JP2522349B2 - Film thickness measurement method - Google Patents

Film thickness measurement method

Info

Publication number
JP2522349B2
JP2522349B2 JP63101001A JP10100188A JP2522349B2 JP 2522349 B2 JP2522349 B2 JP 2522349B2 JP 63101001 A JP63101001 A JP 63101001A JP 10100188 A JP10100188 A JP 10100188A JP 2522349 B2 JP2522349 B2 JP 2522349B2
Authority
JP
Japan
Prior art keywords
sample
characteristic
thickness
ray
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63101001A
Other languages
Japanese (ja)
Other versions
JPH01270606A (en
Inventor
由佳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63101001A priority Critical patent/JP2522349B2/en
Publication of JPH01270606A publication Critical patent/JPH01270606A/en
Application granted granted Critical
Publication of JP2522349B2 publication Critical patent/JP2522349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は試料に電子線を照射し、試料を構成している
元素から放射される特性X線を検出することにより、試
料を膜厚を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention irradiates a sample with an electron beam and detects characteristic X-rays emitted from the elements constituting the sample to determine the film thickness of the sample. Regarding how to measure.

(従来の技術) 透明膜の厚さ測定には光学的な方法が適用できるが、
不透明な試料に対しては適用できない。試料に電子線を
照射し、試料から放射される特性X線の強度を測定する
方法は試料の透明,不透明とかに関せずまた金属,非金
属等何れにも適用できて、膜厚測定のできる試料の材質
範囲が広い特徴がある。
(Prior Art) An optical method can be applied to measure the thickness of the transparent film,
Not applicable for opaque samples. The method of irradiating a sample with an electron beam and measuring the intensity of the characteristic X-rays emitted from the sample can be applied to both metallic and non-metallic materials regardless of whether the sample is transparent or opaque. There is a feature that the material range of the sample that can be made is wide.

上述した電子線を用いる方法の原理は次のようなもの
である。試料に電子線を照射して、試料から放射される
試料成分元素の特性X線の強度を測定すると、試料が薄
いときは、特性X線強度は試料の厚さと共に増加し、や
がて飽和する。従って試料が薄いときはその厚さと特性
X線の強度との関係から試料の薄膜の厚さを求めること
ができる。この場合、試料膜の厚さと特性X線強度との
関係を較正しておく必要があり、そのため少くとも一種
類、場合によっては数種の厚さ既知の標準試料が必要で
ある。
The principle of the method using the electron beam described above is as follows. When the sample is irradiated with an electron beam and the intensity of the characteristic X-ray of the sample component element emitted from the sample is measured, when the sample is thin, the characteristic X-ray intensity increases with the thickness of the sample and eventually becomes saturated. Therefore, when the sample is thin, the thickness of the thin film of the sample can be obtained from the relationship between the thickness and the intensity of the characteristic X-ray. In this case, it is necessary to calibrate the relationship between the thickness of the sample film and the characteristic X-ray intensity, and therefore at least one kind, and in some cases, several kinds of standard samples of known thickness are necessary.

(発明が解決しようとする課題) 上述したように電子線を照射し、試料から放射される
特性X線を測定する従来の膜厚測定方法では標準試料が
必要であるが、試料によっては標準試料を入手するのが
困難な場合がある。
(Problems to be Solved by the Invention) As described above, a standard sample is required in the conventional film thickness measurement method of irradiating an electron beam and measuring the characteristic X-rays emitted from the sample. Can be difficult to obtain.

従って本発明は上述した膜厚測定法を標準試料なし
で、行えるようにしようとするものである。
Therefore, the present invention is intended to enable the above-described film thickness measurement method to be performed without a standard sample.

(課題を解決するための手段) 2種以上の互いに異る加速電圧で加速された電子線を
試料に照射したとき試料から放射される試料構成元素の
一つの特性X線の強度比と試料の厚さとの関係を予め計
算によって求めておき、上記と同じ各電圧で加速された
電子線を試料に照射したときの上記特性X線の実測強度
比から、上記強度比と厚さとの関係によって試料の膜厚
を求めるようにした。
(Means for Solving the Problem) When the sample is irradiated with electron beams accelerated by two or more different accelerating voltages, the intensity ratio of one characteristic X-ray of the sample constituent element emitted from the sample and the sample The relationship with the thickness is obtained in advance, and the measured intensity ratio of the characteristic X-rays when the sample is irradiated with an electron beam accelerated by the same voltage as described above is used to calculate the relationship between the intensity ratio and the thickness of the sample. The film thickness of was determined.

(作用) 一定の加速電圧で加速された電子線を与えられた試料
に照射したとき、試料の表面から任意深さの層から発せ
られる試料構成元素の特性X線の強度は試料面からの深
さdの関数として理論的に計算できる。この関数の形は
第2図に示すようになっており、試料から成る深さの所
で最大値を示す。第2図は二つの電子加速電圧の場合に
ついて示してある。試料に電子線を照射したとき得られ
る特性X線の強度Xは試料の厚さをtとすると、図の関
数を深さ0からtまで積分した値に比例することにな
る。これを第3図Aに示す。所で試料から放射される特
性X線強度が最大になる深さ、第2図でdm或はdm′は照
射電子の加速電圧によって異り、同図に示すように加速
電圧が低いときは浅い方が近づいて来る。電子が原子を
励起して特性X線を放出させるためには下限エネルギが
存在するが、エネルギーが大き過ぎても物質内で電子が
原子を励起する確率が低下するため最適のエネルギーが
ある。他方物質内に進入した電子は物質内を移動する間
にエネルギーを失って行くので、統計的に見て、試料面
から或る深さの所でこの最適エネルギーになる。また試
料面からの深さが深くなる程到達する電子数が減少す
る。このため照射電子の加速電圧に関係して或る深さの
層で特性X線放射強度が最大となり、その深さは加速電
圧が低い程浅くなる。本発明はこの関係を利用するもの
である。
(Action) When a given sample is irradiated with an electron beam accelerated by a constant accelerating voltage, the intensity of the characteristic X-rays of the sample constituent elements emitted from the layer of an arbitrary depth from the surface of the sample is the depth from the sample surface. It can be theoretically calculated as a function of d. The shape of this function is as shown in FIG. 2, and shows the maximum value at the depth of the sample. FIG. 2 shows the case of two electron acceleration voltages. The intensity X of the characteristic X-ray obtained when the sample is irradiated with the electron beam is proportional to the value obtained by integrating the function in the figure from depth 0 to t, where t is the thickness of the sample. This is shown in FIG. 3A. The depth at which the characteristic X-ray intensity emitted from the sample is maximum, dm or dm 'in Fig. 2 depends on the accelerating voltage of the irradiating electrons, and is shallow when the accelerating voltage is low as shown in the same figure. The one coming closer. There is a lower limit energy for the electrons to excite the atoms to emit the characteristic X-rays, but even if the energy is too large, the probability that the electrons excite the atoms in the substance decreases, so there is an optimum energy. On the other hand, the electrons that have entered the substance lose their energy while moving in the substance, and statistically, this is the optimum energy at a certain depth from the sample surface. Moreover, the number of arriving electrons decreases as the depth from the sample surface increases. Therefore, the characteristic X-ray emission intensity becomes maximum in a layer having a certain depth in relation to the acceleration voltage of the irradiation electrons, and the depth becomes shallower as the acceleration voltage becomes lower. The present invention utilizes this relationship.

第3図Aは試料の厚さと特性X線強度Xとの関係を二
つの加速電圧の場合について画いたもので、同Bはこの
二つの場合のX線強度の比を示す。この比のカーブは第
2図の関数が理論的に計算できるから、予め計算可能で
ある。そこで被測定試料について、上記計算に用いたの
と同じ電圧で加速された電子を試料に照射したときの特
性X線強度の実測値から、加速電圧を変えたときの強度
比を求め、第3図Bのカーブによって厚さを求めること
ができる。比のカーブは第3図Bのように途中に最大値
の点があるので、厚さ0からtまでの範囲では一つの比
の値に対して厚さが二つ求まり、これだけでは厚さを決
定できない。このような場合でも第3の電圧で加速した
電子線を照射した場合の特性X線の強度の実測値を用い
て厚さを決定することができる。第4図でAは加速電圧
がV1とV2の場合の比のカーブ、Bは加速電圧がV1とV3の
場合の比のカーブで、加速電圧がV1とV2の場合の特性X
線の強度比がK1であったとき、カーブAによると厚さが
t1とt2の二種求まるが、加速電圧がV1の場合とV3の場合
の特性強度比の実測値がK2であったとするとカーブBか
ら厚さがt1′とt2′と二つ求まり、このうちt1とt1′と
が一致することから厚さt1が決定される。
FIG. 3A illustrates the relationship between the thickness of the sample and the characteristic X-ray intensity X in the case of two accelerating voltages, and FIG. 3B shows the ratio of the X-ray intensity in these two cases. The curve of this ratio can be calculated in advance because the function of FIG. 2 can be theoretically calculated. Then, for the sample to be measured, the intensity ratio when the accelerating voltage is changed is obtained from the measured value of the characteristic X-ray intensity when the sample is irradiated with electrons accelerated by the same voltage as used in the above calculation, The thickness can be determined from the curve in FIG. Since the ratio curve has a point of maximum value in the middle as shown in FIG. 3B, two thicknesses are obtained for one ratio value in the thickness range from 0 to t. I can't decide. Even in such a case, the thickness can be determined by using the actual measurement value of the intensity of the characteristic X-ray when the electron beam accelerated by the third voltage is applied. In FIG. 4, A is a curve of the ratio when the accelerating voltage is V1 and V2, B is a curve of the ratio when the accelerating voltage is V1 and V3, and shows a characteristic X when the accelerating voltage is V1 and V2.
When the strength ratio of the wire is K1, according to curve A, the thickness is
Two types, t1 and t2, are obtained. If the measured value of the characteristic intensity ratio when the accelerating voltage is V1 and V3 is K2, two thicknesses, t1 ′ and t2 ′, are obtained from curve B. The thickness t1 is determined from the agreement between t1 and t1 '.

(実施例) 第1図は本発明方法をコンピュータを用いて実施する
場合の動作のフローチャートである。被測定膜およびそ
の膜を支持している基板の元素組成を入力し(イ)、使
用する電子加速電圧V1,V2,V3を設定すると(ロ)、夫々
の加速電圧の場合につき、試料厚さ1,2,…i…n(単位
nm)毎に放射X線強度I1i,I2i,I3iの計算を行う(ハ)
(ニ)(ホ)。次いで各加速電圧における特性X線の強
度比(I2i/I1i)および(I3i/I1i)と試料厚さ1,2,…i
…nとの関係テーブルA,Bを作成(ヘ)(ト)する。こ
の関係テーブルが第4図のカーブA,Bに相当する。この
テーブル作成が終ったら、被測定試料についてEPMAを用
いて電子加速電圧V1,V2,V3で試料の特性X線強度X1,X2,
X3を実測してその結果を入力(チ)し、厚さ決定を行わ
せる。即ち(X2/X1)および(X3/X1)を算出(リ)し、
テーブルA,Bから該当する厚さt1,t2およびt1′,t2′を
索出(ヌ)(ル)し、t1,t2のグループとt1′t2′のグ
ループから互いに最も近い値例えばt1とt1′を求めその
平均(t1+t1′)/2を試料の膜厚として出力表示(ヲ)
する。
(Embodiment) FIG. 1 is a flowchart of the operation when the method of the present invention is carried out using a computer. Enter the elemental composition of the film to be measured and the substrate supporting the film (a) and set the electron acceleration voltages V1, V2, and V3 to be used (b). For each acceleration voltage, sample thickness 1,2, ... i ... n (unit
The radiation X-ray intensities I1i, I2i, I3i are calculated for each (nm) (C).
(D) (e). Next, the intensity ratios (I2i / I1i) and (I3i / I1i) of the characteristic X-rays at each accelerating voltage and the sample thicknesses 1, 2, ...
... Create relation tables A and B with n (f) (g). This relationship table corresponds to curves A and B in FIG. When this table is created, the characteristic X-ray intensities X1, X2, and X-ray intensity of the sample are measured with EPMA using electron acceleration voltages V1, V2, and V3.
Measure X3 and enter (h) the result to have the thickness determined. That is, (X2 / X1) and (X3 / X1) are calculated (re),
The corresponding thicknesses t1, t2 and t1 ', t2' are searched out from the tables A, B (n) (ru), and the values closest to each other from the groups of t1, t2 and t1't2 ', for example, t1 and t1. ′ Is calculated and the average (t1 + t1 ′) / 2 is output as the film thickness of the sample.
To do.

特性X線の強度の計算は次のようにして行われる。試
料に入射した電子は試料を構成している原子の衝突しな
がら不規則な軌道を画いて進行し次第にエネルギーを失
って遂に試料内に吸収されるか或は再び試料から脱出す
る。このような過程は確率的なものであり、電子が試料
内を進行する間に試料を構成している原子を励起させて
特性X線を放出させる頻度も確率的であり、それらの確
率は電子の初期加速電圧、試料の組成によって決まって
いる。そこでそれらの確率を用いて一個の電子が試料に
入射したときの電子の動きをシミュレートして特性X線
放出の確率を計算する。このような計算を電子数1〜2
万個程度について行うことによって試料の厚さと特性X
線強度との関係を求める。この場合、試料が薄いときは
試料を貫通した電子が基板層に進入し、それらの電子の
中には基板層内で反射されて再び試料層に進入し特性X
線を放出させるものがあり、基板層から反射されて来る
電子の数やエネルギーは基板層の組成に依存しているの
で、計算に当っては基板層の組成データも必要となる。
The calculation of the characteristic X-ray intensity is performed as follows. The electrons incident on the sample travel in an irregular orbit while colliding with the atoms constituting the sample, gradually lose energy, and are finally absorbed in the sample or escape from the sample again. Such a process is probabilistic, and the frequency with which the atoms constituting the sample are excited and characteristic X-rays are emitted while the electron travels in the sample is also probabilistic. It depends on the initial accelerating voltage and the composition of the sample. Therefore, the probability of characteristic X-ray emission is calculated by simulating the movement of an electron when one electron is incident on the sample using those probabilities. The number of electrons is 1 to 2
The thickness and characteristics of the sample X
Find the relationship with the line strength. In this case, when the sample is thin, electrons penetrating the sample enter the substrate layer, and some of these electrons are reflected in the substrate layer and enter the sample layer again, and the characteristic X
Some of them emit a line, and the number and energy of electrons reflected from the substrate layer depend on the composition of the substrate layer. Therefore, the composition data of the substrate layer is also necessary for the calculation.

上述した計算で求められるX線強度は相対値であり、
実測X線強度は試料を照射する電子線電流の値によって
も異るから、計算値を直接実測X線強度と比較すること
はできないが、二つの加速電圧におけるX線強度の比は
相対値の比であっても実測値の比でも同じになるから、
比の値は計算値と実測値と直接比較することができ、標
準試料を用いて計算値と実測値との換算比率を決定する
と云うような操作なしに、膜厚が求められるのである。
The X-ray intensity obtained by the above calculation is a relative value,
Since the measured X-ray intensity differs depending on the value of the electron beam current irradiating the sample, it is impossible to directly compare the calculated value with the actually measured X-ray intensity, but the ratio of the X-ray intensities at the two acceleration voltages is a relative value. Since the ratio is the same as the measured value ratio,
The ratio value can be directly compared with the calculated value and the measured value, and the film thickness can be obtained without the operation of determining the conversion ratio between the calculated value and the measured value using a standard sample.

(発明の効果) 本発明によればEPMAのようなX線分光分析装置を用い
て標準試料なしに、薄膜の厚さが測定できるので、技術
的或は経済上の理由で標準試料が入手できないような試
料でも膜厚測定が可能となる。
(Effect of the invention) According to the present invention, the thickness of a thin film can be measured without using a standard sample by using an X-ray spectroscopic analyzer such as EPMA. Therefore, a standard sample cannot be obtained for technical or economic reasons. It is possible to measure the film thickness of such a sample.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実行するコンピュータの動作のフ
ローチャート、第2図は試料面からの深さとその深さの
層から発せられる特性X線強度との関係グラフ、第3図
Aは試料の厚さと試料から放射される特性X線強度との
関係のグラフ、第3図Bは加速電圧が異る場合の特性X
線の強度比と試料厚さとの関係のグラフ、第4図は第3
図のグラフから試料厚さを求める手順を説明するグラフ
である。
FIG. 1 is a flow chart of the operation of a computer for carrying out the method of the present invention, FIG. 2 is a relationship graph between the depth from the sample surface and the characteristic X-ray intensity emitted from the layer at that depth, and FIG. A graph of the relationship between the thickness and the characteristic X-ray intensity emitted from the sample, FIG. 3B shows the characteristic X when the accelerating voltage is different.
Graph of the relationship between line intensity ratio and sample thickness
It is a graph explaining the procedure which calculates | requires sample thickness from the graph of a figure.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2種以上の互いに異る加速電圧で加速され
た電子線を試料に照射したとき試料から放射される試料
構成元素の一つの特性X線の強度比と試料厚さとの関係
を予め計算しておき、上記と同じ各電圧で加速した電子
を試料に照射して、夫々の加速電圧での上記特性X線強
度を実測し、これら実測X線強度の比から、上述予め計
算により求めた厚さと強度比との関係によって試料の厚
さを決定することを特徴とする膜厚測定方法。
1. A relationship between the sample thickness and the intensity ratio of one characteristic X-ray of a sample constituent element emitted from the sample when the sample is irradiated with electron beams accelerated by two or more different acceleration voltages. It is calculated in advance, the sample is irradiated with electrons accelerated at the same respective voltages as above, the characteristic X-ray intensities at the respective acceleration voltages are measured, and the ratio of these measured X-ray intensities is calculated in advance by the above-mentioned calculation. A film thickness measuring method, characterized in that the thickness of the sample is determined by the relationship between the obtained thickness and the strength ratio.
JP63101001A 1988-04-22 1988-04-22 Film thickness measurement method Expired - Lifetime JP2522349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101001A JP2522349B2 (en) 1988-04-22 1988-04-22 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101001A JP2522349B2 (en) 1988-04-22 1988-04-22 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH01270606A JPH01270606A (en) 1989-10-27
JP2522349B2 true JP2522349B2 (en) 1996-08-07

Family

ID=14289033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101001A Expired - Lifetime JP2522349B2 (en) 1988-04-22 1988-04-22 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JP2522349B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767650B2 (en) * 1999-11-05 2011-09-07 株式会社トプコン Semiconductor device inspection equipment

Also Published As

Publication number Publication date
JPH01270606A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
Nürnberg et al. Radiochromic film imaging spectroscopy of laser-accelerated proton beams
US5055679A (en) Surface analysis method and apparatus
Hyman Time resolution of photomultiplier systems
US3525863A (en) Differential emission x-ray gauging apparatus and method using two monochromatic x-ray beams of balanced intensity
Gauvin et al. Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations
JP2522349B2 (en) Film thickness measurement method
US20090228216A1 (en) Methods, a processor, and a system for improving an accuracy of identification of a substance
Cazaux Mathematical and physical considerations on the spatial resolution in scanning Auger electron microscopy
US3666943A (en) Method of and apparatus for determining the mean size of given particles in a fluid
Pantenburg et al. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation
JPH10221047A (en) Fluorescent x-ray film thickness analyzer and method
Rosa et al. Monte carlo simulation of thin‐film X‐ray microanalysis at high energies
Loh et al. Computer simulation of PIXE and μ-PIXE spectra for inhomogeneous thick target analysis
JP2906606B2 (en) Qualitative analysis of thin film samples
JPH0719844A (en) Measuring method for roughness of surface of wafer
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
Maor et al. Efficiency of Ge and Si (Li) detectors at very low energies by an X-ray doublet method
JP2595686B2 (en) X-ray spectroscopy by electron beam excitation
Jonnard et al. Modulation of x-ray line intensity emitted by a periodic structure under electron excitation
JP2730227B2 (en) X-ray depth analysis method
JP2819716B2 (en) X-ray spectroscopy for thin film determination and film thickness measurement
Mantouvalou Quantitative 3D Micro X-ray fluorescence spectroscopy
JP2884692B2 (en) Quantitative measurement method of sample coated with vapor deposited film
Rosner et al. Thickness gauging through the ratio of X-ray fluorescence lines
JP2867621B2 (en) Fluorescence excitation correction method for multilayer film