellent in impact resistance and vibration damping property 2) Thin or thin tubular It is an object of the present invention to provide a prepreg sheet capable of molding a body and satisfying high productivity and a fiber-reinforced resin tubular body molded from the prepreg.

【0011】[0011]

【課題を解決するための手段】本発明者は、特定の植物
繊維を主成分とすることで力学特性に優れた紙が得ら
れ、これをシート状で使用することによって、上記目的
を満足するプリプレグ及び繊維強化樹脂管状体が得られ
ることを見出し本発明に至った。
Means for Solving the Problems The present inventor satisfies the above-mentioned object by using a specific vegetable fiber as a main component to obtain a paper having excellent mechanical properties, and using the paper in a sheet form. The inventors have found that a prepreg and a fiber-reinforced resin tubular body can be obtained, and completed the present invention.

【0012】すなわち、靱皮繊維または葉脈繊維の少な
くとも1種を主成分とする和紙にマトリックス樹脂を含
浸させたプリプレグシート、及び該プリプレグシートを
芯体に捲回し、管状に成形した繊維強化樹脂管状体であ
る。
That is, a prepreg sheet obtained by impregnating a Japanese resin containing at least one of bast fibers and vein fibers as a main component with a matrix resin, and a fiber-reinforced resin tubular body formed by winding the prepreg sheet around a core and forming a tubular shape. Is.

【0013】本発明に用いられる靱皮繊維には楮、三
椏、雁皮、桑、サラゴ等の木本性靱皮繊維と大麻、亜
麻、苧麻、黄麻、ケナフ等の草本性靱皮繊維とに分類さ
れる。又、葉脈繊維としてはマニラ麻、サイザル麻、バ
ナナ、パイナップル繊維がある。これらの繊維は比強度
が高く、アスペクト比も大きい。
The bast fibers used in the present invention are classified into woody bast fibers such as 杮, 椏, goose bark, mulberry and salago, and herbaceous bast fibers such as cannabis, flax, ramie, jute and kenaf. The vein fibers include Manila hemp, sisal hemp, banana and pineapple fiber. These fibers have a high specific strength and a large aspect ratio.

【0014】本発明のプリプレグの強化材として使用す
る和紙の主原料はパルプ化植物繊維であるが、複合材の
強化材として使用される場合1)和紙の強度、2)樹脂
の含浸性(繊維と樹脂との親和性を含む)が重要であ
る。
The main raw material of the Japanese paper used as the reinforcing material of the prepreg of the present invention is pulped plant fiber, but when it is used as the reinforcing material of the composite material, 1) the strength of the Japanese paper, 2) the impregnation property of the resin (fiber) And the affinity with the resin) are important.

【0015】更に、和紙の強度の3要素として1)繊維
自体の強度、2)繊維間相互の接着強度、3)繊維相互
の絡み合いによる摩擦があるが、中でも以下の理由で靱
皮繊維や葉脈繊維の中から選ばれる。
Furthermore, there are three factors of the strength of Japanese paper: 1) the strength of the fibers themselves, 2) the adhesive strength between the fibers, and 3) the friction due to the entanglement of the fibers, but among them, the bast fibers and the vein fibers are for the following reasons. Chosen from among.

【0016】紙用繊維の繊維間接着は繊維の構成物であ
るセルロースの水素結合に起因する。従って、水素結合
性の高いセルロースを多く含む繊維が望ましい。しか
し、リンター(綿毛繊維)はα−セルロース(結晶化度
が高く水素結合性が低い)が多く、繊維間接着強度が低
いので適さない。(下表に紙用原料繊維のホロセルロー
ス中のα−セルロース含有率を示す) 靱皮繊維 葉脈繊維 木材繊維 リンター ホロセルロース(%) 50〜72 65.9 77.1 82.5 α−セルロース(%) 43〜56 53〜64 42.5 82.5 靱皮繊維や葉脈繊維は比較的丸断面の繊維が多く、且つ
長いので多孔質な構造を得ることができる。故にマトリ
ックス樹脂の含浸性が良い。一方、洋紙に用いられる木
材パルプ繊維は偏平断面をしており緻密な構造となるの
で、マトリックス樹脂の含浸性が悪い。(同一叩解度に
於ける紙の密度を下表に示す) 靱皮繊維(三姫) 葉脈繊維(マニラ麻) 木材繊維(NBKB) 密度(g/cm2 ) 0.662 0.641 0.865 和紙用繊維の中で木本性靱皮繊維である楮、雁皮、桑や
サラゴは柔細胞が多く、繊維間接着力が高い上に繊維が
細く且つ長いので強度の高い和紙を得ることができる。 楮 三椏 雁皮 桑 平均繊維長(mm)6 〜21 3 〜5 3 〜5 6.97 2.97 平均繊維幅(μm)10〜30 10〜30 10〜30 17 12 和紙用繊維の中で草本性靱皮繊維である大麻、亜麻やケ
ナフは繊維自体が長く、且つ高強度である。
The interfiber adhesion of paper fibers is due to hydrogen bonding of cellulose, which is a constituent of the fibers. Therefore, a fiber containing a large amount of cellulose having a high hydrogen bonding property is desirable. However, linters (fluff fibers) are not suitable because they often contain α-cellulose (having high crystallinity and low hydrogen bondability) and low interfiber bonding strength. (The following table shows the α-cellulose content in the holocellulose of the raw material fibers for paper.) Bast fiber Leaf vein fiber Wood fiber Linter Holocellulose (%) 50-72 65.9 77.1 82.5 α-cellulose (%) 43-56 53- 64 42.5 82.5 Since bast fibers and vein fibers have many fibers of relatively round cross section and are long, a porous structure can be obtained. Therefore, the impregnation property of the matrix resin is good. On the other hand, since the wood pulp fibers used in the paper have a flat cross section and a dense structure, the impregnability of the matrix resin is poor. (The density of paper at the same beating degree is shown in the table below.) Bast fiber (Sanhime) Leaf vein fiber (Manila hemp) Wood fiber (NBKB) Density (g / cm 2 ) 0.662 0.641 0.865 Wood property among Japanese paper fibers Bast fibers such as swordfish, goose bark, mulberry and salago have many soft cells, and have high interfiber adhesiveness, and since the fibers are thin and long, it is possible to obtain high-strength washi paper.楮 三 椏 薮 皮 Mulberry average fiber length (mm) 6 to 21 3 to 5 3 to 5 6.97 2.97 average fiber width (μm) 10 to 30 10 to 30 10 to 30 17 12 Among the Japanese paper fibers, it is a herbaceous bast fiber. Cannabis, flax and kenaf have long fibers and high strength.

【0017】 大麻 亜麻 苧麻 黄麻 平均繊維長(mm) 25 20〜30 20〜200 20 〜30 平均繊維幅(μm) 15〜25 10〜30 24〜47 20 〜25 単繊維強度(103N/cm2 )70 76〜88 91 85 和紙用繊維のなかで葉脈繊維であるマニラ麻、サイザル
麻、バナナ、パイナップル繊維は靱皮繊維程ではないが
繊維は比較的細く、長い。この繊維は洋紙用原料である
木材パルプ(NBKP、LBKP)の様に叩解によるフ
ィブリル化によって和紙強度を調整することができる。
Cannabis Flax Ginseng Burlap Average fiber length (mm) 25 20-30 20-200 20-30 Average fiber width (μm) 15-25 10-30 24-47 20-25 Single fiber strength (10 3 N / cm 2 ) 70 76 to 88 91 85 Manila hemp, sisal, banana and pineapple fibers, which are vein fibers among the fibers for Japanese paper, are not as thick as bast fibers, but the fibers are relatively thin and long. The strength of this fiber can be adjusted by fibrillation by beating like wood pulp (NBKP, LBKP) which is a raw material for western paper.

【0018】 マニラ麻 サイザル麻 バナナ パイナップル繊維 平均繊維長(mm) 2〜12 0.8 〜8.0 3.5〜4.7 (3 〜 9) 平均繊維幅(μm)16〜32 8 〜41 27〜31 (5 〜10) この他に和紙の特性を低下させない程度の少量の木材パ
ルプや合成繊維も混合して用いることかできる。
Manila hemp Sisal banana Pineapple fiber Average fiber length (mm) 2 to 12 0.8 to 8.0 3.5 to 4.7 (3 to 9) Average fiber width (μm) 16 to 328 to 41 to 27 to 31 (5 to 10) In addition, a small amount of wood pulp or synthetic fiber which does not deteriorate the properties of Japanese paper can be mixed and used.

【0019】(パイプ化)本体性靱皮繊維は前述の原本
からはぎ取った樹皮をアルカリ等の薬液で蒸煮して和紙
用繊維を製造する。一方、草本性靱皮繊維はその茎から
発酵等の方法で繊維束を分離し、更にそれをアルカリ等
の薬液で蒸煮して和紙用繊維を製造する。又、葉脈繊維
はその葉から葉肉を取り除き残った葉脈をアルカリ等の
薬液で蒸煮して和紙用繊維を製造する。
(Pipe-formed) main bast fibers are produced by steaming bark stripped from the above-mentioned original with a chemical such as an alkali to produce fibers for Japanese paper. On the other hand, the herbaceous bast fiber is produced by separating a fiber bundle from its stem by a method such as fermentation and then steaming it with a chemical solution such as an alkali to produce a fiber for Japanese paper. In addition, leaf vein fibers are produced by removing the mesophyll from the leaves and steaming the remaining leaf veins with a chemical such as an alkali to produce fibers for Japanese paper.

【0020】以下に機械抄き和紙の代表的繊維である三
椏とマニラ麻のパルプ化条件について述べる。 (三椏パルプ)風乾白皮三椏を一液水に浸した後に、平
釜に投入し、三椏重量の15%苛性ソーダ及び15倍の
水を加えて1.5時間加熱する。これを脱液・水洗し、
ビータで分散させてから次亜塩素酸ソーダで漂白し、更
に水洗後除塵・脱水してウェットパルプシートを得る。
The pulping conditions of San Tsubaki and Manila hemp, which are typical fibers of machine-made Japanese paper, will be described below. (Three tsubaki pulp) After air-dried white skin three tsubaki is soaked in one liquid water, it is put into a flat kettle, and 15% caustic soda and 15 times water of three tsubaki are added and heated for 1.5 hours. This is drained and washed with water,
After being dispersed in a beater, it is bleached with sodium hypochlorite, washed with water and then dedusted and dehydrated to obtain a wet pulp sheet.

【0021】(マニラ麻パルプ)マニラ麻を球形の蒸解
釜に投入しマニラ麻重量の15%の苛性ソーダ及び3〜
4倍の水を加えて蒸気圧5.5kg/cm2 で6時間蒸気加
熱する。これを脱液・水洗し、ビータで分散させてから
次亜塩素酸ソーダで漂白し、更に水洗後除塵・脱水して
ウェットパルプシートを得る。
(Manila hemp pulp) Manila hemp is charged into a spherical digester and caustic soda of 15% of the weight of the Manila hemp and 3 to 3 are added.
Add 4 times water and steam heat for 6 hours at a steam pressure of 5.5 kg / cm 2 . This is dewatered, washed with water, dispersed with a beater, bleached with sodium hypochlorite, further washed with water to remove dust and dehydrate to obtain a wet pulp sheet.

【0022】(調整)和紙の均一性、強度特性、異方性
を決定するのは抄紙工程であるが、古来から受け継がれ
た手漉き法では連続的に均一な和紙をうることはできな
い。従って、機械抄紙法が用いられるがその場合25mm
以上の極度に長い繊維は工程中の絡み等で結束っを発生
するので不適である。
(Adjustment) It is the papermaking process that determines the uniformity, strength characteristics and anisotropy of Japanese paper, but the handmade method, which has been handed down since ancient times, cannot provide a continuously uniform Japanese paper. Therefore, the machine papermaking method is used, but in that case 25 mm
The above extremely long fibers are not suitable because they tend to bind due to entanglement during the process.

【0023】従って、ビーター等の分散・叩解機で繊維
をフィブリル化したり、セン断したり、複数の異種パル
プを混合して抄紙し易い原料系を調整する。 (抄紙)機械抄紙機は洋紙製造にも用いられている長
網、短網、傾斜ワイヤー、円網、ロトフォーマー等の各
抄紙機が適宜用いられる。中でも円網抄紙機では繊維が
MD方向に配向し、異方性の強い和紙を作ることができ
る。又、傾斜ワイヤーやロトフォーマーでは繊維配向を
任意に取ることができ、任意の強度比を有する和紙を作
ることができる。
Therefore, fibers are fibrillated by a disperser / beater such as a beater, cut into fibers, or a plurality of different types of pulp are mixed to prepare a raw material system that facilitates papermaking. (Papermaking) Machine As the papermaking machine, each papermaking machine such as a long-mesh, a short-mesh, a slanted wire, a cylinder, and a rotoformer, which are also used in the production of paper, is appropriately used. Above all, with a cylinder paper machine, the fibers are oriented in the MD direction, and it is possible to produce a highly anisotropic Japanese paper. Further, with a slanted wire or rotoformer, the fiber orientation can be arbitrarily set, and Japanese paper having an arbitrary strength ratio can be produced.

【0024】上記紙を強化材とすることで、プリプレグ
自体の強度も高くなり、成形時の作業性が安定する。ま
た、本発明に使用する紙は多孔質構造なので、樹脂含浸
性の良いプリプレグになり易く成形物にボイド等の欠陥
を生じにくい。
By using the above paper as a reinforcing material, the strength of the prepreg itself is increased and the workability during molding is stabilized. Further, since the paper used in the present invention has a porous structure, it easily becomes a prepreg having a good resin impregnation property, and defects such as voids are less likely to occur in the molded product.

【0025】本プリプレグから成形した繊維強化樹脂は
実用上十分な強度、弾性率を有する。中でも、異方性を
有する紙を強化材とすることはより好ましい結果が得ら
れる。これは、紙に異方性を持たせることが紙を構成し
ている繊維の配向性を高くすることであり、その結果繊
維配向方向における紙の強度、弾性率が上昇するからで
ある。特に、引張強度が1400kgf/cm2 以上、引張弾性率
が1000kgf/mm2 以上の紙を使用することは、繊維強化樹
脂の力学特性を高める上で好ましい。
The fiber-reinforced resin molded from this prepreg has practically sufficient strength and elastic modulus. Above all, more preferable results can be obtained by using paper having anisotropy as the reinforcing material. This is because giving the paper anisotropy enhances the orientation of the fibers constituting the paper, and as a result, the strength and elastic modulus of the paper in the fiber orientation direction increase. In particular, it is preferable to use paper having a tensile strength of 1400 kgf / cm 2 or more and a tensile modulus of 1000 kgf / mm 2 or more in order to enhance the mechanical properties of the fiber-reinforced resin.

【0026】紙のプリプレグ処理は、従来公知の湿式法
(溶剤法)あるいは乾式法(ホットメルト法)によって
行える。湿式法はマトリックス樹脂、硬化剤、触媒等を
適当な溶剤に溶かして溶液を作り、これを強化材に含浸
させた後、加熱して溶剤を除去させる方法である。乾式
法は樹脂、硬化剤等を加熱溶融し、溶融状態の樹脂を強
化材に含浸、冷却させる方法である。ここで、マトリッ
クス樹脂は、力学特性、耐熱性、作業性等の目的に合わ
せてエポキシ樹脂、フェノール樹脂、あるいはビスマレ
イミド樹脂等の熱硬化性樹脂あるいはポリアミド、ポリ
オレフィン、ポリエステル、あるいはポリカーボネート
等の熱可塑性樹脂の中から適当なものを使用すれば良
い。
The prepreg treatment of paper can be performed by a conventionally known wet method (solvent method) or dry method (hot melt method). The wet method is a method of dissolving a matrix resin, a curing agent, a catalyst and the like in an appropriate solvent to prepare a solution, impregnating this with a reinforcing material, and then heating to remove the solvent. The dry method is a method in which a resin, a curing agent, and the like are heated and melted, and a resin in a molten state is impregnated into a reinforcing material and cooled. Here, the matrix resin is a thermosetting resin such as an epoxy resin, a phenol resin, or a bismaleimide resin, or a thermoplastic resin such as polyamide, polyolefin, polyester, or polycarbonate, depending on the purpose of mechanical properties, heat resistance, workability, etc. An appropriate resin may be used among the resins.

【0027】この中でもエポキシ樹脂は特に好ましい結
果が得られる一例である。その樹脂にはエピビス型、フ
ェノールノボラック型、Br化エピビス型、TGDDM
(テトラグリシジルアミノジフェニルメタン)、TGM
AP(トリグリシジルメタアミノフェノール)等が、硬
化剤にはBF3 ・MEA(ボロントリフルオライドモノ
エチルアミン)、DICY(ジシアンジアミド)、DC
MU(ジクロロフェニルジメチルウレア)、イミダゾー
ル、DDS(ジアミノジフェニルスルホン)、DDM
(ジアミノジフェニルメタン)等が広く用いられる。
Of these, epoxy resin is an example in which particularly preferable results are obtained. The resins include epibis type, phenol novolac type, Brized epibis type, TGDDM.
(Tetraglycidylaminodiphenylmethane), TGM
AP (triglycidylmethaaminophenol) and the like are used as hardeners such as BF3.MEA (boron trifluoride monoethylamine), DICY (dicyandiamide), DC.
MU (dichlorophenyldimethylurea), imidazole, DDS (diaminodiphenyl sulfone), DDM
(Diaminodiphenylmethane) and the like are widely used.

【0028】特に、250°F硬化型の場合、エピビス
型とノボラック型エポキシ樹脂を主成分とし、硬化剤は
DICY、促進剤はDCMUがよく使用される。また、
350°F硬化型の場合、四官能エポキシ樹脂であるT
GDDMを主成分に、硬化剤はDDS、促進剤はBF3
・MEAの組合せでよく使用される。ここで、着色した
紙の色を成形品で活かすには、樹脂の色に配慮しなけれ
ばならない。また、本発明の目的を損なわない範囲で本
プリプレグシートはスクリムクロス等と組合わせること
も可能である。
In particular, in the case of 250 ° F. curing type, epibis type and novolac type epoxy resin is mainly used, DICY is often used as the curing agent, and DCMU is often used as the accelerator. Also,
In the case of 350 ° F curing type, T which is a tetrafunctional epoxy resin
Main component is GDDM, curing agent is DDS, accelerator is BF3
-Often used in MEA combinations. Here, in order to utilize the color of the colored paper in the molded product, the color of the resin must be taken into consideration. Further, the prepreg sheet can be combined with a scrim cloth or the like within a range that does not impair the object of the present invention.

【0029】プリプレグシートから繊維強化樹脂管状体
を成形するには、ローリングマシーンによるシートワイ
ンディング法(筒巻き法)が一般的である。
To form a fiber-reinforced resin tubular body from a prepreg sheet, a sheet winding method (cylindrical winding method) using a rolling machine is generally used.

【0030】[0030]

【作用】本発明のプリプレグ及び繊維強化樹脂管状体が
種々の優れた特性を持つ理由は、十分に解明されていな
いが、以下のような要因に基づくものと推定される。
The reason why the prepreg and the fiber-reinforced resin tubular body of the present invention have various excellent properties has not been fully clarified, but is presumed to be based on the following factors.

【0031】本発明に使用する紙は強度、弾性率、強靱
性が高い。これは、紙の主成分となる繊維の比強度、比
弾性率が高く、アスペクト比が大きいこと、及び繊維間
相互の接着強度が強いこと等による。特に繊維を配向さ
せて抄紙した異方性を持つ紙は強度、弾性率が高い。ま
た、紙を強化材とすることにより、基本的には短繊維強
化樹脂でありながら、繊維の含有率、配向性、及び分散
性が安定する。また、該紙は多孔性であることから、マ
トリックス樹脂の含浸性が良く、ボイド等の欠陥を生じ
にくい。
The paper used in the present invention has high strength, elastic modulus and toughness. This is because the fibers, which are the main components of the paper, have a high specific strength and a high specific elastic modulus, a large aspect ratio, and a strong adhesive strength between the fibers. In particular, anisotropic paper made by orienting fibers has high strength and elastic modulus. Further, by using paper as the reinforcing material, the fiber content rate, orientation, and dispersibility are stabilized, although it is basically a short fiber reinforced resin. Further, since the paper is porous, it has a good impregnation property with the matrix resin and is less likely to cause defects such as voids.

【0032】上記理由から、本発明のプリプレグシート
から成形した繊維強化樹脂、特に管状体は、連続繊維を
強化材とした場合に近い補強効果が得られ、従来の天然
繊維強化材と比べ、高い比強度、比弾性率を有する。そ
の一方で、強化材の紙及び繊維が延性を有すること等か
ら、CFRP(炭素繊維強化樹脂)、GFRP(ガラス
繊維強化樹脂)等に比べ耐衝撃性に優れている。また、
振動減衰性も大きい。
For the above reason, the fiber reinforced resin molded from the prepreg sheet of the present invention, particularly the tubular body, has a reinforcing effect close to that obtained when the continuous fiber is used as the reinforcing material, and is higher than the conventional natural fiber reinforcing material. It has a specific strength and a specific elastic modulus. On the other hand, due to the ductility of the reinforcing paper and fibers, it is superior in impact resistance to CFRP (carbon fiber reinforced resin), GFRP (glass fiber reinforced resin) and the like. Also,
Vibration damping is also large.

【0033】次に、成形面から見れば、本発明のプリプ
レグシートは薄くできるため、薄肉の管状体や細い管状
体の成形に有利である。また、織物をシートワインディ
ングあるいはFWから成形した管状体に比べ、繊維に屈
曲した部分が少なく、応力集中しにくい。
Next, from the viewpoint of the molding surface, the prepreg sheet of the present invention can be made thin, which is advantageous for molding a thin tubular body or a thin tubular body. Further, as compared with a tubular body formed by sheet winding or FW of a woven fabric, there are few bent portions in the fiber, and stress concentration is less likely to occur.

【0034】[0034]

【実施例】原料繊維、配合を変化させ抄紙した各種紙の
物性を表1に示す。ここで、MDは機械方向、CDはそ
れと垂直方向である。和紙No.1〜5は実施例に使用し
た紙で、これらは繊維配向方向に高い引張強度、引張弾
性率を持つ。和紙No.6及び7は比較例に使用した紙
で、これらは引張強度、引張弾性率ともに低い。
[Examples] Table 1 shows the physical properties of various papers produced by changing the raw material fibers and the composition. Here, MD is the machine direction and CD is the direction perpendicular to it. Washi Nos. 1 to 5 are the papers used in the examples, and these have high tensile strength and tensile elastic modulus in the fiber orientation direction. Washi Nos. 6 and 7 are the papers used in the comparative examples, and these have low tensile strength and tensile elastic modulus.

【0035】[0035]

【表1】 [Table 1]

【0036】表2は、表1に示した紙に対してビスフェ
ノールA型エポキシ樹脂(油化シェルエポキシ[株]
製、エピコート828)30重量部、ビスフェノールA
型エポキシ樹脂(油化シェルエポキシ[株]製、エピコ
ート1001)70重量部、硬化剤としてDICY(油
化シェルエポキシ[株]製、エピキュアDICY−7)
4重量部、硬化促進剤としてDCMUを4重量部の比率
で混合し、エポキシ樹脂組成物としたものである。この
樹脂を離型紙上に塗布し、これと紙を重ね合わせて、プ
レスローラーで加熱圧着させ、和紙に樹脂を含浸させ実
施例1乃至5及び比較例1及び2のプリプレグを得た。
その性状を表2に示す。
Table 2 shows a bisphenol A type epoxy resin (Okaka Shell Epoxy Co., Ltd.) for the paper shown in Table 1.
Made, Epicoat 828) 30 parts by weight, bisphenol A
Type epoxy resin (Okaka Shell Epoxy [Co.], Epicoat 1001) 70 parts by weight, DICY as a curing agent (Okaka Shell Epoxy [Co.], Epicure DICY-7)
4 parts by weight and 4 parts by weight of DCMU as a curing accelerator were mixed to obtain an epoxy resin composition. This resin was applied on a release paper, and the paper and the paper were superposed on each other and heat-pressed with a press roller to impregnate the Japanese paper with the resin to obtain prepregs of Examples 1 to 5 and Comparative Examples 1 and 2.
The properties are shown in Table 2.

【0037】比較例1,2に使用した紙は樹脂の含浸が
悪く、紙強度も低いことから樹脂量が多くなっている。
The papers used in Comparative Examples 1 and 2 are poor in resin impregnation and have low paper strength, so that the amount of resin is large.

【0038】[0038]

【表2】 [Table 2]

【0039】本プリプレグの基本的な力学特性を把握す
るため、プリプレグをプレス成形により積層板とし、引
張試験及び3点曲げ試験を行なった。その測定結果を表
3に示す。測定は各々JIS K 7054(198
7)及びJIS K 7055(1987)に準じて行
なった。実施例1〜5のプリプレグより成形した積層板
は強度、弾性率とも高く、種々の製品に利用できること
が判る。一方、比較例1及び2の積層板は強度、弾性率
とも低く、実用には向かない。
In order to understand the basic mechanical characteristics of the prepreg, a prepreg was formed into a laminated plate by press molding, and a tensile test and a three-point bending test were conducted. The measurement results are shown in Table 3. The measurement is performed according to JIS K 7054 (198).
7) and JIS K 7055 (1987). It can be seen that the laminated plates formed from the prepregs of Examples 1 to 5 have high strength and elastic modulus and can be used for various products. On the other hand, the laminated plates of Comparative Examples 1 and 2 have low strength and elastic modulus and are not suitable for practical use.

【0040】[0040]

【表3】 [Table 3]

【0041】さらに、上記プリプレグをシートワインデ
ィングにより芯金に巻きつけ、硬化処理後脱芯して成形
した管状体の耐衝撃性、振動減衰性を調べた結果を表4
に示す。ここで、○は良好、△は不良であることを示
す。
Further, the results of examining the impact resistance and vibration damping property of a tubular body formed by winding the above prepreg around a core metal by sheet winding, curing the core and then molding the core body are shown in Table 4.
Shown in. Here, ◯ means good and Δ means bad.

【0042】本発明の実施例1〜5から成形した管状体
は、耐衝撃性、振動減衰性も良好で、釣竿、ゴルフシャ
フト等種々の分野での応用が可能である。又、薄肉管及
び細管の成形も容易に行うことができる。
The tubular bodies formed from Examples 1 to 5 of the present invention have good impact resistance and vibration damping properties, and can be applied to various fields such as fishing rods and golf shafts. In addition, thin-walled tubes and thin tubes can be easily formed.

【0043】これに対して、比較例1及び2から成形し
た管状体は、耐衝撃性、振動減衰性も劣り、釣竿、ゴル
フシャフト等には使用できないものであった。
On the other hand, the tubular bodies molded from Comparative Examples 1 and 2 were inferior in impact resistance and vibration damping property, and could not be used for fishing rods, golf shafts and the like.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【発明の効果】以上詳述したように、この発明は下記の
ような優れた効果を奏する。 1)植物繊維を強化材としているため、従来の高性能繊
維と比べ廃棄処理が容易である。これから成形した繊維
強化樹脂もマトリックス樹脂の組成に留意すれば容易に
焼却できる。 2)本発明の管状体は、軽量で、実用上十分な強度、弾
性率を持ち、さらに耐衝撃性、振動減衰性に優れる。 3)プリプレグ及び管状体の製造にあたっては、生産性
の高い方法が採用できる。 4)薄肉管や細管を成形することができる。 5)繊維あるいは紙を着色しておくことにより、従来の
表面塗装した成形品とは違った品位の製品ができる。
As described in detail above, the present invention has the following excellent effects. 1) Since vegetable fiber is used as a reinforcing material, it is easier to dispose of it than conventional high performance fiber. The fiber-reinforced resin molded from this can be easily incinerated if the composition of the matrix resin is taken into consideration. 2) The tubular body of the present invention is lightweight, has practically sufficient strength and elastic modulus, and is also excellent in impact resistance and vibration damping. 3) In producing the prepreg and the tubular body, a method with high productivity can be adopted. 4) A thin tube or a thin tube can be formed. 5) By coloring the fiber or paper, a quality product different from the conventional surface-coated molded product can be obtained.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月8日[Submission date] June 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 プリプレグシート及び繊維強化樹脂管
状体
Title of invention Prepreg sheet and fiber-reinforced resin tubular body

【特許請求項の範囲】[Claim scope]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、植物繊維からなる和紙
を強化材としたプリプレグシート及び繊維強化樹脂管状
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg sheet and a fiber-reinforced resin tubular body made of Japanese paper made of vegetable fiber as a reinforcing material.

【0002】[0002]

【従来の技術】近年、繊維強化樹脂に使用する繊維とし
て、炭素繊維、アラミド繊維、あるいはボロン繊維等の
高性能繊維が開発されている。これらを強化繊維とし
た、いわゆる先端複合材料は高強度・高弾性率を有しか
つ軽量であるため、金属の代替として航空宇宙分野から
スポーツ分野まで幅広く利用されている。
2. Description of the Related Art In recent years, high-performance fibers such as carbon fibers, aramid fibers or boron fibers have been developed as fibers used in fiber reinforced resins. Since so-called advanced composite materials using these as reinforcing fibers have high strength and high elastic modulus and are lightweight, they are widely used as substitutes for metals from the aerospace field to the sports field.

【0003】[0003]

【発明が解決しようとする課題】しかし、先端複合材料
は非常に高い強度、弾性率を持つ反面、耐衝撃性、振動
減衰等の性能が全般的に低い。さらに、これら高性能繊
維や先端複合材料は廃棄処理が極めて難しく、大きな環
境問題になっている。
However, although the advanced composite material has very high strength and elastic modulus, it generally has low performance such as impact resistance and vibration damping. Furthermore, it is extremely difficult to dispose of these high-performance fibers and advanced composite materials, which has become a major environmental problem.

【0004】一方、天然繊維も従来から繊維強化樹脂の
強化繊維として使用されている。天然繊維強化樹脂は先
端複合材料とは逆に、強度、弾性率は低いレベルにある
が、耐衝撃性には比較的優れている(例えば、林毅編、
「複合材料工学」、P78 、日科技連、1971)。また、天
然繊維は自然界で分解されること、そして天然繊維強化
樹脂は比較的簡単に焼却できることから、高性能繊維や
先端複合材料に比べて環境に優しい材料であるといえ
る。
On the other hand, natural fibers have been conventionally used as reinforcing fibers for fiber-reinforced resins. Contrary to advanced composite materials, natural fiber reinforced resins have low strength and elastic modulus, but relatively high impact resistance (for example, Takeshi Hayashi,
"Composite Material Engineering", P78, JST, 1971). Also, since natural fibers are decomposed in the natural world and natural fiber reinforced resins can be incinerated relatively easily, it can be said that they are environmentally friendly materials compared to high performance fibers and advanced composite materials.

【0005】天然繊維強化樹脂の例として、マトリック
ス樹脂に天然繊維を混合し、トランスファー成形したゴ
ルフヘッドがある(例えば、日経ニューマテリアル、P6
0 、日経マグロウヒル社、1990年12月24日号) 。また、
特開平4−175347号公報では、楮繊維を熱硬化性
樹脂に混合し、これを金型にセット、硬化後脱型して成
形物を取り出す方法が提案されている。このように、短
繊維をマトリックス樹脂に混合し成形する方法は、成形
が比較的容易で生産性が高い反面、繊維含有率や繊維配
向性を高くすることが難しく、繊維の持つ力学特性を十
分に活かしきれない問題がある。
As an example of the natural fiber reinforced resin, there is a golf head in which a matrix resin is mixed with a natural fiber and transfer molding is performed (eg, Nikkei New Material, P6).
0, Nikkei McGraw-Hill, December 24, 1990). Also,
Japanese Unexamined Patent Publication No. 4-175347 proposes a method of mixing a kozo fiber with a thermosetting resin, setting this in a mold, and curing and releasing the mold to take out a molded product. As described above, the method of mixing short fibers with a matrix resin and molding is relatively easy and has high productivity, but on the other hand, it is difficult to increase the fiber content and the fiber orientation, and the mechanical properties of the fibers are sufficient. There is a problem that can not be fully utilized.

【0006】特開平5−155374号公報、特開平5
−157184号公報では、天然繊維からなる和紙を短
冊状に切断し、適度に加撚して作った紙糸を強化材と
し、これにエポキシ樹脂を含浸させながらフィラメント
ワインディング(FW)して作製したパイプが提案され
ている。和紙を紙糸にすることは、シート状の和紙に比
べ繊維の密度及び繊維相互の絡み合いが増加し、強度が
高くなるという点でメリットを有する。
Japanese Unexamined Patent Publication Nos. 5-155374 and 5
In Japanese Patent Laid-Open No. 157184/1993, Japanese paper made of natural fibers is cut into strips and appropriately twisted to make a paper thread, which is used as a reinforcing material, and is made by filament winding (FW) while impregnating this with an epoxy resin. Pipes have been proposed. The use of Japanese paper as a paper thread has an advantage in that the density of the fibers and the entanglement of the fibers are increased, and the strength is increased, as compared with the sheet-shaped Japanese paper.

【0007】その反面、FW法は強化材の巻き角度を管
状体の長手方向に平行にすることが難しいため、長手方
向の強度、弾性率を考える時に不利である。また、FW
法は糸の交差部を生じるため、その屈曲部に応力集中し
易いという欠点がある。さらに、FW法は糸を隙間なく
巻くことが難しく、上記交差部に生じる隙間を含めて、
樹脂が余分に入り込む余地が多く、繊維含有率が低下し
易い。
On the other hand, in the FW method, since it is difficult to make the winding angle of the reinforcing material parallel to the longitudinal direction of the tubular body, it is disadvantageous when considering the strength and elastic modulus in the longitudinal direction. Also, FW
The method has a drawback in that stress is likely to be concentrated on the bent portion because the method produces a crossing portion of the yarn. Further, in the FW method, it is difficult to wind the yarn without a gap, and the gap generated at the crossing portion is included.
There is a lot of room for resin to enter, and the fiber content tends to decrease.

【0008】また、成形性の点から見れば、FW法は薄
肉あるいは細い管状体の成形に適していない。生産性の
点からは、通常の抄紙工程に紙糸製造工程が余分に入る
上に、FW法はシートワインディング法に比べ生産性が
低いという問題もある。
From the viewpoint of moldability, the FW method is not suitable for molding thin or thin tubular bodies. From the viewpoint of productivity, there is a problem that the paper thread manufacturing process is added to the ordinary papermaking process and the FW method has lower productivity than the sheet winding method.

【0009】紙糸を織物にし、これをプリプレグ化しシ
ートワインディング法で管状体へ成形する方法も考えら
れる。しかし、織物はクリンプが発生し、その部分に応
力集中し易いこと、また生産性が低いこと等の問題があ
る。
A method in which a paper thread is made into a woven fabric, which is prepregized and formed into a tubular body by a sheet winding method is also considered. However, the woven fabric has problems that crimp occurs and stress concentrates easily on the crimp, and productivity is low.

【0010】このように、天然繊維を強化材とした従来
の繊維強化樹脂は、力学特性、成形性、生産性のバラン
スの点で十分に満足できる物ではなかった。そこで、本
発明の目的は、 1)天然繊維を強化材とし、軽量で、実用上十分な強
度、弾性率を持つと供に、耐衝撃性、振動減衰性に優れ
ること 2)薄肉あるいは細い管状体を成形でき、且つ生産性が
高いことを満足できるプリプレグシート及びそのプリプ
レグから成形した繊維強化樹脂管状体を提供することに
ある。
As described above, the conventional fiber reinforced resin using natural fibers as a reinforcing material has not been sufficiently satisfactory in terms of the balance of mechanical properties, moldability and productivity. Therefore, the object of the present invention is to 1) use natural fiber as a reinforcing material, be lightweight, have practically sufficient strength and elastic modulus, and be excellent in impact resistance and vibration damping property 2) Thin or thin tubular It is an object of the present invention to provide a prepreg sheet capable of molding a body and satisfying high productivity and a fiber-reinforced resin tubular body molded from the prepreg.

【0011】[0011]

【課題を解決するための手段】本発明者は、特定の植物
繊維を主成分とすることで力学特性に優れた和紙が得ら
れ、これをシート状で使用することによって、上記目的
を満足するプリプレグ及び繊維強化樹脂管状体が得られ
ることを見出し本発明に至った。
The inventor of the present invention satisfies the above-mentioned object by using a specific vegetable fiber as a main component to obtain a Japanese paper having excellent mechanical properties, and by using the Japanese paper in a sheet form. The inventors have found that a prepreg and a fiber-reinforced resin tubular body can be obtained, and completed the present invention.

【0012】すなわち、靱皮繊維または葉脈繊維の少な
くとも1種を主成分とする和紙にマトリックス樹脂を含
浸させたプリプレグシート、及び該プリプレグシートを
芯体に捲回し、管状に成形した繊維強化樹脂管状体であ
る。
That is, a prepreg sheet obtained by impregnating a Japanese resin containing at least one of bast fibers and vein fibers as a main component with a matrix resin, and a fiber-reinforced resin tubular body formed by winding the prepreg sheet around a core and forming a tubular shape. Is.

【0013】本発明に用いられる靱皮繊維には楮、三
椏、雁皮、桑、サラゴ等の木本性靱皮繊維と大麻、亜
麻、苧麻、黄麻、ケナフ等の草本性靱皮繊維とに分類さ
れる。又、葉脈繊維としてはマニラ麻、サイザル麻、バ
ナナ、パイナップル繊維がある。これらの繊維は比強度
が高く、アスペクト比も大きい。
The bast fibers used in the present invention are classified into woody bast fibers such as 杮, 椏, goose bark, mulberry and salago, and herbaceous bast fibers such as cannabis, flax, ramie, jute and kenaf. The vein fibers include Manila hemp, sisal hemp, banana and pineapple fiber. These fibers have a high specific strength and a large aspect ratio.

【0014】本発明のプリプレグの強化材として使用す
る和紙の主原料はパルプ化植物繊維であるが、複合材の
強化材として使用される場合1)和紙の強度、2)樹脂
の含浸性(繊維と樹脂との親和性を含む)が重要であ
る。
The main raw material of the Japanese paper used as the reinforcing material of the prepreg of the present invention is pulped plant fiber, but when it is used as the reinforcing material of the composite material, 1) the strength of the Japanese paper, 2) the impregnation property of the resin (fiber) And the affinity with the resin) are important.

【0015】更に、和紙の強度の3要素として1)繊維
自体の強度、2)繊維間相互の接着強度、3)繊維相互
の絡み合いによる摩擦があるが、中でも以下の理由で靱
皮繊維や葉脈繊維の中から選ばれる。
Furthermore, there are three factors of the strength of Japanese paper: 1) the strength of the fibers themselves, 2) the adhesive strength between the fibers, and 3) the friction due to the entanglement of the fibers, but among them, the bast fibers and the vein fibers are for the following reasons. Chosen from among.

【0016】紙用繊維の繊維間接着は繊維の構成物であ
るセルロースの水素結合に起因する。従って、水素結合
性の高いセルロースを多く含む繊維が望ましい。しか
し、リンター(綿毛繊維)はα−セルロース(結晶化度
が高く水素結合性が低い)が多く、繊維間接着強度が低
いので適さない。(表1に紙用原料繊維のホロセルロー
ス中のα−セルロース含有率を示す)
The interfiber adhesion of paper fibers is due to hydrogen bonding of cellulose, which is a constituent of the fibers. Therefore, a fiber containing a large amount of cellulose having a high hydrogen bonding property is desirable. However, linters (fluff fibers) are not suitable because they often contain α-cellulose (having high crystallinity and low hydrogen bondability) and low interfiber bonding strength. ( Table 1 shows the α-cellulose content in the holocellulose of the raw material fibers for paper)

【0017】[0017]

【表1】 [Table 1]

【0018】靱皮繊維や葉脈繊維は比較的丸断面の繊維
が多く、且つ長いので多孔質な構造を得ることができ
る。故にマトリックス樹脂の含浸性が良い。一方、洋紙
に用いられる木材パルプ繊維は偏平断面をしており緻密
な構造となるので、マトリックス樹脂の含浸性が悪い。
(同一叩解度に於ける紙の密度を下表に示す)
Since bast fibers and vein fibers have many fibers having a relatively round cross section and are long, a porous structure can be obtained. Therefore, the impregnation property of the matrix resin is good. On the other hand, since the wood pulp fibers used in the paper have a flat cross section and a dense structure, the impregnability of the matrix resin is poor.
(The table below shows the density of paper at the same beating degree)

【0019】[0019]

【表2】 [Table 2]

【0020】和紙用繊維の中で木本性靱皮繊維である
楮、雁皮、桑やサラゴは柔細胞が多く、繊維間接着力が
高い上に繊維が細く且つ長いので強度の高い和紙を得る
ことができる。
Among the fibers for Washi paper, woody bast fibers such as swordfish, goose bark, mulberry and salago have a lot of soft cells, and the interfiber adhesiveness is high, and the fibers are thin and long, so that high-strength Washi paper can be obtained. .

【0021】[0021]

【表3】 [Table 3]

【0022】和紙用繊維の中で草本性靱皮繊維である大
麻、亜麻やケナフは繊維自体が長く、且つ高強度であ
る。
Among the fibers for Japanese paper, hemp, flax and kenaf, which are herbaceous bast fibers, have long fibers themselves and high strength.

【0023】[0023]

【表4】 [Table 4]

【0024】和紙用繊維のなかで葉脈繊維であるマニラ
麻、サイザル麻、バナナ、パイナップル繊維は靱皮繊維
程ではないが繊維は比較的細く、長い。この繊維は洋紙
用原料である木材パルプ(NBKP、LBKP)の様に
叩解によるフィブリル化によって和紙強度を調整するこ
とができる。
Among the fibers for Japanese paper, leaf fiber such as Manila hemp, sisal hemp, banana and pineapple fiber are relatively thin and long, though not as thick as bast fiber. The strength of this fiber can be adjusted by fibrillation by beating like wood pulp (NBKP, LBKP) which is a raw material for western paper.

【0025】[0025]

【表5】 [Table 5]

【0026】この他に和紙の特性を低下させない程度の
少量の木材パルプや合成繊維も混合して用いることがで
きる。 (パルプ化)本体性靱皮繊維は前述の原木からはぎ取っ
た樹皮をアルカリ等の薬液で蒸煮して和紙用繊維を製造
する。一方、草本性靱皮繊維はその茎から発酵等の方法
で繊維束を分離し、更にそれをアルカリ等の薬液で蒸煮
して和紙用繊維を製造する。又、葉脈繊維はその葉から
葉肉を取り除き残った葉脈をアルカリ等の薬液で蒸煮し
て和紙用繊維を製造する。
In addition to this, a small amount of wood pulp or synthetic fiber which does not deteriorate the properties of Japanese paper can be mixed and used. (Pulping) body of bast fibers to produce fibers for paper and cooked in a chemical solution of an alkali such as a bark stripped from the foregoing timber. On the other hand, the herbaceous bast fiber is produced by separating a fiber bundle from its stem by a method such as fermentation and then steaming it with a chemical solution such as an alkali to produce a fiber for Japanese paper. In addition, leaf vein fibers are produced by removing the mesophyll from the leaves and steaming the remaining leaf veins with a chemical such as an alkali to produce fibers for Japanese paper.

【0027】以下に機械抄き和紙の代表的繊維である三
椏とマニラ麻のパルプ化条件について述べる。 (三椏パルプ)風乾白皮三椏を一液水に浸した後に、平
釜に投入し、三椏重量の15%苛性ソーダ及び15倍の
水を加えて1.5時間加熱する。これを脱液・水洗し、
ビータで分散させてから次亜塩素酸ソーダで漂白し、更
に水洗後除塵・脱水してウェットパルプシートを得る。
The pulping conditions for San Tsubaki and Manila hemp, which are typical fibers of machine-made Japanese paper, will be described below. (Three tsubaki pulp) After air-dried white skin three tsubaki is soaked in one liquid water, it is put into a flat kettle, and 15% caustic soda and 15 times water of three tsubaki are added and heated for 1.5 hours. This is drained and washed with water,
After being dispersed in a beater, it is bleached with sodium hypochlorite, washed with water and then dedusted and dehydrated to obtain a wet pulp sheet.

【0028】(マニラ麻パルプ)マニラ麻を球形の蒸解
釜に投入しマニラ麻重量の15%の苛性ソーダ及び3〜
4倍の水を加えて蒸気圧5.5kg/cm2 で6時間蒸気加
熱する。これを脱液・水洗し、ビータで分散させてから
次亜塩素酸ソーダで漂白し、更に水洗後除塵・脱水して
ウェットパルプシートを得る。
(Manila hemp pulp) Manila hemp is charged into a spherical digester and caustic soda of 15% of the weight of the Manila hemp and 3 to 3 are added.
Add 4 times water and steam heat for 6 hours at a steam pressure of 5.5 kg / cm 2 . This is dewatered, washed with water, dispersed with a beater, bleached with sodium hypochlorite, further washed with water to remove dust and dehydrate to obtain a wet pulp sheet.

【0029】(調整)和紙の均一性、強度特性、異方性
を決定するのは抄紙工程であるが、古来から受け継がれ
た手漉き法では連続的に均一な和紙をうることはできな
い。従って、機械抄紙法が用いられるがその場合25mm
以上の極度に長い繊維は工程中の絡み等で結束っを発生
するので不適である。
(Adjustment) It is the papermaking process that determines the uniformity, strength characteristics and anisotropy of Japanese paper, but the handmade method, which has been handed down since ancient times, cannot provide a continuous and uniform Japanese paper. Therefore, the machine papermaking method is used, but in that case 25 mm
The above extremely long fibers are not suitable because they tend to bind due to entanglement during the process.

【0030】従って、ビーター等の分散・叩解機で繊維
をフィブリル化したり、セン断したり、複数の異種パル
プを混合して抄紙し易い原料系を調整する。 (抄紙)機械抄紙機は洋紙製造にも用いられている長
網、短網、傾斜ワイヤー、円網、ロトフォーマー等の各
抄紙機が適宜用いられる。中でも円網抄紙機では繊維が
MD方向に配向し、異方性の強い和紙を作ることができ
る。又、傾斜ワイヤーやロトフォーマーでは繊維配向を
任意に取ることができ、任意の強度比を有する和紙を作
ることができる。
Therefore, the fibers are fibrillated by a disperser / beater such as a beater, cut into fibers, or a plurality of different pulps are mixed to prepare a raw material system that facilitates papermaking. (Papermaking) Machine As the papermaking machine, each papermaking machine such as a long-mesh, a short-mesh, a slanted wire, a cylinder, and a rotoformer, which are also used in the production of paper, is appropriately used. Above all, with a cylinder paper machine, the fibers are oriented in the MD direction, and it is possible to produce a highly anisotropic Japanese paper. Further, with a slanted wire or rotoformer, the fiber orientation can be arbitrarily set, and Japanese paper having an arbitrary strength ratio can be produced.

【0031】上記和紙を強化材とすることで、プリプレ
グ自体の強度も高くなり、成形時の作業性が安定する。
また、本発明に使用する和紙は多孔質構造なので、樹脂
含浸性の良いプリプレグになり易く成形物にボイド等の
欠陥を生じにくい。
By using the above-mentioned Japanese paper as a reinforcing material, the strength of the prepreg itself is increased and the workability during molding is stabilized.
Moreover, since the Japanese paper used in the present invention has a porous structure, it tends to be a prepreg having a good resin impregnation property, and defects such as voids are less likely to occur in the molded product.

【0032】本プリプレグから成形した繊維強化樹脂は
実用上十分な強度、弾性率を有する。中でも、異方性を
有する和紙を強化材とすることはより好ましい結果が得
られる。これは、和紙に異方性を持たせることが和紙
構成している繊維の配向性を高くすることであり、その
結果繊維配向方向における和紙の強度、弾性率が上昇す
るからである。特に、引張強度が1400kgf/cm2 以上、引
張弾性率が1000kgf/mm2 以上の和紙を使用することは、
繊維強化樹脂の力学特性を高める上で好ましい。
The fiber-reinforced resin molded from this prepreg has practically sufficient strength and elastic modulus. Above all, it is possible to obtain more preferable results by using a Japanese paper having anisotropy as the reinforcing material. This is because imparting anisotropy to the Japanese paper enhances the orientation of the fibers forming the Japanese paper , and as a result, the strength and elastic modulus of the Japanese paper in the fiber orientation direction increase. In particular, using Japanese paper with a tensile strength of 1400 kgf / cm2 or more and a tensile modulus of 1000 kgf / mm2 or more
It is preferable for improving the mechanical properties of the fiber reinforced resin.

【0033】和紙のプリプレグ処理は、従来公知の湿式
法(溶剤法)あるいは乾式法(ホットメルト法)によっ
て行える。湿式法はマトリックス樹脂、硬化剤、触媒等
を適当な溶剤に溶かして溶液を作り、これを強化材に含
浸させた後、加熱して溶剤を除去させる方法である。乾
式法は樹脂、硬化剤等を加熱溶融し、溶融状態の樹脂を
強化材に含浸、冷却させる方法である。ここで、マトリ
ックス樹脂は、力学特性、耐熱性、作業性等の目的に合
わせてエポキシ樹脂、フェノール樹脂、あるいはビスマ
レイミド樹脂等の熱硬化性樹脂あるいはポリアミド、ポ
リオレフィン、ポリエステル、あるいはポリカーボネー
ト等の熱可塑性樹脂の中から適当なものを使用すれば良
い。
The prepreg treatment of Japanese paper can be performed by a conventionally known wet method (solvent method) or dry method (hot melt method). The wet method is a method of dissolving a matrix resin, a curing agent, a catalyst and the like in an appropriate solvent to prepare a solution, impregnating this with a reinforcing material, and then heating to remove the solvent. The dry method is a method in which a resin, a curing agent, and the like are heated and melted, and a resin in a molten state is impregnated into a reinforcing material and cooled. Here, the matrix resin is a thermosetting resin such as an epoxy resin, a phenol resin, or a bismaleimide resin, or a thermoplastic resin such as polyamide, polyolefin, polyester, or polycarbonate, depending on the purpose of mechanical properties, heat resistance, workability, etc. An appropriate resin may be used among the resins.

【0034】この中でもエポキシ樹脂は特に好ましい結
果が得られる一例である。その樹脂にはエピビス型、フ
ェノールノボラック型、Br化エピビス型、TGDDM
(テトラグリシジルアミノジフェニルメタン)、TGM
AP(トリグリシジルメタアミノフェノール)等が、硬
化剤にはBF3 ・MEA(ボロントリフルオライドモノ
エチルアミン)、DICY(ジシアンジアミド)、DC
MU(ジクロロフェニルジメチルウレア)、イミダゾー
ル、DDS(ジアミノジフェニルスルホン)、DDM
(ジアミノジフェニルメタン)等が広く用いられる。
Of these, epoxy resin is an example in which particularly preferable results are obtained. The resins include epibis type, phenol novolac type, Brized epibis type, TGDDM.
(Tetraglycidylaminodiphenylmethane), TGM
AP (triglycidylmethaaminophenol) and the like are used as hardeners such as BF3.MEA (boron trifluoride monoethylamine), DICY (dicyandiamide), DC.
MU (dichlorophenyldimethylurea), imidazole, DDS (diaminodiphenyl sulfone), DDM
(Diaminodiphenylmethane) and the like are widely used.

【0035】特に、250°F硬化型の場合、エピビス
型とノボラック型エポキシ樹脂を主成分とし、硬化剤は
DICY、促進剤はDCMUがよく使用される。また、
350°F硬化型の場合、四官能エポキシ樹脂であるT
GDDMを主成分に、硬化剤はDDS、促進剤はBF3
・MEAの組合せでよく使用される。ここで、着色した
和紙の色を成形品で活かすには、樹脂の色に配慮しなけ
ればならない。また、本発明の目的を損なわない範囲で
本プリプレグシートはスクリムクロス等と組合わせるこ
とも可能である。
Particularly, in the case of 250 ° F. curing type, epibis type and novolac type epoxy resin is mainly used, DICY is often used as the curing agent, and DCMU is often used as the accelerator. Also,
In the case of 350 ° F curing type, T which is a tetrafunctional epoxy resin
Main component is GDDM, curing agent is DDS, accelerator is BF3
-Often used in MEA combinations. Where colored
In order to make the best use of the color of Japanese paper in molded products, it is necessary to consider the color of the resin. Further, the prepreg sheet can be combined with a scrim cloth or the like within a range that does not impair the object of the present invention.

【0036】プリプレグシートから繊維強化樹脂管状体
を成形するには、ローリングマシーンによるシートワイ
ンディング法(筒巻き法)が一般的である。
To form a fiber-reinforced resin tubular body from a prepreg sheet, a sheet winding method (rolling method) using a rolling machine is generally used.

【0037】[0037]

【作用】本発明のプリプレグ及び繊維強化樹脂管状体が
種々の優れた特性を持つ理由は、十分に解明されていな
いが、以下のような要因に基づくものと推定される。
The reason why the prepreg and the fiber-reinforced resin tubular body of the present invention have various excellent properties has not been fully clarified, but is presumed to be based on the following factors.

【0038】本発明に使用する和紙は強度、弾性率、強
靱性が高い。これは、和紙の主成分となる繊維の比強
度、比弾性率が高く、アスペクト比が大きいこと、及び
繊維間相互の接着強度が強いこと等による。特に繊維を
配向させて抄紙した異方性を持つ和紙は強度、弾性率が
高い。また、和紙を強化材とすることにより、基本的に
は短繊維強化樹脂でありながら、繊維の含有率、配向
性、及び分散性が安定する。また、該和紙は多孔性であ
ることから、マトリックス樹脂の含浸性が良く、ボイド
等の欠陥を生じにくい。
The Japanese paper used in the present invention has high strength, elastic modulus and toughness. This is because fibers, which are the main components of Japanese paper , have a high specific strength and a high specific elastic modulus, a large aspect ratio, and a strong adhesive strength between the fibers. In particular, anisotropic Japanese paper made by orienting fibers has high strength and elastic modulus. In addition, by using Japanese paper as the reinforcing material, the fiber content, orientation, and dispersibility are stabilized, although it is basically a short fiber reinforced resin. Further, the Japanese paper since it is porous, good impregnation of the matrix resin, hardly cause defects such as voids.

【0039】上記理由から、本発明のプリプレグシート
から成形した繊維強化樹脂、特に管状体は、連続繊維を
強化材とした場合に近い補強効果が得られ、従来の天然
繊維強化材と比べ、高い比強度、比弾性率を有する。そ
の一方で、強化材の和紙及び繊維が延性を有すること等
ら耐衝撃性に優れている。また、振動減衰性も大き
い。
For the above reason, the fiber reinforced resin molded from the prepreg sheet of the present invention, particularly the tubular body, has a reinforcing effect close to that obtained when the continuous fiber is used as the reinforcing material, and is higher than the conventional natural fiber reinforcing material. It has a specific strength and a specific elastic modulus. On the other hand, Japanese paper and fiber reinforcement is superior to such <br/> or al impact ductile. Also, the vibration damping property is large.

【0040】次に、成形面から見れば、本発明のプリプ
レグシートは薄くできるため、薄肉の管状体や細い管状
体の成形に有利である。また、織物をシートワインディ
ングあるいはFWから成形した管状体に比べ、繊維に屈
曲した部分が少なく、応力集中しにくい。
Next, from the viewpoint of the molding surface, the prepreg sheet of the present invention can be made thin, which is advantageous for molding a thin tubular body or a thin tubular body. Further, as compared with a tubular body formed by sheet winding or FW of a woven fabric, there are few bent portions in the fiber, and stress concentration is less likely to occur.

【0041】[0041]

【実施例】原料繊維、配合を変化させ抄紙した各種紙の
物性を表6に示す。ここで、MDは機械方向、CDはそ
れと垂直方向である。和紙No.1〜5は実施例に使用し
和紙で、これらは繊維配向方向に高い引張強度、引張
弾性率を持つ。和紙No.6及び7は比較例に使用した
で、これらは引張強度、引張弾性率ともに低い。
[Examples] Table 6 shows the physical properties of various papers produced by changing the raw material fibers and the composition. Here, MD is the machine direction and CD is the direction perpendicular to it. Washi Nos. 1 to 5 are the Washi used in the examples, and these have high tensile strength and tensile elastic modulus in the fiber orientation direction. Sum paper No.6 and 7 used in Comparative Example
In paper , they have low tensile strength and tensile modulus.

【0042】[0042]

【表6】 [Table 6]

【0043】表7は、表6に示した和紙に対してビスフ
ェノールA型エポキシ樹脂(油化シェルエポキシ[株]
製、エピコート828)30重量部、ビスフェノールA
型エポキシ樹脂(油化シェルエポキシ[株]製、エピコ
ート1001)70重量部、硬化剤としてDICY(油
化シェルエポキシ[株]製、エピキュアDICY−7)
4重量部、硬化促進剤としてDCMUを4重量部の比率
で混合し、エポキシ樹脂組成物としたものである。この
樹脂を離型紙上に塗布し、これと和紙を重ね合わせて、
プレスローラーで加熱圧着させ、和紙に樹脂を含浸させ
実施例1乃至5及び比較例1及び2のプリプレグを得
た。その性状を表7に示す。
Table 7 shows bisphenol A type epoxy resin (Okaka Shell Epoxy Co., Ltd.) for Japanese paper shown in Table 6 .
Made, Epicoat 828) 30 parts by weight, bisphenol A
Type epoxy resin (Okaka Shell Epoxy [Co.], Epicoat 1001) 70 parts by weight, DICY as a curing agent (Okaka Shell Epoxy [Co.], Epicure DICY-7)
4 parts by weight and 4 parts by weight of DCMU as a curing accelerator were mixed to obtain an epoxy resin composition. Apply this resin on release paper, overlap this with Japanese paper ,
The prepregs of Examples 1 to 5 and Comparative Examples 1 and 2 were obtained by impregnating Japanese paper with a resin by thermocompression bonding with a press roller. The properties are shown in Table 7 .

【0044】比較例1,2に使用した和紙は樹脂の含浸
が悪く、紙強度も低いことから樹脂量が多くなってい
る。
The Japanese papers used in Comparative Examples 1 and 2 are poor in resin impregnation and have low paper strength, so that the amount of resin is large.

【0045】[0045]

【表7】 [Table 7]

【0046】本プリプレグの基本的な力学特性を把握す
るため、プリプレグをプレス成形により積層板とし、引
張試験及び3点曲げ試験を行なった。その測定結果を表
8に示す。測定は各々JIS K 7054(198
7)及びJIS K 7055(1987)に準じて行
なった。実施例1〜5のプリプレグより成形した積層板
は強度、弾性率とも高く、種々の製品に利用できること
が判る。一方、比較例1及び2の積層板は強度、弾性率
とも低く、実用には向かない。
In order to grasp the basic mechanical characteristics of the prepreg, a prepreg was formed into a laminated plate by press molding, and a tensile test and a three-point bending test were conducted. The measurement results are shown in Table 8. The measurement is performed according to JIS K 7054 (198).
7) and JIS K 7055 (1987). It can be seen that the laminated plates formed from the prepregs of Examples 1 to 5 have high strength and elastic modulus and can be used for various products. On the other hand, the laminated plates of Comparative Examples 1 and 2 have low strength and elastic modulus and are not suitable for practical use.

【0047】[0047]

【表8】 [Table 8]

【0048】さらに、上記プリプレグをシートワインデ
ィングにより芯金に巻きつけ、硬化処理後脱芯して成形
した管状体の耐衝撃性、振動減衰性を調べた結果を表9
に示す。ここで、○は良好、△は不良であることを示
す。
Further, the results of examining the impact resistance and vibration damping property of the tubular body formed by winding the above prepreg around a core metal by sheet winding, curing the core and then molding the core body are shown in Table 9.
Shown in. Here, ◯ means good and Δ means bad.

【0049】本発明の実施例1〜5から成形した管状体
は、耐衝撃性、振動減衰性も良好で、釣竿、ゴルフシャ
フト等のスポーツ用品等の種々の分野での応用が可能で
ある。又、薄肉管及び細管の成形も容易に行うことがで
きる。
The tubular bodies formed from Examples 1 to 5 of the present invention have good impact resistance and vibration damping properties, and can be applied in various fields such as fishing rods, sports equipment such as golf shafts, and the like. In addition, thin-walled tubes and thin tubes can be easily formed.

【0050】これに対して、比較例1及び2から成形し
た管状体は、耐衝撃性、振動減衰性も劣り、釣竿、ゴル
フシャフト等には使用できないものであった。
On the other hand, the tubular bodies molded from Comparative Examples 1 and 2 were inferior in impact resistance and vibration damping property, and could not be used for fishing rods, golf shafts and the like.

【0051】[0051]

【表9】 [Table 9]

【0052】[0052]

【発明の効果】以上詳述したように、この発明は下記の
ような優れた効果を奏する。 1)植物繊維を強化材としているため、従来の高性能繊
維と比べ廃棄処理が容易である。これから成形した繊維
強化樹脂もマトリックス樹脂の組成に留意すれば容易に
焼却できる。 2)本発明の管状体は、軽量で、実用上十分な強度、弾
性率を持ち、さらに耐衝撃性、振動減衰性に優れる。 3)プリプレグ及び管状体の製造にあたっては、生産性
の高い方法が採用できる。4)薄肉管や細管を成形する
ことができる。 5)繊維あるいは和紙を着色しておくことにより、従来
の表面塗装した成形品とは違った品位の製品ができる。
As described in detail above, the present invention has the following excellent effects. 1) Since vegetable fiber is used as a reinforcing material, it is easier to dispose of it than conventional high performance fiber. The fiber-reinforced resin molded from this can be easily incinerated if the composition of the matrix resin is taken into consideration. 2) The tubular body of the present invention is lightweight, has practically sufficient strength and elastic modulus, and is also excellent in impact resistance and vibration damping. 3) In producing the prepreg and the tubular body, a method with high productivity can be adopted. 4) A thin tube or a thin tube can be formed. 5) By coloring the fibers or Japanese paper , a product with a quality different from the conventional surface-coated molded product can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 靱皮繊維または葉脈繊維の少なくとも1
種を主成分とする和紙にマトリックス樹脂を含浸させた
プリプレグシート。
1. At least one of bast fibers or vein fibers.
A prepreg sheet made by impregnating a Japanese resin containing seeds as the main component with a matrix resin.
【請求項2】 紙が異方性を有する請求項1に記載のプ
リプレグシート。
2. The prepreg sheet according to claim 1, wherein the paper has anisotropy.
【請求項3】 紙の所定方向の引張強度が1400kgf/cm2
以上、引張弾性率が1000kgf/mm2以上である請求項1ま
たは2に記載のプリプレグシート。
3. The tensile strength of paper in a predetermined direction is 1400 kgf / cm 2.
The prepreg sheet according to claim 1 or 2, which has a tensile elastic modulus of 1000 kgf / mm 2 or more.
【請求項4】 請求項1、2または3記載のプリプレグ
シートを芯体に捲回し、管状に成形した繊維強化樹脂管
状体。
4. A fiber-reinforced resin tubular body formed by winding the prepreg sheet according to claim 1, 2 or 3 around a core body and forming a tubular shape.
JP5315313A 1993-12-15 1993-12-15 Prepreg sheet and fiber-reinforced resin tubular form Pending JPH07165950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315313A JPH07165950A (en) 1993-12-15 1993-12-15 Prepreg sheet and fiber-reinforced resin tubular form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315313A JPH07165950A (en) 1993-12-15 1993-12-15 Prepreg sheet and fiber-reinforced resin tubular form

Publications (1)

Publication Number Publication Date
JPH07165950A true JPH07165950A (en) 1995-06-27

Family

ID=18063900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315313A Pending JPH07165950A (en) 1993-12-15 1993-12-15 Prepreg sheet and fiber-reinforced resin tubular form

Country Status (1)

Country Link
JP (1) JPH07165950A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109308A (en) * 1995-10-13 1997-04-28 Ube Nitto Kasei Co Ltd Fiber reinforced thermoplastic resin composite sheet
JP2002226835A (en) * 2001-01-31 2002-08-14 Tokico Ltd Brake friction material
JP2004143401A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Fiber-reinforced plastic using plant fiber
JP2006265742A (en) * 2005-03-22 2006-10-05 Oji Paper Co Ltd Raw paper for paper yarn
JP2016074197A (en) * 2013-10-28 2016-05-12 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molding
WO2017094850A1 (en) * 2015-12-02 2017-06-08 王子ホールディングス株式会社 Sheet for fiber reinforced plastic molded body, prepress sheet for fiber reinforced plastic molded body, and molded body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109308A (en) * 1995-10-13 1997-04-28 Ube Nitto Kasei Co Ltd Fiber reinforced thermoplastic resin composite sheet
JP2002226835A (en) * 2001-01-31 2002-08-14 Tokico Ltd Brake friction material
JP2004143401A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Fiber-reinforced plastic using plant fiber
JP2006265742A (en) * 2005-03-22 2006-10-05 Oji Paper Co Ltd Raw paper for paper yarn
JP2016074197A (en) * 2013-10-28 2016-05-12 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molding
WO2017094850A1 (en) * 2015-12-02 2017-06-08 王子ホールディングス株式会社 Sheet for fiber reinforced plastic molded body, prepress sheet for fiber reinforced plastic molded body, and molded body
JPWO2017094850A1 (en) * 2015-12-02 2018-11-01 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molded body, prepress sheet for fiber-reinforced plastic molded body, and molded body

Similar Documents

Publication Publication Date Title
Nakagaito et al. Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers
JPS6316488B2 (en)
JP4360233B2 (en) Golf shaft
JPH0271771A (en) Golf shaft and manufacture thereof
GB2164618A (en) A fiber reinforced composite spar for a rotary wing aircraft
JP2005256211A5 (en)
EP2925517A1 (en) Sandwich material
JPH07165950A (en) Prepreg sheet and fiber-reinforced resin tubular form
JP5341787B2 (en) Fiber reinforced composite bat
CN114133606A (en) Preparation method and system of high-toughness thermosetting resin-based prepreg
JP6503182B2 (en) Molded body and method for producing the same
JP2005067064A (en) Fiber-reinforced plastic material using vegetable fiber
JP2527392B2 (en) Frame for light vehicle made of natural fiber reinforced composite pipe
JP3137241B2 (en) Speaker diaphragm
JPS6356330B2 (en)
JP2522734B2 (en) Method for manufacturing plant fiber reinforced composite pipe
JP3711101B2 (en) Para aromatic polyamide paper and method for producing the same
Nemoto et al. All-cellulose material prepared using aqueous zinc chloride solution
CN111421921B (en) Sheath-core fiber/carbon fiber thermoplastic composite material and preparation method thereof
CN112064412A (en) Cotton stick body paper and manufacturing method thereof
JPH07186284A (en) Fiber reinforced resin tubular member
JP2003268137A (en) Prepreg and method for producing prepreg
KR102660288B1 (en) Natural Fiber Reinforced Composite Material Comprising Cellulose Nanofibril and Manufacturing Method thereof
JPS5831695A (en) Diaphragm for speaker
JP2023149892A (en) Continuous manufacturing method of carbon fiber sheet and manufacturing method of carbon fiber-reinforced composite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120