JPH0312557A - Ultrasonic tidal current measuring instrument - Google Patents
Ultrasonic tidal current measuring instrumentInfo
- Publication number
- JPH0312557A JPH0312557A JP14657489A JP14657489A JPH0312557A JP H0312557 A JPH0312557 A JP H0312557A JP 14657489 A JP14657489 A JP 14657489A JP 14657489 A JP14657489 A JP 14657489A JP H0312557 A JPH0312557 A JP H0312557A
- Authority
- JP
- Japan
- Prior art keywords
- depth
- water
- time
- signal
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 230000005540 biological transmission Effects 0.000 claims abstract description 17
- 239000000284 extract Substances 0.000 claims 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 101001068027 Homo sapiens Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform Proteins 0.000 description 1
- 244000171726 Scotch broom Species 0.000 description 1
- 102100034464 Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform Human genes 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は自動的に潮流測定層の深度が海底に対して常に
一定となるようにして、潮流測定層の設定操作の煩雑さ
や、測定の不正確、不能などを排除した超音波潮流計測
装置に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention automatically makes the depth of the tidal current measurement layer constant with respect to the seabed, thereby reducing the complexity of setting the tidal current measurement layer and the measurement process. This relates to an ultrasonic power flow measurement device that eliminates inaccuracies and impossibilities.
(従来技術とその解決すべき問題点)
海中における潮流の速度および方向の分布図などの作製
に当たって、超音波を利用した次の原理による潮流計測
装置が使用されている。(Prior art and its problems to be solved) A tidal current measuring device based on the following principle using ultrasonic waves is used to create distribution maps of the velocity and direction of tidal currents in the sea.
この装置は例えば第1図(a)(b)および第2図のよ
うに制御部(1)からの送信制御信号P、により制御さ
れる送信部(2)からの送信駆動信号Pgにより船底に
設けた送受波器(3a) (3b)から海底Bの斜方向
に同時に発射された船の前後方向および左右方向の4本
の超音波ビームS、、 S、、 S、、 St+を発射
する。そしてこれらにもとづく海中に浮遊するプランク
トンなどからの第3図(a)の反射波R2□RPb+
LCI R□(図ではR□のみを示している)と、
海底Bからの第3図(a)の反射波R1r R1b+R
,、、R□(図ではRlmのみを示す)を受波し、これ
らを電気信号に変換する。そののち第2図の受信増幅器
(4a) (4b) (4c) (4d)によりそれぞ
れ所要のレベルまで増幅したのち、例えば海底反射信号
のレベルがプランクトンなどからの反射信号レベルに比
べて大きいことを利用して、スライス回路(5a) (
5b) (5c) (5d)により第3図(d)中に破
線で示す閾値レベル以上の海底反射信号Rl m +
RI b * Rl。。For example, as shown in FIGS. 1(a) and 2, this device is connected to the bottom of the ship by a transmission drive signal Pg from a transmitting section (2) which is controlled by a transmission control signal P from a control section (1). Four ultrasonic beams S, , S, , S, , St+ are emitted from the installed transducers (3a) and (3b) simultaneously in the diagonal direction of the seabed B in the longitudinal and lateral directions of the ship. Based on these, the reflected wave R2□RPb+ in Figure 3 (a) from plankton floating in the sea.
LCI R□ (only R□ is shown in the figure),
Reflected wave from seabed B in Figure 3 (a) R1r R1b+R
, , R□ (only Rlm is shown in the figure) and converts them into electrical signals. After that, the receiving amplifiers (4a), (4b), (4c), and (4d) shown in Figure 2 are used to amplify each signal to the required level. Using this, the slice circuit (5a) (
5b) (5c) Based on (5d), the seabed reflection signal Rl m + is equal to or higher than the threshold level shown by the broken line in FIG. 3(d).
RIb*Rl. .
Rldを検出し、これによりゲート信号発生回路(6a
) (6b) (6c) (6d)を制御して第3図(
C)に示すゲート信号g Ia+ g Ib+ g
let g laを作る。そしてこれらにより海底
反射信号取得用ゲート回路(7a) (7b)(7c)
(7a)を一定時間開いて、1回の送波毎に一定時間
幅の海底反射信号Rn□ R1b+ R8゜、RI、を
抽出して演算回路(8)に加える。Rld is detected, and this causes the gate signal generation circuit (6a
) (6b) (6c) (6d) to control Fig. 3 (
Gate signal g Ia+ g Ib+ g shown in C)
Make let g la. With these gate circuits for acquiring seabed reflected signals (7a) (7b) (7c)
(7a) is opened for a certain period of time, and a seabed reflection signal Rn□R1b+R8°, RI, of a certain time width is extracted for each wave transmission and is added to the arithmetic circuit (8).
一方前記スライス回路(5a) (5b) (5c)
(5d)から得られた海底反射信号R1+ R11b+
RIC+ Rldを比較回路(9)により比較して
、この中から最も水深の浅い海底反射信号を検出する。On the other hand, the slice circuits (5a) (5b) (5c)
Seafloor reflection signal R1+ R11b+ obtained from (5d)
The comparison circuit (9) compares RIC+Rld and detects the shallowest seabed reflection signal from among them.
そしてこれを基にして手動により潮流測定層の水深に相
当する送波から潮流測定層からの反射波の帰来までの時
間を設定する手動水深設定回路(10)の出力信号によ
り制御される、ゲート信号発生回路(11)により第3
図(b)のゲート信号g2を作る。そしてこれらにより
プランクトンなどの反射信号取得用ゲート回路(12a
) (12b) (12c) (12d)を一定時間幅
だけ開いて、1回の送波毎に海底の水深より浅い設定水
深におけるプランクトンなどからの反射にもとづく一定
時間幅の信号RPa+ RPb+ RPCl R
paを抽出して演算回路(8)に入力する。Based on this, a gate is controlled by the output signal of a manual water depth setting circuit (10) that manually sets the time from the transmission of the wave corresponding to the water depth of the tidal current measurement layer to the return of the reflected wave from the tidal current measurement layer. The third signal generation circuit (11)
The gate signal g2 shown in figure (b) is generated. These gate circuits (12a) for acquiring reflected signals from plankton, etc.
) (12b) (12c) (12d) are opened by a certain time width, and each wave transmission generates a signal RPa+ RPb+ RPCl R of a certain time width based on reflections from plankton, etc. at a set water depth shallower than the depth of the seabed.
pa is extracted and input to the arithmetic circuit (8).
すると演算回路(8)はここに入力された前記海底反射
信号R[la+ Rllb+ RIIC+ Ra
dと、プランクトンなどからの反射信号Rl’ a r
RP b + RP C+ RP d中に含まれる
周波数成分がドツプラ効果により変化することを利用し
て、1回の送波毎即ち制御部(1)から送信制御信号P
、が加えられる毎にプランクトンなどの反射信号RP
a + RP b + RF C+ RP dか
ら対水船速V W a + V W b + ” W
e + V W (lを算出し、海底反射信号RBa+
RBb+ R□、R□から対地船速V Ea+ V
Eb+ ■l!(+ V Edをそれぞれ算出す
る。そして更に前後方向左右方向における対水船速と対
地船速の差を求めたのちベクトルに量に変換して、潮流
の速さと方向を1回の送波毎にベクトル的に演算して、
表示装置(13)に表示するようにしたものである。Then, the arithmetic circuit (8) calculates the seabed reflection signal R[la+Rllb+RIIC+Ra
d and the reflected signal Rl' a r from plankton etc.
Utilizing the fact that the frequency components included in RP b + RP C + RP d change due to the Doppler effect, the transmission control signal P is transmitted from the control unit (1) for each wave transmission.
, the reflected signal RP of plankton etc.
a + RP b + RF C+ RP d to ship speed over water V W a + V W b + ” W
e + V W (l is calculated, and the seabed reflected signal RBa+
RBb+ R□, R□ to ground speed V Ea+ V
Eb+ ■l! (Calculate + V Ed respectively. Then, calculate the difference between the ship's speed against the water and the ship's speed against the ground in the longitudinal and lateral directions, convert it into a vector, and calculate the speed and direction of the tidal current for each wave transmission.) Vectorwise,
It is designed to be displayed on a display device (13).
ところでこの装置により、設定された第1図(C)中の
破線aのように一定水深の潮流測定層における潮流を測
定しているとき、海底Bの水深が浅くなると、プランク
トンなどからの反射信号と海底からの反射信号が重なり
合ったり、極めて近接したりする。このため、測定を不
能としたり、測定結果が不正確となるのを避けることが
できない。By the way, when using this device to measure the tidal current in the tidal current measurement layer at a constant water depth as shown by the broken line a in Figure 1 (C), when the water depth of the seabed B becomes shallow, reflected signals from plankton, etc. and the reflected signals from the ocean floor overlap or are very close to each other. For this reason, it is impossible to avoid making the measurement impossible or making the measurement result inaccurate.
従ってこのような場合には第1図(C)中の破線すのよ
うに潮流測定層の水深の設定変更を行う必要があるが、
従来装置では前記のようにこの設定を手動で行うように
しているため、特に海底の起伏の変化が激しい場合には
設定操作が著しく煩わしいものとなる。従って従来装置
には測定操作上や測定の正確度の維持などにおいて解決
されなければならない課題がある。Therefore, in such a case, it is necessary to change the water depth setting of the tidal current measurement layer as shown by the broken line in Figure 1 (C).
In the conventional apparatus, this setting is manually performed as described above, and therefore, the setting operation becomes extremely troublesome, especially when the undulations of the seabed are changing rapidly. Therefore, conventional devices have problems that must be solved in terms of measurement operations and maintaining measurement accuracy.
(発明の目的)
本発明は海底に対してその水深より浅い常に一定の水深
の潮流測定層が自動的に設定されるようにして、上記の
如き従来装置の問題点の解決を図ったものである。(Objective of the Invention) The present invention aims to solve the above-mentioned problems of conventional devices by automatically setting a tidal current measurement layer at a constant depth that is shallower than the depth of the seabed. be.
(課題を解決するための本発明の手段)本発明において
は送波時毎に海底の水深を測定し、これからその都度そ
の時の海底水深より一定距離だけ浅い潮流測定層の水深
を求めてこれによりゲート回路を制御することにより、
自動的に常に海底の水深の変化に追随して、海底から一
定距離だけ浅い水深におけるプランクトンなどからの反
射信号が得られるようにして、従来装置のような操作の
煩わしさや、海底反射信号とプランクトンなどからの反
射信号が重なり合いなどを防ぐようにしたものである。(Means of the present invention for solving the problem) In the present invention, the water depth of the seabed is measured every time a wave is transmitted, and from this, the water depth of the tidal current measurement layer that is a certain distance shallower than the seabed depth at that time is determined each time. By controlling the gate circuit,
Automatically always follows changes in the depth of the seabed, and allows reflection signals from plankton and other objects at a shallow depth of a certain distance from the seafloor to be obtained, eliminating the troublesome operation of conventional devices and eliminating the need for seafloor reflection signals and plankton reflections. This is to prevent reflected signals from such sources from overlapping.
次に本発明を実施例により説明する。Next, the present invention will be explained by examples.
第4図は本発明の一実施例ブロック回路図であって、(
第2図に示した従来装置と同一符号部分は同等部分を示
す。)図において(1)は制御部、(2)は送信部、(
3a) (3b)は前後方向および左右方向送受波器(
4a) (4b) (4c) (4d)は受信増幅器、
(5a) (5b)(5c (5d)はスライス回路、
(6a) (6b) (6c (6d)はゲ−l−信号
発生回路、(7a) (7b) (7c) (7d)は
海底反射信号取得用ゲート回路、(8)は演算回路、(
12a)(12b) (12c) ((12d)はプラ
ンクトンなどからの反射信号取得用ゲート回路、(9)
は比較回路、(13)は表示回路であって、以上の回路
の構成は第2図の従来装置と同様である。FIG. 4 is a block circuit diagram of one embodiment of the present invention, (
The same reference numerals as in the conventional device shown in FIG. 2 indicate equivalent parts. ) In the figure, (1) is the control section, (2) is the transmission section, (
3a) (3b) is the front-rear and left-right transducer (
4a) (4b) (4c) (4d) is a receiving amplifier,
(5a) (5b) (5c (5d) is a slice circuit,
(6a) (6b) (6c (6d) is a game-l signal generation circuit, (7a) (7b) (7c) (7d) is a gate circuit for acquiring submarine reflected signals, (8) is an arithmetic circuit, (
12a) (12b) (12c) ((12d) is a gate circuit for acquiring reflected signals from plankton etc., (9)
(13) is a comparison circuit, and (13) is a display circuit, the configuration of which is the same as that of the conventional device shown in FIG.
参照符号(14)の回路は本発明の実施のために設けた
潮流測定層の自動水深設定回路であって、次の各部から
形成される。(15)は演算回路、(16)は水深設定
回路、(17)はゲート信号発生回路である。The circuit designated by reference numeral (14) is an automatic water depth setting circuit for a tidal current measurement layer provided for carrying out the present invention, and is formed from the following parts. (15) is an arithmetic circuit, (16) is a water depth setting circuit, and (17) is a gate signal generation circuit.
演算回路(15)は第5図(a)のように制御部(1)
からの送信制御信号P、と、前記比較回路(9)により
得られた超音波ビームS−,Sb+ SC+ Sd
にもとづく海底反射信号Rla+ Rlb+ Rlc+
Rma中から最も浅い水深の海底反射信号、例えばR
oとから、送波からの受波までの時間τ6、即ち第5図
(b)に示す海底の水深に相当する時間τ1を演算し、
更に水深設定回路(16)からの指定にもとづき測定開
始時における海底水深に相当する時間を1とする所要の
潮流測定層の水深、即ち第5図(e)に示す海底水深よ
り一定時間τ2だけ短い時間τ3を演算して記憶する。The arithmetic circuit (15) is connected to the control unit (1) as shown in FIG. 5(a).
and the ultrasonic beams S-, Sb+ SC+ Sd obtained by the comparison circuit (9).
Seabed reflection signal based on Rla+ Rlb+ Rlc+
The seafloor reflection signal at the shallowest depth in Rma, for example, R
From o, calculate the time τ6 from wave transmission to wave reception, that is, the time τ1 corresponding to the depth of the seabed shown in FIG. 5(b),
Furthermore, based on the designation from the water depth setting circuit (16), the water depth of the required tidal current measurement layer is determined by a certain time τ2 from the seabed depth shown in Fig. 5(e), where 1 is the time corresponding to the seabed water depth at the time of starting the measurement. A short time τ3 is calculated and stored.
そして次の送波時において制御部から送信制御信号P、
が入ると、時間τ3後ゲート信号発生回路(17)によ
り、第5図(d)に示す一定時間幅のゲート信号g2を
作り、前記プランクトンなどからの反射信号取得用ゲー
ト回路(12a) (12b)(12c) (12d)
はゲート信号g2により一定時間幅だけゲートを開いて
、前記受信増幅器(4a) (4b) (4c)(4d
)を介して得られた反射信号中から第5図(e)のよう
に海底反射信号R11,から一定距離Hだけ常に浅い水
深におけるプランクトンなどからの反射信号RPa+
Rrb+ Rpc+ R□を得て(図ではRoの
みを示す)演算回路(8)に加える。Then, at the time of next wave transmission, the control unit sends a transmission control signal P,
, the gate signal generating circuit (17) generates a gate signal g2 with a constant time width shown in FIG. 5(d) after a time τ3, and the gate circuit (12a) (12b) ) (12c) (12d)
opens the gate for a certain time width by the gate signal g2, and the receiving amplifiers (4a) (4b) (4c) (4d
), as shown in Fig. 5(e), there is a reflection signal RPa+ from plankton, etc. at a constant distance H from the seafloor reflection signal R11, as shown in Fig. 5(e).
Rrb+Rpc+R□ is obtained (only Ro is shown in the figure) and added to the arithmetic circuit (8).
即ち本発明によれば海底の水深の変°動にもかかわらず
自動的に常に海底より浅い一定水深におけるプランクト
ンなどからの反射信号を得ることができ、前記従来装置
の欠点は一掃される。That is, according to the present invention, it is possible to automatically always obtain reflection signals from plankton and the like at a constant depth shallower than the seabed, regardless of changes in the depth of the seabed, thereby eliminating the drawbacks of the conventional apparatus.
なお以上の回路に従来と同様の手動設定回路を設けて自
動・手動の何れかを選択できるようにしてもよい。Note that the above circuit may be provided with a manual setting circuit similar to the conventional one so that either automatic or manual setting can be selected.
(発明の効果)
以上のように本発明は水深情報を基にして常に海底より
浅い一定水深に潮流測定層を自動設定できる。従って従
来装置のような手動設定操作に伴う煩わしさや、プラン
クトンなどからの反射信号と海底反射信号との重なりに
もとづく測定誤りや測定不能などの欠点が排除されるも
ので、本発明は特に海底の起伏の激しい海底での潮流測
定に当たってその効果は大きい。(Effects of the Invention) As described above, the present invention can automatically set the current measurement layer at a constant depth shallower than the seabed based on water depth information. Therefore, the trouble associated with manual setting operations as in conventional devices, and disadvantages such as measurement errors and inability due to overlap between signals reflected from plankton and the seafloor are eliminated. This is highly effective for measuring tidal currents on the rugged seabed.
第1図 箒3図Figure 1 Broom 3
第1図、第2図および第3図は従来装置の説明図、第4
図および第5図は本発明の一実施例の説明図である。Figures 1, 2 and 3 are explanatory diagrams of the conventional device;
FIG. 5 is an explanatory diagram of an embodiment of the present invention.
Claims (1)
波ビームにもとづく反射信号中からゲート回路によりそ
れぞれ一定時間幅の海底反射信号と設定された所要水深
におけるプランクトンなどからの反射信号を抽出し、こ
れらを演算回路に加えて潮流の速度および方向を演算表
示する超音波潮流計測装置において、前記超音波ビーム
の送波時海底の水深を計測する回路と、この海底水深信
号から所望の一定距離だけ浅い水深信号を求める回路と
、この水深信号により制御されて次の送波時前記プラン
クトンなどの反射信号中から海底水深より所要の一定距
離だけ浅い水深におけるプランクトンなどからの反射信
号を抽出する回路とを設けたことを特徴とする超音波潮
流計測装置。From among the reflected signals based on ultrasonic beams emitted diagonally towards the seabed in the front and back and left and right directions, a gate circuit extracts the seabed reflection signals with a certain time width and the reflection signals from plankton, etc. at a set required water depth, respectively. In an ultrasonic tidal current measurement device that calculates and displays the speed and direction of tidal currents by adding these to an arithmetic circuit, it includes a circuit that measures the depth of the ocean floor when the ultrasonic beam is transmitted, and a circuit that measures the water depth of the ocean floor at a desired fixed distance from this ocean floor depth signal. a circuit for obtaining a shallow water depth signal, and a circuit that is controlled by this water depth signal and extracts a reflected signal from plankton, etc. at a water depth shallower than the seabed depth by a predetermined distance from among the reflected signals from the plankton, etc. during the next wave transmission. An ultrasonic tidal current measuring device characterized by being provided with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1146574A JP2520734B2 (en) | 1989-06-12 | 1989-06-12 | Ultrasonic power flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1146574A JP2520734B2 (en) | 1989-06-12 | 1989-06-12 | Ultrasonic power flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0312557A true JPH0312557A (en) | 1991-01-21 |
JP2520734B2 JP2520734B2 (en) | 1996-07-31 |
Family
ID=15410772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1146574A Expired - Fee Related JP2520734B2 (en) | 1989-06-12 | 1989-06-12 | Ultrasonic power flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2520734B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04138273U (en) * | 1991-06-17 | 1992-12-24 | 株式会社カイジヨー | Ultrasonic Doppler current meter |
JP2017227566A (en) * | 2016-06-23 | 2017-12-28 | 本多電子株式会社 | Tidal current meter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61182853U (en) * | 1985-05-08 | 1986-11-14 |
-
1989
- 1989-06-12 JP JP1146574A patent/JP2520734B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61182853U (en) * | 1985-05-08 | 1986-11-14 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04138273U (en) * | 1991-06-17 | 1992-12-24 | 株式会社カイジヨー | Ultrasonic Doppler current meter |
JP2017227566A (en) * | 2016-06-23 | 2017-12-28 | 本多電子株式会社 | Tidal current meter |
Also Published As
Publication number | Publication date |
---|---|
JP2520734B2 (en) | 1996-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4270191A (en) | Doppler current meter for use at great depths | |
CN110471032B (en) | Method for passively positioning underwater target | |
JPH0312557A (en) | Ultrasonic tidal current measuring instrument | |
JPS59107285A (en) | Display device of submarine topography | |
JP3583838B2 (en) | Ultrasonic underwater detector | |
JP2916362B2 (en) | Apparatus and method for correcting sound velocity in position measurement | |
RU2572666C1 (en) | Hydroacoustic system for imaging underwater space | |
JP2528973B2 (en) | Underwater detector | |
JPS6239336Y2 (en) | ||
JP2883679B2 (en) | Ultrasonic reflection intensity measurement device | |
KR102636497B1 (en) | Blood flow measuring device | |
CN101187579A (en) | Multi-wave band submarine tunnel effect elimination method | |
JPH03257390A (en) | Processing device of echo signal and hydrospace detector including said device | |
JP2820311B2 (en) | Acoustic navigation measurement system for submersibles | |
JPH0227624B2 (en) | ||
JPH0156383B2 (en) | ||
JPH0749376A (en) | Ultrasonic alga measuring system | |
JPH0996673A (en) | Thickness measuring apparatus | |
JPH0648453Y2 (en) | Fish finder for fish length discrimination | |
JP2520734C (en) | ||
JP2930678B2 (en) | Side-looking sonar | |
JPS60181625A (en) | Underwater temperature measuring apparatus | |
Hermand et al. | Channel‐adaptive matched filter processing of large time‐bandwidth product signals: Preliminary results | |
Edelson et al. | Multiple source behavior of passive synthetic aperture algorithms | |
JPH08304436A (en) | Marine-weather measuring apparatus for measurement of velocity and direction of ocean current at constant depth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |