JP2528973B2 - Underwater detector - Google Patents

Underwater detector

Info

Publication number
JP2528973B2
JP2528973B2 JP1247507A JP24750789A JP2528973B2 JP 2528973 B2 JP2528973 B2 JP 2528973B2 JP 1247507 A JP1247507 A JP 1247507A JP 24750789 A JP24750789 A JP 24750789A JP 2528973 B2 JP2528973 B2 JP 2528973B2
Authority
JP
Japan
Prior art keywords
wave
receiver
sound velocity
ultrasonic
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1247507A
Other languages
Japanese (ja)
Other versions
JPH03108684A (en
Inventor
秀治 森松
敏明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP1247507A priority Critical patent/JP2528973B2/en
Publication of JPH03108684A publication Critical patent/JPH03108684A/en
Application granted granted Critical
Publication of JP2528973B2 publication Critical patent/JP2528973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、水中の広範囲方向に超音波パルスを送波
して各方向から帰来する反射波を、それぞれの帰来方向
毎に検出して水中物体を探知する装置に関し、特に海底
反射波の到来方位を高精度に検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Use The present invention detects ultrasonic waves transmitted in a wide range of directions in water and reflected waves returning from each direction for each returning direction. The present invention relates to a device for detecting an underwater object, and more particularly to a device for detecting the arrival direction of a reflected wave of the seabed with high accuracy.

(b)従来の技術 水中探知装置において、指向性ビームを形成する場
合、一般には複数個の振動子を直線上に配列した超音波
振動子アレイの各振動子の受波信号を位相制御した後、
それぞれの受波信号を合成することにより、特定の一方
向から入射する超音波パルスに対してのみ感度をもたせ
る、すなわち受波ビームを形成している。
(B) Conventional Technology When forming a directional beam in an underwater detector, generally, after phase control of the received signal of each transducer of an ultrasonic transducer array in which a plurality of transducers are arranged in a straight line ,
By synthesizing the respective received signals, the received beam is formed by giving sensitivity only to the ultrasonic pulse incident from a specific one direction.

前記位相制御は受波信号を位相相当時間だけ遅延させ
ることにより行われる。したがって、遅延時間は超音波
信号の水中波長によって決定される。超音波信号の水中
波長は周波数が一定の場合、超音波の水中音速によって
変化し、水中音波は水温によって変化する。したがっ
て、実際の水温が予め定めた設計上の温度と異なる場
合、水中に形成される受波ビームは設計上(計算上)の
指向方向とは若干異なる方向に形成される。
The phase control is performed by delaying the received signal by a phase equivalent time. Therefore, the delay time is determined by the underwater wavelength of the ultrasonic signal. When the frequency of the underwater wavelength of the ultrasonic signal is constant, it changes depending on the underwater sound velocity of the ultrasonic wave, and the underwater sound wave changes depending on the water temperature. Therefore, when the actual water temperature is different from the predetermined design temperature, the receiving beam formed in the water is formed in a direction slightly different from the design (calculation) pointing direction.

このような問題を解消するため、実際の水温と設計上
の水温すなわち、実際の音速と設計上の音速との違いを
考慮して、受波信号の到来方位を補正するようにした水
中探知装置に関する発明を、本出願人は特開昭62−2775
78号にて出願している。
In order to solve such a problem, the underwater detection apparatus is configured to correct the arrival direction of the received signal in consideration of the actual water temperature and the designed water temperature, that is, the difference between the actual sound velocity and the designed sound velocity. The present applicant has disclosed an invention relating to
I am applying for No. 78.

(c)発明が解決しようとする課題 しかしながら、設計音速の実際の音速との違いによる
受波ビームの指向方向のずれ、すなわち音線屈折は受波
器表面においてのみ生じるとは限らない。一般に、水中
の温度はその深度方向にある分布を示し、また音速は水
温以外に圧力や塩分濃度によっても変化し、これらは深
度方向にある分布を示す。各深度における音速変化の典
型例を第10図に示す。0〜1000mの水深では深くなるほ
ど圧力が増大するが、水温低下の影響が大きいため、深
くなる程音速が低下する。約1000mよりさらに大深度で
は温度が略一定であるため、深くなるほど圧力の増大に
より音速が増大する。このように一般に比較的深い海域
の海底探査を行う場合には、0〜1000mの深度域での温
度変化による音線屈折が大きくなり、受波器周囲の表面
温度を水温情報として用い、受波器表面における音線屈
折を補正したとしても、途中における音線屈折による影
響が残る。
(C) Problem to be Solved by the Invention However, the deviation of the direction of the received beam due to the difference between the design sound velocity and the actual sound velocity, that is, the sound ray refraction does not always occur only on the surface of the receiver. In general, the temperature of water shows a distribution in the depth direction, and the speed of sound changes not only by the water temperature but also by the pressure and the salinity concentration, and these show the distribution in the depth direction. Figure 10 shows a typical example of the change in sound velocity at each depth. At a water depth of 0 to 1000 m, the pressure increases as it gets deeper, but since the effect of lowering the water temperature is great, the sound velocity decreases as it gets deeper. Since the temperature is almost constant at a depth greater than about 1000 m, the sound speed increases with increasing pressure as the depth increases. In general, when performing seafloor exploration in a relatively deep sea area, sound ray refraction due to temperature changes in the depth range of 0 to 1000 m becomes large, and the surface temperature around the receiver is used as water temperature information. Even if the ray refraction on the surface of the vessel is corrected, the effect of the ray refraction in the middle remains.

大深度の海底探査を行う場合の設計上の(計算上の)
受波ビームと実際の受波ビームの例を第11図に示す。第
11図においてθaは計算上の受波ビームの指向角度、θ
bは等価的な受波ビームの指向角度であり、破線は実際
の音線を表している。このような場合、b点から反射波
が角度θa方向から到来したものとみなされるためa点
にb点の物体(海底)があるものとみなされてしまう。
このように指向方向の誤差は、探知した物体(海底)の
水平方向および垂直方向の距離誤差として表れ、このよ
うな距離誤差を有する海底信号を用いて海底地形図を作
成した場合、実際の地形図とは異なる歪を有する地形図
が作成されてしまう。
Design (calculation) for deep seafloor exploration
Figure 11 shows an example of the received beam and the actual received beam. First
In Fig. 11, θa is the calculated directivity angle of the received beam, θ
b is the directivity angle of the equivalent received beam, and the broken line represents the actual sound ray. In such a case, it is considered that the reflected wave arrives from the point b in the direction of the angle θa, and thus it is considered that the object (sea bottom) at the point b exists at the point a.
In this way, the error in the pointing direction appears as the horizontal and vertical distance error of the detected object (seabed). When the seabed topographic map is created using the seabed signal with such distance error, the actual topography is A topographic map with a distortion different from that of the map is created.

受波器から探知物体までの正確な音線を求めるには、
通常スネルの法則を用い、微小水深毎の音線の屈折状況
を連続して計算し、全音波の伝播経路を求めればよい。
しかし、この計算を正式に行えば多量の計算を必要とす
るため、他方向の探知1回の送受波毎に行うような場合
にはリアルタイムで処理できないため、通常は一旦全て
のデータを取り込んだ後、後処理として行わなければな
らない。
To find the exact sound ray from the receiver to the detected object,
Usually, Snell's law is used to continuously calculate the refraction state of the sound ray at each minute water depth, and the propagation path of all sound waves may be obtained.
However, if this calculation is officially performed, a large amount of calculation is required. Therefore, if detection is performed every time a wave is transmitted or received in another direction, it cannot be processed in real time. After that, it must be performed as a post-treatment.

また、通常受波器は船底に装備されるため、第5図に
示すように船のローリングによって、受波ビームの実際
の指向方向が変動する。従って従来より鉛直ジャイロ等
を用いてローリング角度を検出し、実際の指向方向を求
めることによって補正を行っているが、受波器表面の音
速と設計音速との違いによる受波器表面での音線屈折が
存在するため、ローリング角補正自体に誤差が生じると
いう問題があった。
Further, since the wave receiver is usually mounted on the bottom of the ship, the actual direction of the received beam changes due to rolling of the ship as shown in FIG. Therefore, conventionally, the rolling angle is detected by using a vertical gyro, etc., and the actual pointing direction is obtained by correction, but the sound on the receiver surface due to the difference between the sound velocity on the receiver surface and the design sound velocity is corrected. Since there is line refraction, there is a problem that an error occurs in the rolling angle correction itself.

この発明の目的は、探知物体から受波器までの音線屈
折分も含めてリアルタイムで補正できるようにして、超
音波パルスの送受波と同時に音線屈折による図形歪のな
い探知情報を得られるようにした水中探知装置を提供す
ることにある。
The object of the present invention is to enable real-time correction including the sound ray refraction from the detection object to the wave receiver, and to obtain detection information without graphic distortion due to sound ray refraction at the same time as transmission and reception of ultrasonic pulses. An object of the present invention is to provide an underwater detection device.

また、この発明の他の目的は、船のローリング等によ
る受波器の傾斜による受波ビームの指向角補正を正確に
行い、その影響を無くした水中探知装置を提供すること
にある。
Another object of the present invention is to provide an underwater detection apparatus that corrects the received beam directivity angle due to the inclination of the wave receiver due to rolling of a ship or the like and eliminates the influence thereof.

(d)課題を解決するための手段 この発明の請求項1に係る水中探知装置は、超音波パ
ルスを送波する超音波送波手段と、 送波された超音波パルスの反射波を受ける超音波振動
子アレイからなる受波器を用いて、この超音波振動子ア
レイの各振動子の受波信号を位相合成する際、設計上の
受波指向方向に応じた、設計音速における時間差を振動
子の配列順に各振動子の受波信号にもたせるとともに、
これらの受波信号を合成して上記設計上の受波指向方向
からの受波信号を得る超音波受波手段と、 上記超音波パルスの送波からその反射波の受波までの
時間と上記超音波パルスを反射した探知物体から上記受
波器までの平均音速または上記設計音速とにより、上記
超音波パルスを反射した探知物体から上記受波器までの
距離を求めるとともに、この距離と上記受波器から上記
検知物体への指向方向とから上記検知物体の深度を求め
る深度測定手段とを備えた水中探知装置において、 上記受波器から上記超音波パルスが反射する探知物体
までの水深における水温分布のデータを読み取って、こ
の水温分布に基づいて上記受波器から上記探知物体まで
の平均音速を求めるか、または外部から直接入力される
平均音速を読み取る平均音速設定手段と、 上記平均音速をCa、上記設計音速をCd、上記設計上の受
波指向方向をθ0としたとき、 θ2=sin-1{(Ca/Cd)sinθ0} の関係で表される等価的受波指向方向(θ2)を上記深
度測定手段が深度を求める際の指向方向として求める手
段、 とを設けてなる。
(D) Means for Solving the Problem An underwater detection apparatus according to claim 1 of the present invention is an ultrasonic wave transmitting means for transmitting an ultrasonic pulse, and an ultrasonic wave receiving means for receiving a reflected wave of the transmitted ultrasonic pulse. When a receiver composed of an ultrasonic transducer array is used to synthesize the phases of the received signals of the transducers of this ultrasonic transducer array, the time difference at the design sound velocity is oscillated according to the designed receiving direction. In addition to giving the received signal of each transducer in the order of child arrangement,
Ultrasonic receiving means for synthesizing these received signals to obtain a received signal from the designed receiving direction, and the time from the transmission of the ultrasonic pulse to the reception of the reflected wave and the above The average sound velocity from the sensing object that reflected the ultrasonic pulse to the wave receiver or the design sound velocity determines the distance from the sensing object that reflected the ultrasonic pulse to the wave receiver, and this distance and the receiving In the underwater detection apparatus including a depth measuring unit that determines the depth of the detection object from the direction of the wave from the wave detector to the detection object, the water temperature at the water depth from the wave receiver to the detection object to which the ultrasonic pulse is reflected Average sound velocity setting means for reading the distribution data and obtaining the average sound velocity from the wave receiver to the detection object based on the water temperature distribution, or for reading the average sound velocity directly input from the outside. , The average speed of sound Ca, the design sound velocity Cd, when the reception directivity direction θ0 of the above design, θ2 = sin -1 {(Ca / Cd) sinθ0} equivalently reception expressed in relation Means for determining the pointing direction (θ2) as the pointing direction when the depth measuring means determines the depth.

請求項2に係る水中探知装置は、超音波パルスを送波
する超音波送波手段と、 送波された超音波パルスの反射波を受ける超音波振動
子アレイからなる受波器を用いて、この超音波振動子ア
レイの各振動子の受波信号を位相合成する際、設計上の
受波指向方向に応じた、設計音速における時間差を振動
子の配列順に各振動子の受波信号にもたせるとともに、
これらの受波信号を合成して上記設計上の受波指向方向
からの受波信号を得る超音波受波手段と、 上記超音波パルスの送波からその反射波の受波までの
時間と上記超音波パルスを反射した探知物体から上記受
波器までの平均音速または上記設計音速とにより、上記
超音波パルスを反射した探知物体から上記受波器までの
距離を求めるとともに、この距離と上記受波器から上記
検知物体への指向方向とから上記検知物体の深度を求め
る深度測定手段とを備えた水中探知装置において、 上記受波器表面の水温データを読み取って、この水温
データに基づいて上記受波器表面の音速を求めるか、ま
たは外部から直接入力される上記受波器表面の音速を読
み取る受波器表面音速設定手段と、 上記受波器から上記超音波パルスが反射する探知物体
までの水深における水温分布のデータを読み取って、こ
の水温分布に基づいて上記受波器から上記探知物体まで
の平均音速を求めるか、または外部から直接入力される
平均音速を読み取る平均音速設定手段と、 上記受波器表面の音速をCs、上記設計音速をCd、上記
設計上の受波指向方向をθ0としたとき、 θ1′=sin-1{(Cs/Cd)sinθ0} の関係で表される受波器表面における屈折角補正後の受
波指向方向(θ1′)を求める手段と、 上記受波指向方向の変化方向における上記受波器自体
の傾斜角(θr)を検出する受波器傾斜角検出手段と、 上記受波器表面における屈折角補正後の受波指向方向
(θ1′)に対して上記受波器自体の傾斜角(θr)を
加算または減算することによって上記受波器自体の傾斜
角変化による受波指向方向の変化を打ち消して、受波器
表面における傾斜角補正後の受波指向方向を求める手段
と、 上記平均音速をCa、上記受波器表面の音速をCs、上記
傾斜角補正後の受波指向方向をθ1としたとき、 θ2=sin-1{(Ca/Cs)sinθ1} の関係で表される等価的受波指向方向(θ2)を上記深
度測定手段が深度を求める際の指向方向として求める手
段、 とを設けてなる。
An underwater detection apparatus according to claim 2 uses an ultrasonic wave transmitting means for transmitting an ultrasonic wave pulse, and a wave receiver including an ultrasonic wave transducer array for receiving a reflected wave of the transmitted ultrasonic wave pulse, When the received signals of each transducer of this ultrasonic transducer array are phase-synthesized, the received signal of each transducer is given a time difference in the design sound velocity in accordance with the designed receiving direction of the transducer. With
Ultrasonic receiving means for synthesizing these received signals to obtain a received signal from the designed receiving direction, and the time from the transmission of the ultrasonic pulse to the reception of the reflected wave and the above The average sound velocity from the sensing object that reflected the ultrasonic pulse to the wave receiver or the design sound velocity determines the distance from the sensing object that reflected the ultrasonic pulse to the wave receiver, and this distance and the receiving In the underwater detection device including a depth measuring means for obtaining the depth of the detection object from the direction of the wave from the wave detector to the detection object, the water temperature data on the surface of the wave receiver is read, and based on the water temperature data, From the wave receiver surface sound velocity setting means for obtaining the wave velocity of the wave receiver surface or directly reading the sound velocity of the wave receiver surface directly input from the outside, to the detection object from which the ultrasonic pulse is reflected An average sound velocity setting means for reading the data of the water temperature distribution in the water depth, obtaining the average sound velocity from the wave receiver to the detection object based on this water temperature distribution, or reading the average sound velocity directly input from the outside, When the sound velocity on the surface of the receiver is Cs, the design sound velocity is Cd, and the wave receiving direction in the design is θ0, the reception is expressed by the relationship of θ1 ′ = sin −1 {(Cs / Cd) sin θ0}. Means for obtaining the wave receiving direction (θ1 ′) after the refraction angle correction on the wave receiver surface, and wave receiver tilt angle for detecting the tilt angle (θr) of the wave receiver itself in the changing direction of the wave receiving direction. The detection means and the wave receiver itself by adding or subtracting the inclination angle (θr) of the wave receiver itself with respect to the wave receiving direction after correction of the refraction angle on the surface of the wave receiver (θ1 ′). Cancels changes in the receiving direction due to tilt angle changes Means for obtaining the wave-receiving direction after the tilt angle correction on the surface of the wave receiver, Ca for the average sound speed, Cs for the sound speed on the surface of the wave receiver, and θ1 for the wave-receiving direction after the tilt angle correction. Then, the equivalent wave receiving directivity (θ2) represented by the relationship of θ2 = sin −1 {(Ca / Cs) sin θ1} is obtained as the directivity when the depth measuring means obtains the depth. Is provided.

(e)作用 この発明の請求項1に係る水中探知装置の構成を第1
図に示す。
(E) Action The configuration of the underwater detection apparatus according to claim 1 of the present invention is
Shown in the figure.

第1図において、1は送波された超音波パルスの反射
波を受ける超音波振動子アレイからなる受波器である。
受波ビーム指向方向制御手段2は超音波振動子アレイの
各振動子の受波信号を合成して一方向に指向する受波ビ
ームを形成するとともに、指向方向を順次変化させる。
3は探知深度範囲における平均音速を与える手段であ
り、例えば、投込式の水温計を用い、深度方向の温度分
布を計測し、探知深度範囲における平均温度における水
中音速を求めこれを音線屈折補正手段4へ与える。音線
屈折補正手段4は平均音速に対する設計音速の比による
探知物体から受波器までの音線屈折分だけ受波ビームの
指向方向を補正する。これらの各音速と音線屈折との関
係を第3図(A)に示す。第3図(A)においてθoは
設計上の受波ビームの指向角度、θ2は平均音速による
受波ビームの等価的指向角度であり、上記音線屈折補正
手段4は等価的指向角度θ2をθ2=sin-1{(Ca/Cd)
sinθo} として求めることができる。例えば上記演算を予めRO
Mなどにテーブルとして書き込んでおき、受波ビーム指
向方向制御手段2の現在の(設計上の)指向角度θoの
値に応じて実際の指向角度θ2をその都度求めるように
し、θ2が必要な単位角度になる毎に受波信号をサンプ
リングすれば、θ2について等間隔に水中探知情報を得
ることができる。
In FIG. 1, reference numeral 1 is a receiver including an ultrasonic transducer array that receives a reflected wave of the transmitted ultrasonic pulse.
The receiving beam directing direction control means 2 synthesizes the receiving signals of the transducers of the ultrasonic transducer array to form a receiving beam directed in one direction, and sequentially changes the pointing direction.
Reference numeral 3 is a means for giving an average sound velocity in the detection depth range. For example, using a water temperature meter of the throwing type, the temperature distribution in the depth direction is measured, and the underwater sound velocity at the average temperature in the detection depth range is obtained. It is given to the correction means 4. The sound ray refraction correcting unit 4 corrects the pointing direction of the received beam by the amount of sound ray refraction from the detection object to the wave receiver according to the ratio of the design sound velocity to the average sound velocity. The relationship between each sound velocity and the ray refraction is shown in FIG. In FIG. 3 (A), θo is the designed directivity angle of the received beam, θ2 is the equivalent directivity angle of the received beam at the average sound velocity, and the sound ray refraction correction means 4 sets the equivalent directivity angle θ2 to θ2. = Sin -1 {(Ca / Cd)
sin θo} can be obtained. For example, RO
It is written in M or the like as a table, and the actual directivity angle θ2 is calculated each time according to the current (designed) directivity angle θo of the receiving beam directivity direction control means 2, and θ2 is a necessary unit. If the received signal is sampled at every angle, the underwater detection information can be obtained at equal intervals for θ2.

第1図に示した受波ビーム指向方向制御手段2の指向
角度の時間変化と等価的指向角度との関係を第4図に示
す。第4図において実線で示すように設計上の入射角θ
oは時間経過に比例して−45度から+45度の範囲を一定
周期で繰り返す。例えば、時刻toのとき設計上の指向方
向はθoであるが、等価的指向角θ2は若干異なる値を
とる。時間経過にともなうθ2の変化は例えば同図にお
いて破線で示すように非直線性を示す。
FIG. 4 shows the relationship between the temporal change of the directivity angle of the received beam directivity control means 2 shown in FIG. 1 and the equivalent directivity angle. As shown by the solid line in FIG. 4, the designed incident angle θ
o repeats in a fixed cycle from -45 degrees to +45 degrees in proportion to the passage of time. For example, at the time to, the designed directivity direction is θo, but the equivalent directivity angle θ2 takes a slightly different value. The change in θ2 with the passage of time shows non-linearity as indicated by a broken line in the figure, for example.

この発明の請求項2に係る水中探知装置の構成を第2
図に示す。第2図において5は受波器表面の音速を与え
る手段であり、例えば海面の温度を計測し、その水温に
おける水中音速を表面屈折角補正手段7へ与える。6は
探知すべき扇状領域の面内方向における受波器の傾斜角
を検出する手段である。表面屈折角補正手段7は受波器
に帰来する超音波パルスの音速に対する設計音速の比に
よる音線屈折分だけ受波器表面における受波ビームの指
向角を補正し、θ1′を求める。傾斜角補正手段8は受
波器表面における受波ビームの指向角θ1′に対し、受
波器の傾斜角θr分の補正を行いθ1を求める。平均屈
折角補正手段9は平均音速Caに対する表面音速Csの比に
よる探知物体から受波器までの音線屈折分を補正し、等
価的な指向角度θ2を求める。
According to a second aspect of the present invention, the underwater detection device has a second configuration.
Shown in the figure. In FIG. 2, reference numeral 5 is a means for giving the speed of sound on the surface of the wave receiver. For example, the temperature of the sea surface is measured and the underwater sound speed at that water temperature is given to the surface refraction angle correcting means 7. 6 is a means for detecting the inclination angle of the wave receiver in the in-plane direction of the fan-shaped region to be detected. The surface refraction angle correction means 7 corrects the directivity angle of the received beam on the surface of the wave receiver by the amount of the ray refraction corresponding to the ratio of the design sound speed to the sound speed of the ultrasonic pulse returning to the wave receiver to obtain θ1 ′. The tilt angle correction means 8 corrects the directivity angle θ1 ′ of the received beam on the surface of the wave receiver by the tilt angle θr of the wave receiver to obtain θ1. The average refraction angle correction means 9 corrects the ray refraction from the detection object to the wave receiver according to the ratio of the surface acoustic velocity Cs to the average acoustic velocity Ca, and obtains an equivalent pointing angle θ2.

上記各音速と指向角との関係を第3図(B)に示す。
第3図(B)においてθoは設計上の受波ビームの指向
角、θ1は受波器表面での実際の指向角、θ2は等価的
な指向角である。このような関係であるため、上記表面
屈折角補正手段7はθ1′=sin-1{(Cs/Cd)sinθ
o}の関係から補正を行う。また、傾斜角補正手段8は
受波器表面での音線の方向θ1′に対し、第5図に示し
たように受波器の傾斜角θr分を打ち消すようにθrを
減算または加算を行うことにより、受波器の傾斜がない
場合の受波器表面での音線の方向θ1を求める。平均屈
折角補正手段9はθ2=sin-1{(Ca/Cs)sinθ1}の
関係から等価的指向角θ2を求める。
FIG. 3 (B) shows the relationship between each sound velocity and the directivity angle.
In FIG. 3 (B), θo is the designed directivity angle of the received beam, θ1 is the actual directivity angle on the surface of the receiver, and θ2 is the equivalent directivity angle. Because of such a relationship, the surface refraction angle correction means 7 has θ1 ′ = sin −1 {(Cs / Cd) sin θ.
correction is performed from the relationship of o}. Further, the inclination angle correction means 8 subtracts or adds θr from the direction θ1 ′ of the sound ray on the surface of the wave receiver so as to cancel the inclination angle θr of the wave receiver as shown in FIG. Thus, the direction θ1 of the sound ray on the surface of the wave receiver when the wave receiver has no inclination is obtained. The average refraction angle correcting means 9 obtains the equivalent directivity angle θ2 from the relationship of θ2 = sin −1 {(Ca / Cs) sin θ1}.

(f)実施例 この発明の実施例である水中探知装置に備えられる超
音波の送波器と受波器の装備例およびこれらによるクロ
スファンビームによる探知状況を第6図および第7図に
示す。第6図に示した送波器と受波器はいずれも超音波
振動子アレイからなり、受波器は第7図に示すように自
船左右方向に所定角度(例えば120度)幅で扇状の送波
ビームを送波する。受波器は自船の前後方向に広がる扇
状受波ビームを形成し、2つの扇状ビームがクロスして
いる部分(第7図中斜線部分)のエコーが受信される。
受波ビームを左右方向にスキャンニングすることによっ
て送波ビームの全角度(120度)範囲の海底地形を輪郭
(海底コンタ)を得る。また、自船の船速情報と針路情
報とにより推測航法演算を行い、海底コンタの検出位置
(自船の緯度経度)を求め、測深と測位を同時に行うこ
とによって海底地形の三次元情報を得る。
(F) Embodiments FIGS. 6 and 7 show an example of equipment of ultrasonic wave transmitters and receivers provided in the underwater detection apparatus according to an embodiment of the present invention, and the state of detection by a cross fan beam by them. . Both the wave transmitter and the wave receiver shown in FIG. 6 consist of an ultrasonic transducer array, and the wave receiver has a fan shape with a predetermined angle (for example, 120 degrees) width in the left-right direction of the ship as shown in FIG. The transmission beam of is transmitted. The wave receiver forms a fan-shaped received beam that spreads in the front-back direction of the ship, and the echo at the portion where the two fan-shaped beams intersect (hatched portion in FIG. 7) is received.
By scanning the receiving beam in the left-right direction, the contour (submarine contour) of the seabed topography in the entire range (120 degrees) of the transmitting beam is obtained. In addition, dead reckoning operation is calculated from the ship's speed information and course information, the detection position of the seabed contour (latitude / longitude of the ship) is obtained, and three-dimensional information of the seabed topography is obtained by simultaneously performing bathymetry and positioning. .

水中探知装置全体の制御部のブロック図を第8図に示
す。第8図において、制御回路31は超音波の送受波制御
を行う回路であり、送信制御回路32は制御回路31から与
えられるトリガ信号および送波ビームの指向方向を制御
する信号に従ってドライバ回路33へ送信パルスを与え
る。ドライバ回路33は出力パルスを全てのチャンネルに
ついて別々に出力アンプ34に与える。出力アンプ34は送
波器35を駆動して所定指向方向へ前記扇状送波ビームを
出力する。プリアンプ37は受波器36の各振動子の出力を
増幅し、ビームフォーマ38はプリアンプ37の出力信号に
対して位相制御などを行って指向する受波ビームの受波
信号を作成する。指向方向補正回路12は制御回路31から
の信号によりローリング補正を行うとともに、等価的指
向角が等角度となるタイミングで各指向方向の受波信号
を求める。インターフェイス回路13は受波信号を映像信
号として出力する。コンタ検出回路14は受波信号の映像
信号から反射強度の積分中心を海底深度データとして求
める。
FIG. 8 shows a block diagram of the control unit of the entire underwater detection apparatus. In FIG. 8, a control circuit 31 is a circuit for controlling transmission / reception of ultrasonic waves, and a transmission control circuit 32 sends to a driver circuit 33 in accordance with a trigger signal given from the control circuit 31 and a signal for controlling the directivity direction of a transmission beam. Give a transmit pulse. The driver circuit 33 supplies the output pulse to the output amplifier 34 separately for all channels. The output amplifier 34 drives the wave transmitter 35 and outputs the fan-shaped transmission beam in a predetermined directivity direction. The preamplifier 37 amplifies the output of each transducer of the wave receiver 36, and the beam former 38 performs phase control or the like on the output signal of the preamplifier 37 to create a received signal of a received beam to be directed. The pointing direction correction circuit 12 performs rolling correction based on the signal from the control circuit 31, and obtains the received signal in each pointing direction at the timing when the equivalent pointing angle becomes equal. The interface circuit 13 outputs the received signal as a video signal. The contour detection circuit 14 obtains the integrated center of the reflection intensity from the video signal of the received signal as the seabed depth data.

同図において15は演算ユニットであり、インターフェ
イス回路16は海底深度データを受け取る。グラフィック
回路17は複数の海底深度データから海底地形の三次元グ
ラフィックデータ、等深線グラフィックデータ、縦断面
グラフィックデータおよび横断面グラフィックデータな
どを作成してRGB信号バッファ26へグラフィックデータ
を書き込む。また、18はシステムであり、後述する平均
音速による距離補正などの後処理を行う。映像処理回路
19は受波信号の映像信号を入力する。
In the figure, reference numeral 15 is an arithmetic unit, and the interface circuit 16 receives the seabed depth data. The graphic circuit 17 creates three-dimensional graphic data of seafloor topography, contour line graphic data, vertical cross-section graphic data, horizontal cross-section graphic data and the like from a plurality of seabed depth data, and writes the graphic data to the RGB signal buffer 26. Reference numeral 18 denotes a system, which performs post-processing such as distance correction based on the average sound velocity described later. Video processing circuit
19 receives the video signal of the received signal.

インターフェイス回路20には海底地形図などを描画す
るXYプロッタ21、自船の現在位置を測位する航法装置2
2、自船の船速など測定する音響航法装置23および船首
方位を測定するジャイロコンパス24などが接続されてい
る。CRT25はRGB信号バッファ26から与えられる表示信号
によって各種グラフィック表示および受波信号の映像を
表示する。鉛直ジャイロ11は船のローリングおよびピッ
チング角度を検出する装置であり、信号変換回路10はロ
ーリング角度とピッチング角度を所定形式の信号に変換
して制御回路31へ与える。水温センサ40は海水表面の温
度を計測し、信号変換回路39はその水温における音速デ
ータを指向方向補正回路12へ与える。平均音速入力装置
41は探知範囲における平均音速を入力する装置であり、
例えば投込式の温度計などによる測定結果から平均音速
を求め、これを手操作により入力する。もちろん自動計
測装置から自動的に与えるようにしても良い。
The interface circuit 20 has an XY plotter 21 that draws a topographic map of the sea bottom, and a navigation device 2 that measures the current position of the ship.
2. An acoustic navigation device 23 for measuring the ship speed of the ship and a gyro compass 24 for measuring the heading of the ship are connected. The CRT 25 displays various graphic displays and images of received signals according to the display signals provided from the RGB signal buffer 26. The vertical gyro 11 is a device for detecting the rolling and pitching angles of the ship, and the signal conversion circuit 10 converts the rolling angle and the pitching angle into signals of a predetermined format and gives them to the control circuit 31. The water temperature sensor 40 measures the temperature of the seawater surface, and the signal conversion circuit 39 gives the sound velocity data at the water temperature to the directivity direction correction circuit 12. Average sound velocity input device
41 is a device for inputting the average sound velocity in the detection range,
For example, the average sound velocity is obtained from the measurement result of a throw-in type thermometer, and this is input manually. Of course, it may be automatically given from an automatic measuring device.

第8図に示した受波器36から指向方向補正回路12まで
の具体的構成例を第9図に示す。第9図において受波器
36の各振動子の受波信号はそれぞれプリアンプ37で増幅
された後、おのおのに対応して設けた混合回路56に導か
れる。混合回路56の各々はROM54から読み出される矩形
波列と各々別個に混合する。矩形波列は、カウンタ53が
クロックパルス源50のパルス列を分周する分周回路51か
ら出力されるクロックパルスを計数するとき、計数値に
対応するアドレスのデータが読み出されることにより生
成される。またこの矩形波列データはラッチパルス生成
回路52から出力されるラッチパルスによってラッチ回路
55にラッチされる。
FIG. 9 shows a concrete configuration example from the wave receiver 36 shown in FIG. 8 to the directivity correction circuit 12. Receiver in FIG. 9
The received signals of the respective vibrators of 36 are amplified by the preamplifier 37 and then guided to the mixing circuit 56 provided corresponding to each of them. Each of the mixing circuits 56 individually mixes with the rectangular wave train read from the ROM 54. The rectangular wave train is generated by reading the data of the address corresponding to the count value when the counter 53 counts the clock pulses output from the frequency dividing circuit 51 that divides the pulse train of the clock pulse source 50. This rectangular wave train data is also latched by the latch pulse output from the latch pulse generation circuit 52.
Latched to 55.

混合回路56の混合出力は加算回路57により加算された
後、フィルタ58によって特定周波数成分が抽出される。
特定方位の受波信号は増幅回路59により増幅され、超音
波パルスの送波タイミングからの時間経過にともない減
衰する信号レベルが補正される。ここまでの構成は出願
人が先に出願した特公平1−16392号に示した受波ビー
ムの指向方向制御装置の例と同じである。
The mixed output of the mixing circuit 56 is added by the adding circuit 57, and then the specific frequency component is extracted by the filter 58.
The received signal in the specific direction is amplified by the amplifier circuit 59, and the signal level that attenuates with the passage of time from the transmission timing of the ultrasonic pulse is corrected. The configuration up to this point is the same as the example of the receiving beam directivity control device shown in Japanese Patent Publication No. 1-16392 filed previously by the applicant.

第9図において、ROM62は受波器表面の音速に対する
設計音速の比による音線屈折分の補正を行うテーブルデ
ータを記憶するROM、63は表面屈折角補正が行われた指
向方向θ1′からローリング角θrを減じて受波器の傾
斜分の補正を行う回路、また64は平均音速に対する表面
音速の比による探知物体から受波器までの音線屈折分を
補正するためのテーブルデータを予め記憶するROMであ
る。これらの回路により、設計上の指向角度に対応する
カウンタ53の内容θoに対し最終的に等価的指向角θ2
が求められる。サンプリングパルス発生回路65は角度θ
2が一定単位角度になる毎にサンプリングパルスを発生
する回路であり、例えば細かいクロックパルスを発生す
る回路とラッチ回路などにより構成することができる。
サンプルホールド回路60は増幅回路59の出力信号をサン
プリングパルスによりホールドする。A−Dコンバータ
61はこれをディジタルデータに変換する。
In FIG. 9, a ROM 62 stores ROM table data for correcting the ray refraction component based on the ratio of the design sound velocity to the sound velocity on the surface of the receiver, and 63 rolls from the pointing direction θ1 ′ where the surface refraction angle is corrected. A circuit that corrects the inclination of the wave receiver by reducing the angle θr, and 64 stores in advance table data for correcting the ray refraction from the detection object to the wave receiver based on the ratio of the surface acoustic velocity to the average acoustic velocity. It is a ROM. With these circuits, the equivalent directivity angle θ2 is finally obtained with respect to the content θo of the counter 53 corresponding to the designed directivity angle.
Is required. The sampling pulse generation circuit 65 has an angle θ
2 is a circuit that generates a sampling pulse each time a certain unit angle is reached, and can be composed of, for example, a circuit that generates a fine clock pulse and a latch circuit.
The sample hold circuit 60 holds the output signal of the amplifier circuit 59 with a sampling pulse. A-D converter
61 converts this into digital data.

以上のようにして受波ビームの指向方向が補正された
探知情報が得られる。但し、この情報は、音速の変化に
よる距離方向の補正が行われていない。すなわち、設計
音速は例えば1500m/secに固定して送波タイミングから
受波タイミングまでの時間差により距離を求めている。
もし、平均音速による距離方向の補正を行う場合には、
平均音速をCaとしθ2方向の超音波パルスの往復時間を
Tとすればその深度Dは D=Tcos θ2/2Ca の関係から求めることができる。
As described above, the detection information in which the direction of the received beam is corrected can be obtained. However, this information is not corrected in the distance direction due to the change in sound velocity. That is, the design sound velocity is fixed at 1500 m / sec, for example, and the distance is obtained from the time difference from the transmission timing to the reception timing.
If you want to correct the distance direction by the average sound velocity,
When the average sound velocity is Ca and the round-trip time of the ultrasonic pulse in the θ2 direction is T, the depth D can be obtained from the relationship of D = Tcos θ2 / 2Ca.

なお、上記実施例は請求項2に対応する例であった
が、受波器の傾斜角補正を考慮しない場合には、第9図
に示したカウンタ53の出力θoと平均音速とによって等
価的指向角θ2を求めるテーブルデータを予め記憶する
ROMによって音線屈折補正を行うことができる。
Although the above embodiment is an example corresponding to claim 2, when the inclination angle correction of the wave receiver is not considered, the output θo of the counter 53 and the average sound velocity shown in FIG. 9 are equivalent. Pre-store table data for obtaining the directivity angle θ2
The sound ray refraction can be corrected by ROM.

また、上記実施例ではテーブルデータをROMに予め書
き込んで使用する例であったが、例えば電源投入時や平
均音速または平均水温などのデータなどが確定した時点
で関数演算などによりテーブルデータを作成し、これを
RAMに記憶してテーブルとして用いることも可能であ
る。
Further, in the above-described embodiment, the table data is written in the ROM in advance for use, but the table data is created by function calculation or the like when the power is turned on or when the data such as the average sound velocity or the average water temperature is fixed. ,this
It is also possible to store it in RAM and use it as a table.

(g)発明の効果 請求項1に係る発明によれば、探知物体から受波器ま
でにおける音線が本来徐々に屈折するのを受波器で一度
に屈折するものと近似したため、演算処理が大幅に減少
し、リアルタイムでその補正を行うことも可能となる。
(G) Effect of the Invention According to the invention of claim 1, since the sound ray from the detection object to the wave receiver is originally gradually refracted is approximated to be refracted at once by the wave receiver, the arithmetic processing is performed. It is greatly reduced, and the correction can be performed in real time.

請求項2の発明によれば、受波器表面での音線の方向
が厳密に求められ、受波器に対する受波ビームの入射角
に対して受波器の傾斜角補正が行われる。すなわち受波
器表面の音速と設計音速との違いによる屈折を含んだ状
態で受波器の傾斜角補正が行われるのではないため、受
波器の傾斜角補正と音線屈折の補正をともに正確に行う
ことができる。
According to the second aspect of the present invention, the direction of the sound ray on the surface of the wave receiver is rigorously determined, and the inclination angle of the wave receiver is corrected with respect to the incident angle of the received beam with respect to the wave receiver. In other words, the inclination angle of the receiver is not corrected in a state that includes the refraction due to the difference between the sound velocity on the surface of the receiver and the design sound velocity. Can be done accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の請求項1の構成図、第2図は請求項
2の構成図である。第3図(A)および(B)は請求項
1および請求項2に係る音線屈折の状態を説明するため
の図、第4図は受波ビーム指向方向制御手段の設計上の
指向角度と等価的指向角度の時間的変化を示す図、第5
図は受波器の傾斜による受波ビームの変化を表す図であ
る。第6図および第7図は超音波送受波器の装備例およ
び送波ビームと受波ビームの関係を示す図である。第8
図はこの発明の実施例である水中探知装置の制御部のブ
ロック図、第9図はその主要部の構成図である。第10図
は各深度における音速の変化例を示す図である。更に第
11図は音線屈折の例を示す図である。
FIG. 1 is a block diagram of claim 1 of the present invention, and FIG. 2 is a block diagram of claim 2. FIGS. 3 (A) and 3 (B) are views for explaining the state of ray refraction according to claims 1 and 2, and FIG. 4 is a design direction angle of the receiving beam direction control means. The figure which shows the time change of an equivalent pointing angle, 5th
The figure is a diagram showing the change of the received beam due to the inclination of the receiver. FIG. 6 and FIG. 7 are views showing an example of the equipment of the ultrasonic wave transmitter / receiver and the relationship between the transmitted and received beams. 8th
FIG. 9 is a block diagram of a control unit of an underwater detection apparatus according to an embodiment of the present invention, and FIG. 9 is a configuration diagram of its main part. FIG. 10 is a diagram showing an example of change in sound velocity at each depth. Furthermore
FIG. 11 is a diagram showing an example of sound ray refraction.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超音波パルスを送波する超音波送波手段
と、 送波された超音波パルスの反射波を受ける超音波振動子
アレイからなる受波器を用いて、この超音波振動子アレ
イの各振動子の受波信号を位相合成する際、設計上の受
波指向方向に応じた、設計音速における時間差を振動子
の配列順に各振動子の受波信号にもたせるとともに、こ
れらの受波信号を合成して上記設計上の受波指向方向か
らの受波信号を得る超音波受波手段と、 上記超音波パルスの送波からその反射波の受波までの時
間と上記超音波パルスを反射した探知物体から上記受波
器までの平均音速または上記設計音速とにより、上記超
音波パルスを反射した探知物体から上記受波器までの距
離を求めるとともに、この距離と上記受波器から上記探
知物体への指向方向とから上記探知物体の深度を求める
深度測定手段とを備えた水中探知装置において、 上記受波器から上記超音波パルスが反射する探知物体ま
での水深における水温分布のデータを読み取って、この
水温分布に基づいて上記受波器から上記探知物体までの
平均音速を求めるか、または外部から直接入力される平
均音速を読み取る平均音速設定手段と、 上記平均音速をCa、上記設計音速をCd、上記設計上の受
波指向方向をθ0としたとき、 θ2=sin-1{(Ca/Cd)sinθ0} の関係で表される等価的受波指向方向(θ2)を上記深
度測定手段が深度を求める際の指向方向として求める手
段、 とを設けてなる水中探知装置。
1. An ultrasonic transducer using ultrasonic wave transmitting means for transmitting an ultrasonic wave pulse, and a receiver comprising an ultrasonic wave transducer array for receiving a reflected wave of the transmitted ultrasonic wave pulse. When the received signals of the transducers in the array are phase-combined, the received signals of the transducers are given the time difference in the design sound velocity according to the designed receiving direction, and the received signals of the transducers are also added. Ultrasonic wave receiving means for synthesizing wave signals to obtain a received wave signal from the designed receiving direction, and time from the transmission of the ultrasonic wave pulse to reception of the reflected wave and the ultrasonic wave pulse By the average sound velocity or the design sound velocity from the detection object that reflected the to the receiver, while determining the distance from the detection object that reflected the ultrasonic pulse to the receiver, from this distance and the receiver From above the direction of pointing to the detected object In the underwater detection apparatus including a depth measuring unit for determining the depth of the detection object, the data of the water temperature distribution in the water depth from the wave receiver to the detection object where the ultrasonic pulse is reflected is read, and based on this water temperature distribution An average sound velocity setting means for obtaining the average sound velocity from the wave receiver to the detected object or reading the average sound velocity directly input from the outside, the average sound velocity Ca, the design sound velocity Cd, the design reception Assuming that the wave directing direction is θ0, the equivalent receiving directivity (θ2) represented by the relationship of θ2 = sin −1 {(Ca / Cd) sin θ0} is the directivity when the depth measuring means obtains the depth. An underwater detection device comprising:
【請求項2】超音波パルスを送波する超音波送波手段
と、 送波された超音波パルスの反射波を受ける超音波振動子
アレイからなる受波器を用いて、この超音波振動子アレ
イの各振動子の受波信号を位相合成する際、設計上の受
波指向方向に応じた、設計音速における時間差を振動子
の配列順に各振動子の受波信号にもたせるとともに、こ
れらの受波信号を合成して上記設計上の受波指向方向か
らの受波信号を得る超音波受波手段と、 上記超音波パルスの送波からその反射波の受波までの時
間と上記超音波パルスを反射した探知物体から上記受波
器までの平均音速または上記設計音速とにより、上記超
音波パルスを反射した探知物体から上記受波器までの距
離を求めるとともに、この距離と上記受波器から上記探
知物体への指向方向とから上記探知物体の深度を求める
深度測定手段とを備えた水中探知装置において、 上記受波器表面の水温データを読み取って、この水温デ
ータに基づいて上記受波器表面の音速を求めるか、また
は外部から直接入力される上記受波器表面の音速を読み
取る受波器表面音速設定手段と、 上記受波器から上記超音波パルスが反射する探知物体ま
での水深における水温分布のデータを読み取って、この
水温分布に基づいて上記受波器から上記探知物体までの
平均音速を求めるか、または外部から直接入力される平
均音速を読み取る平均音速設定手段と、 上記受波器表面の音速をCs、上記設計音速をCd、上記設
計上の受波指向方向をθ0としたとき、 θ1′=sin-1{(Cs/Cd)sinθ0} の関係で表される受波器表面における屈折角補正後の受
波指向方向(θ1′)を求める手段と、 上記受波指向方向の変化方向における上記受波器自体の
傾斜角(θr)を検出する受波器傾斜角検出手段と、 上記受波器表面における屈折角補正後の受波指向方向
(θ1′)に対して上記受波器自体の傾斜角(θr)を
加算または減算することによって上記受波器自体の傾斜
角変化による受波指向方向の変化を打ち消して、受波器
表面における傾斜角補正後の受波指向方向を求める手段
と、 上記平均音速をCa、上記受波器表面の音速をCs、上記傾
斜角補正後の受波指向方向をθ1としたとき、 θ2=sin-1{(Ca/Cs)sinθ1} の関係で表される等価的受波指向方向(θ2)を上記深
度測定手段が深度を求める際の指向方向として求める手
段、 とを設けてなる水中探知装置。
2. An ultrasonic transducer using ultrasonic wave transmitting means for transmitting an ultrasonic wave pulse, and a receiver comprising an ultrasonic wave transducer array for receiving a reflected wave of the transmitted ultrasonic wave pulse. When the received signals of the transducers in the array are phase-combined, the received signals of the transducers are given the time difference in the design sound velocity according to the designed receiving direction, and the received signals of the transducers are also added. Ultrasonic wave receiving means for synthesizing wave signals to obtain a received wave signal from the designed receiving direction, and time from the transmission of the ultrasonic wave pulse to reception of the reflected wave and the ultrasonic wave pulse By the average sound velocity or the design sound velocity from the detection object that reflected the to the receiver, while determining the distance from the detection object that reflected the ultrasonic pulse to the receiver, from this distance and the receiver From above the direction of pointing to the detected object In an underwater detector equipped with depth measuring means for determining the depth of a detected object, the water temperature data on the surface of the wave receiver is read, and the speed of sound on the surface of the wave receiver is obtained based on this water temperature data, or from the outside. The receiver surface sound velocity setting means for reading the sound velocity of the surface of the receiver directly input, and the data of the water temperature distribution in the water depth from the receiver to the detection object where the ultrasonic pulse is reflected are read, Average sound velocity from the receiver to the detected object based on the distribution, or average sound velocity setting means for reading the average sound velocity directly input from the outside, and the sound velocity on the surface of the receiver is Cs, the design sound velocity the Cd, when the reception directivity direction θ0 of the above design, θ1 '= sin -1 {( Cs / Cd) sinθ0} reception directivity after refraction angle correction in receivers surface represented by the relationship Direction (θ1 ' Means for determining the inclination angle (θr) of the wave receiver itself in the direction in which the direction of the wave reception is changed, and wave reception after correction of the refraction angle on the surface of the wave receiver. By adding or subtracting the tilt angle (θr) of the wave receiver itself to the pointing direction (θ1 ′), the change in the wave receiving direction due to the change in the tilt angle of the wave receiver itself is canceled out, and the wave receiver is received. A means for obtaining the wave-receiving direction after the inclination angle is corrected, the average sound velocity is Ca, the sound velocity on the surface of the wave receiver is Cs, and the wave-receiving direction after the inclination angle is corrected is θ1, and θ2 = Underwater detection comprising means for obtaining an equivalent receiving direction (θ2) represented by the relationship of sin -1 {(Ca / Cs) sin θ1} as the direction of the depth when the depth measuring means obtains the depth. apparatus.
JP1247507A 1989-09-22 1989-09-22 Underwater detector Expired - Lifetime JP2528973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247507A JP2528973B2 (en) 1989-09-22 1989-09-22 Underwater detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247507A JP2528973B2 (en) 1989-09-22 1989-09-22 Underwater detector

Publications (2)

Publication Number Publication Date
JPH03108684A JPH03108684A (en) 1991-05-08
JP2528973B2 true JP2528973B2 (en) 1996-08-28

Family

ID=17164507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247507A Expired - Lifetime JP2528973B2 (en) 1989-09-22 1989-09-22 Underwater detector

Country Status (1)

Country Link
JP (1) JP2528973B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925949A1 (en) * 2006-11-24 2008-05-28 BP Shipping Limited Ship mounted underwater sonar system
JP6724593B2 (en) * 2016-06-22 2020-07-15 日本電気株式会社 Active sonar and control method of active sonar
FR3086064B1 (en) * 2018-09-14 2021-02-26 Ixblue METHOD OF DETERMINING A DEPTH, OR OF A BATHYMETRIC PROFILE, ON THE BASIS OF A PROFILE OF AVERAGE SOUND CELERITY, METHOD OF DETERMINING SUCH A CELERITE PROFILE, AND ASSOCIATED SONAR SYSTEM

Also Published As

Publication number Publication date
JPH03108684A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
AU760693B2 (en) Method for producing a 3D image
JP5550092B2 (en) Underwater image omnidirectional display processing apparatus and method
RU2340916C1 (en) Method of surveying bottom contour of water bodies and device to that end
GB2412967A (en) Echo sounder with pitch and roll correction
GB2444161A (en) Echo image display apparatus
JPS61254879A (en) Sea-bottom prospecting sonic device
JP5767002B2 (en) Ultrasonic transmission / reception device and fish quantity detection method
JP2528973B2 (en) Underwater detector
JPS61262674A (en) Apparatus for measuring position in water
JP2009300220A (en) Underwater detection device
JPH0679065B2 (en) Seabed search device
JPH04357487A (en) Side looking sonar
JP2859916B2 (en) Echo signal processing device and underwater detection device including the same
CN117805830B (en) Ship relative position measuring method, system, equipment and storage medium
JP2001264437A (en) System device, and method for measuring distribution of tidal current, and underwater detection system
JPH0156383B2 (en)
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPH09211126A (en) Sounding system of sea bottom
JP2002267738A (en) Measuring instrument
JPH01227982A (en) Fish finder
JP3133192B2 (en) Underwater probe
JPH0331787A (en) Method and device for verifying water depth
CN117805830A (en) Ship relative position measuring method, system, equipment and storage medium
JPH046487A (en) Underwater position detector having underwater detection function
JP3040614B2 (en) Ultrasonic tidal current distribution measuring device