JP2520734B2 - Ultrasonic power flow measuring device - Google Patents

Ultrasonic power flow measuring device

Info

Publication number
JP2520734B2
JP2520734B2 JP1146574A JP14657489A JP2520734B2 JP 2520734 B2 JP2520734 B2 JP 2520734B2 JP 1146574 A JP1146574 A JP 1146574A JP 14657489 A JP14657489 A JP 14657489A JP 2520734 B2 JP2520734 B2 JP 2520734B2
Authority
JP
Japan
Prior art keywords
depth
circuit
seabed
signal
plankton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1146574A
Other languages
Japanese (ja)
Other versions
JPH0312557A (en
Inventor
泰則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP1146574A priority Critical patent/JP2520734B2/en
Publication of JPH0312557A publication Critical patent/JPH0312557A/en
Application granted granted Critical
Publication of JP2520734B2 publication Critical patent/JP2520734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動的に潮流測定層の深度が海底に対して常
に一定となるようにして、潮流測定層の設定操作の煩雑
さや、測定の不正確、不能などを排除した超音波潮流計
測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention automatically sets the depth of a tidal current measurement layer to be always constant with respect to the seabed, and complicates the setting operation of the tidal current measurement layer, and The present invention relates to an ultrasonic power flow measuring device that eliminates inaccuracy and impossibility.

(従来技術とその解決すべき問題点) 海中における潮流の速度および方向の分布図などの作
製に当たって、超音波を利用した次の原理による潮流計
測装置が使用されている。
(Prior Art and Problems to be Solved) In preparing a distribution map of the velocity and direction of a tidal current in the sea, a tidal current measuring device based on the following principle using ultrasonic waves is used.

この装置は例えば第1図(a)(b)および第2図の
ように制御部(1)からの送信制御信号P1により制御さ
れる送信部(2)からの送信駆動信号P2により船底に設
けた送受波器(3a)(3b)から海底Bの斜方向に同時に
発射された船の前後方向および左右方向の4本の超音波
ビームSa,Sb,Sc,Sdを発射する。そしてこれらにもとづ
く海中に浮遊するプランクトンなどからの第3図(a)
の反射波Rpa,Rpb,Rpc,Rpd(図ではRpaのみを示してい
る)と、海底Bからの第3図(a)の反射波RBa,RBb,R
Bc,RBd(図ではRBaのみを示す)を受波し、これらを電
気信号に変換する。そののち第2図の受信増幅器(4a)
(4b)(4c)(4d)によりそれぞれ所要のレベルまで増
幅したのち、例えば海底反射信号のレベルがプランクト
ンなどからの反射信号レベルに比べて大きいことを利用
して、スライス回路(5a)(5b)(5c)(5d)により第
3図(d)中に破線で示す閾値レベル以上の海底反射信
号RBa,RBb,RBc,RBdを検出し、これによりゲート信号発
生回路(6a)(6b)(6c)(6d)を制御して第3図
(c)に示すゲート信号g1a,g1b,g1c,g1dを作る。そし
てこれらにより海底反射信号取得用ゲート回路(7a)
(7b)(7c)(7d)を一定時間開いて、1回の送波毎に
一定時間幅の海底反射信号RBa,RBb,RBc,RBdを抽出して
演算回路(8)に加える。
For example, as shown in FIGS. 1 (a) and (b) and FIG. 2, this device is controlled by a transmission control signal P 1 from a control unit (1) by a transmission drive signal P 2 from a transmission unit (2). Four ultrasonic beams S a , S b , S c , S d in the front-back and left-right directions of the ship which were simultaneously launched in the oblique direction of the seabed B from the transducers (3a) (3b) provided in To do. And Figure 3 (a) from the plankton floating in the sea based on these
Of the reflected waves R pa , R pb , R pc , R pd (only R pa is shown in the figure) and the reflected waves R Ba , R Bb , R from the seabed B in FIG. 3 (a).
It receives Bc and R Bd (only R Ba is shown in the figure) and converts them into electrical signals. After that, the receiving amplifier (4a) in Fig. 2
After amplification to the required level by (4b), (4c), and (4d), the slice circuit (5a) (5b) is utilized by utilizing the fact that the level of the seafloor reflection signal is larger than the level of the reflection signal from plankton, for example. ) (5c) and (5d) detect submarine reflection signals R Ba , R Bb , R Bc , and R Bd above the threshold level shown by the broken line in FIG. 3 (d), and thereby the gate signal generation circuit (6a) By controlling (6b), (6c) and (6d), the gate signals g 1a , g 1b , g 1c and g 1d shown in FIG. 3 (c) are produced. And by these, the gate circuit for submarine reflection signal acquisition (7a)
(7b) (7c) (7d) is opened for a certain period of time, and the seabed reflection signals R Ba , R Bb , R Bc , and R Bd of a certain time width are extracted for each transmission, and the arithmetic circuit (8) is extracted. Add.

一方前記スライス回路(5a)(5b)(5c)(5d)から
得られた海底反射信号RBa,RBb,RBc,RBdを比較回路
(9)により比較して、この中から最も水深の浅い海底
反射信号を検出する。そしてこれを基にして手動により
潮流測定層の水深に相当する送波から潮流測定層からの
反射波の帰来までの時間を設定する手動水深設定回路
(10)の出力信号により制御される、ゲート信号発生回
路(11)により第3図(b)のゲート信号g2を作る。そ
してこれらによりプランクトンなどの反射信号取得用ゲ
ート回路(12a)(12b)(12c)(12d)を一定時間幅だ
け開いて、1回の送波毎に海底の水深より浅い設定水深
におけるプランクトンなどからの反射にもとづく一定時
間幅の信号RPa,RPb,RPc,RPdを抽出して演算回路(8)
に入力する。
On the other hand, the seabed reflection signals R Ba , R Bb , R Bc , and R Bd obtained from the slice circuits (5a) (5b) (5c) (5d) are compared by a comparison circuit (9), and the deepest water among them is extracted. To detect shallow ocean bottom reflection signals. Based on this, the gate is controlled manually by the output signal of the manual depth setting circuit (10) that sets the time from the transmission of the water corresponding to the depth of the tidal current measurement layer to the return of the reflected wave from the tidal current measurement layer. The signal generation circuit (11) produces the gate signal g 2 of FIG. 3 (b). And by these, the gate circuits (12a) (12b) (12c) (12d) for acquisition of reflected signals such as plankton are opened for a certain period of time, and the plankton at a set depth shallower than the depth of the seabed is transmitted for each transmission. Operation circuit by extracting signals R Pa , R Pb , R Pc , and R Pd of constant time width based on the reflection of
To enter.

すると演算回路(8)はここに入力された前記海底反
射信号RBa,RBb,RBc,RBdと、プランクトンなどからの反
射信号RPa,RPb,RPc,RPd中に含まれる周波数成分がドッ
プラ効果により変化することを利用して、1回の送波毎
即ち制御部(1)から送信制御信号P1が加えられる毎に
プランクトンなどの反射信号RPa,RPb,RPc,RPdから対水
船速VWa,VWb,VWc,VWdを算出し、海底反射信号RBa,RBb,R
Bc,RBdから対地船速VEa,VEb,VEc,VEdをそれぞれ算出す
る。そして更に前後方向左右方向における対水船速と対
地船速の差を求めたのちベクトルに量に変換して、潮流
の速さと方向を1回の送波毎にベクトル的に演算して、
表示装置(13)に表示するようにしたものである。
Then, the arithmetic circuit (8) is included in the seabed reflection signals R Ba , R Bb , R Bc , R Bd input here and the reflection signals R Pa , R Pb , R Pc , R Pd from plankton or the like. Utilizing the fact that the frequency component changes due to the Doppler effect, reflected signals R Pa , R Pb , R Pc such as plankton are transmitted every time the transmission is performed, that is, every time the transmission control signal P 1 is added from the control unit (1). , R Pd to calculate the ship speed V Wa , V Wb , V Wc , V Wd and calculate the seabed reflection signal R Ba , R Bb , R
Calculate ship speeds V Ea , V Eb , V Ec , and V Ed from Bc and R Bd , respectively. Further, the difference between the watercraft speed and the groundcraft speed in the front-rear direction and the left-right direction is calculated, and then converted into a vector, and the speed and direction of the tidal current are vectorically calculated for each transmission,
The display device (13) is adapted to display.

ところでこの装置により、設定された第1図(c)中
の破線aのように一定水深の潮流測定層における潮流を
測定しているとき、海底Bの水深が浅くなると、プラン
クトンなどからの反射信号と海底からの反射信号の重な
り合ったり、極めて近接したりする。このため、測定を
不能としたり、測定結果が不正確となるのを避けること
ができない。従ってこのような場合には第1図(c)中
の破線bのように潮流測定層の水深の設定変更を行う必
要があるが、従来装置では前記のようにこの設定を手動
で行うようにしているため、特に海底の起伏の変化が激
しい場合には設定操作が著しく煩わしいものとなる。従
って従来装置には測定操作上や測定の正確度の維持など
において解決されなければならない課題がある。
By the way, when measuring the tidal current in the tidal current measurement layer with a constant water depth as shown by the broken line a in Fig. 1 (c), when the water depth of the seabed B becomes shallow, the reflected signal from the plankton etc. And the reflected signals from the seabed overlap or are extremely close. Therefore, it is unavoidable that the measurement cannot be performed or the measurement result is inaccurate. Therefore, in such a case, it is necessary to change the setting of the water depth of the tidal current measurement layer as shown by the broken line b in FIG. 1 (c), but in the conventional device, this setting should be made manually as described above. Therefore, the setting operation becomes extremely troublesome especially when the undulations of the seabed change drastically. Therefore, the conventional device has a problem that must be solved in terms of measurement operation and maintenance of measurement accuracy.

(発明の目的) 本発明は海底に対してその水深より浅い常に一定の水
深の潮流測定層が自動的に設定されるようにして、上記
の如き従来装置の問題点の解決を図ったものである。
(Object of the Invention) The present invention is intended to solve the problems of the conventional device as described above by automatically setting the tidal current measuring layer having a constant water depth shallower than the seabed. is there.

(課題を解決するための本発明の手段) 本発明においては送波時毎に海底の水深を測定し、こ
れからその都度その時の海底水深より一定距離だけ浅い
潮流測定層の水深を求めてこれによりゲート回路を制御
することにより、自動的に常に海底の水深の変化に追随
して、海底から一定距離だけ浅い水深におけるプランク
トンなどからの反射信号が得られるようにして、従来装
置のような操作の煩わしさや、海底反射信号とプランク
トンなどからの反射信号が重なり合いなどを防ぐように
したものである。次に本発明を実施例により説明する。
(Means of the present invention for solving the problem) In the present invention, the water depth of the seabed is measured at each transmission time, and the water depth of the tidal current measurement layer that is shallower than the seabed depth at that time by a certain distance is calculated from this. By controlling the gate circuit, it automatically follows the changes in the water depth of the seabed, so that the reflected signal from the plankton at a depth shallower than the seabed can be obtained. It is designed to prevent bothersomeness and overlap of the reflected signal from the seabed and the plankton. Next, the present invention will be described with reference to examples.

第4図は本発明の一実施例ブロック回路図であって、
(第2図に示した従来装置と同一符号部分は同等部分を
示す。)図において(1)は制御部、(2)は送信部、
(3a)(3b)は前後方向および左右方向送受波器(4a)
(4b)(4c)(4d)は受信増幅器、(5a)(5b)(5c
(5d)はスライス回路、(6a)(6b)(6c(6d)はゲー
ト信号発生回路、(7a)(7b)(7c)(7d)は海底反射
信号取得用ゲート回路、(8)は演算回路、(12a)(1
2b)(12c)((12d)はプランクトンなどからの反射信
号取得用ゲート回路、(9)は比較回路、(13)は表示
回路であって、以上の回路の構成は第2図の従来装置と
同様である。
FIG. 4 is a block circuit diagram of an embodiment of the present invention.
(The same reference numerals as those of the conventional device shown in FIG. 2 indicate the same parts.) In the figure, (1) is a control unit, (2) is a transmission unit,
(3a) and (3b) are front-rear and left-right transducers (4a)
(4b) (4c) (4d) are receiving amplifiers, (5a) (5b) (5c
(5d) is a slicing circuit, (6a) (6b) (6c (6d) is a gate signal generating circuit, (7a) (7b) (7c) (7d) is a submarine reflection signal acquisition gate circuit, and (8) is an operation Circuit, (12a) (1
2b) (12c) ((12d) is a gate circuit for acquiring a reflected signal from plankton, etc., (9) is a comparison circuit, (13) is a display circuit, and the above circuit configuration is the conventional device of FIG. Is the same as.

参照符号(14)の回路は本発明の実施のために設けた
潮流測定層の自動水深設定回路であって、次の各部から
形成される。(15)は演算回路、(16)は水深設定回
路、(17)はゲート信号発生回路である。演算回路(1
5)は第5図(a)のように制御部(1)からの送信制
御信号P1と、前記比較回路(9)により得られた超音波
ビームSa,Sb,Sc,Sdにもとづく海底反射信号RBa,RBb,
RBc,RBd中から最も浅い水深の海底反射信号、例えばRBa
とから、送波からの受波までの時間τ、即ち第5図
(b)に示す海底の水深に相当する時間τを演算し、
更に水深設定回路(16)からの指定にもとづき測定開始
時における海底水深に相当する時間を1とする所要の潮
流測定層の水深、即ち第5図(e)に示す海底水深より
一定時間τだけ短い時間τを演算して記憶する。そ
して次の送波時において制御部から送信制御信号P1が入
ると、時間τ後ゲート信号発生回路(17)により、第
5図(d)に示す一定時間幅のゲート信号g2を作り、前
記プランクトンなどからの反射信号取得用ゲート回路
(12a)(12b)(12c)(12d)はゲート信号g2により一
定時間幅だけゲートを開いて、前記受信増幅器(4a)
(4b)(4c)(4d)を介して得られた反射信号中から第
5図(e)のように海底反射信号RBaから一定距離Hだ
け常に浅い水深におけるプランクトンなどからの反射信
号RPa,RPb,RPc,RPdを得て(図ではRpaのみを示す)演算
回路(8)に加える。
The circuit denoted by reference numeral (14) is an automatic water depth setting circuit for the tidal current measuring layer provided for carrying out the present invention, and is formed of the following parts. (15) is an arithmetic circuit, (16) is a water depth setting circuit, and (17) is a gate signal generating circuit. Arithmetic circuit (1
5) is a transmission control signal P 1 from the control unit (1) and the ultrasonic beams S a , S b , S c , S d obtained by the comparison circuit (9) as shown in FIG. Submarine reflection signals based on R Ba , R Bb ,
The seafloor reflection signal of the shallowest water depth among R Bc and R Bd , such as R Ba
Then, the time τ 1 from transmission to reception is calculated, that is, the time τ 1 corresponding to the depth of the seabed shown in FIG. 5 (b) is calculated,
Further depth setting circuit (16) required for power flow measuring layer depth to 1 time corresponding to the seabed depth at the measurement start time based on the designation from, i.e. a fixed time tau 2 from the seabed depth shown in FIG. 5 (e) Only for a short time, τ 3 is calculated and stored. When the next transmission control signal P 1 enters from the control unit at the time of transmitting, by the time tau 3 after the gate signal generating circuit (17), making the gate signal g 2 of a predetermined time width shown in FIG. 5 (d) , The gate circuits (12a) (12b) (12c) (12d) for acquiring the reflection signal from the plankton etc. open the gate for a fixed time width by the gate signal g 2 to obtain the reception amplifier (4a).
From the reflection signals obtained through (4b), (4c), and (4d), as shown in FIG. 5 (e), the reflection signal R Pa from a plankton or the like at a constant depth H from the seabed reflection signal R Ba at a constant distance H. , R Pb , R Pc , R Pd are obtained (only R pa is shown in the figure) and added to the arithmetic circuit (8).

即ち本発明によれば海底の水深の変動にもかかわらず
自動的に常に海底より浅い一定水深におけるプランクト
ンなどからの反射信号を得ることができ、前記従来装置
の欠点は一掃される。
That is, according to the present invention, it is possible to automatically obtain a reflection signal from a plankton or the like at a constant water depth shallower than the seabed, regardless of the fluctuation of the water depth of the seabed, thereby eliminating the drawbacks of the conventional device.

なお以上の回路に従来と同様の手動設定回路を設けて
自動・手動の何れかを選択できるようにしてもよい。
The above circuit may be provided with a manual setting circuit similar to the conventional one so that either automatic or manual can be selected.

(発明の効果) 以上のように本発明は水深情報を基にして常に海底よ
り浅い一定水深に潮流測定層を自動設定できる。従って
従来装置のような手動設定操作に伴う煩わしさや、プラ
ンクトンなどからの反射信号と海底反射信号との重なり
にもとづく測定誤りや測定不能などの欠点が排除される
もので、本発明は特に海底の起伏の激しい海底での潮流
測定に当たってその効果は大きい。
(Effects of the Invention) As described above, according to the present invention, the tidal current measurement layer can be automatically set to a constant depth shallower than the seabed based on the depth information. Therefore, the inconvenience associated with the manual setting operation as in the conventional device, and the drawbacks such as the measurement error and the measurement failure due to the overlap between the reflection signal from the plankton and the seabed reflection signal are eliminated, and the present invention is particularly suitable for the seabed. It has a great effect on the tidal current measurement on the rugged sea floor.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図および第3図は従来装置の説明図、第4
図および第5図は本発明の一実施例の説明図である。
1, 2 and 3 are explanatory views of a conventional device, and FIG.
FIG. 5 and FIG. 5 are explanatory views of an embodiment of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01S 15/60 8907−2F G01S 7/52 J Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G01S 15/60 8907-2F G01S 7/52 J

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前後および左右方向に斜め海底に向けて発
射された超音波ビームにもとづく反射信号中からゲート
回路によりそれぞれ一定時間幅の海底反射信号と設定さ
れた所要水深におけるプランクトンなどからの反射信号
を抽出し、これらを演算回路に加えて潮流の速度および
方向を演算表示する超音波潮流計測装置において、前記
超音波ビームの送波時海底の水深を計測する回路と、こ
の海底水深信号から所望の一定距離だけ浅い水深信号を
求める回路と、この水深信号により制御されて次の送波
時前記プランクトンなどの反射信号中から海底水深より
所要の一定距離だけ浅い水深におけるプランクトンなど
からの反射信号を抽出する回路とを設けたことを特徴と
する超音波潮流計測装置。
1. A reflection signal from a plankton or the like at a required water depth set by a gate circuit from a reflection signal based on an ultrasonic beam emitted obliquely to the front and rear and left and right directions and a plankton at a required water depth. In the ultrasonic power flow measuring device that extracts the signals and calculates and displays the speed and direction of the tidal current by adding them to the arithmetic circuit, a circuit that measures the depth of the seabed at the time of transmitting the ultrasonic beam, and from this seabed depth signal A circuit for obtaining a shallow depth signal at a desired fixed distance, and a reflection signal from a plankton at a depth shallower than the seabed depth from the reflected signals of the plankton etc. controlled by this depth signal at the time of the next transmission And a circuit for extracting the ultrasonic wave.
JP1146574A 1989-06-12 1989-06-12 Ultrasonic power flow measuring device Expired - Fee Related JP2520734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146574A JP2520734B2 (en) 1989-06-12 1989-06-12 Ultrasonic power flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146574A JP2520734B2 (en) 1989-06-12 1989-06-12 Ultrasonic power flow measuring device

Publications (2)

Publication Number Publication Date
JPH0312557A JPH0312557A (en) 1991-01-21
JP2520734B2 true JP2520734B2 (en) 1996-07-31

Family

ID=15410772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146574A Expired - Fee Related JP2520734B2 (en) 1989-06-12 1989-06-12 Ultrasonic power flow measuring device

Country Status (1)

Country Link
JP (1) JP2520734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138273U (en) * 1991-06-17 1992-12-24 株式会社カイジヨー Ultrasonic Doppler current meter
JP6732249B2 (en) * 2016-06-23 2020-07-29 本多電子株式会社 Tide meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039020Y2 (en) * 1985-05-08 1991-03-06

Also Published As

Publication number Publication date
JPH0312557A (en) 1991-01-21

Similar Documents

Publication Publication Date Title
US4216537A (en) Sonar for the topographic representation of a submerged surface and underlying strata
Korneliussen Measurement and removal of echo integration noise
WO2003023446A1 (en) High resolution bathymetric sonar system and measuring method for measuring the physiognomy of the seabed
CN108398690B (en) Submarine backscattering intensity measuring method
US4319348A (en) Method and apparatus of surveying nodular targets on the sea floor
JP2520734B2 (en) Ultrasonic power flow measuring device
US4308749A (en) Device for measuring in real time sea currents in deep water
JP2679192B2 (en) Undersea terrain display
JPS58186067A (en) Distance measuring system
JP2520734C (en)
JPS6239336Y2 (en)
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JP2004012237A (en) Method and apparatus for detecting vessel by cross-fan beam
JP3583838B2 (en) Ultrasonic underwater detector
JPS6144382A (en) Active sonar apparatus
JPH03248082A (en) Sea bottom detector
JP2642759B2 (en) Underwater detector
JP2801997B2 (en) Tidal current measurement method
JPH0156383B2 (en)
Kuroda et al. Development of a shipboard acoustic Doppler current profiler
JPH0239754B2 (en)
JPS603556A (en) Method for measuring ship speed especially, in ultrasonic current direction and current speed meter
JP3133860B2 (en) Ultrasonic algae measuring device
JP2982765B2 (en) Transmission level measurement device
JPH0122593B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees