JPH11202042A - Underwater positioning system - Google Patents

Underwater positioning system

Info

Publication number
JPH11202042A
JPH11202042A JP304098A JP304098A JPH11202042A JP H11202042 A JPH11202042 A JP H11202042A JP 304098 A JP304098 A JP 304098A JP 304098 A JP304098 A JP 304098A JP H11202042 A JPH11202042 A JP H11202042A
Authority
JP
Japan
Prior art keywords
receiver
depth
transmitter
distance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP304098A
Other languages
Japanese (ja)
Inventor
Takahiro Fukai
隆広 深井
Hideyuki Murakami
英幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO DENSHI KK
IHI Corp
Original Assignee
KAIYO DENSHI KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO DENSHI KK, IHI Corp filed Critical KAIYO DENSHI KK
Priority to JP304098A priority Critical patent/JPH11202042A/en
Publication of JPH11202042A publication Critical patent/JPH11202042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the position of a transmitter by two receivers and depth data and to simplify a device by transmitting the depth data as pulse intervals. SOLUTION: A signal being transmitted from a transmitter 5 of an underwater object 2 is received by first and second receivers, an angle θx formed by a straight line L and a straight line (m) is obtained by a distance L between the transmitter 5 and the second receiver, a distance (m) between the first receiver and the second receiver, and a phase difference Δt of that signal from the transmitter 5 which the first and second receivers have received, a depth meter 4 is mounted on the underwater object 2 and a depth D is transmitted by the above signal, and the depth D received at least by one receiver 3 is found a surface that includes the straight line (m) and orthogonally crosses a depth direction is set to an XY plane, and the X and Y coordinates of the transmitter 5 are calculated by using the distance L, the angle θx, and the depth D are calculated in the X and Y coordinates with the position of the second receiver as a zero point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中物体より発信
される信号よりこの水中物体の位置を計測する水中測位
方式に関する。
The present invention relates to an underwater positioning system for measuring the position of an underwater object from a signal transmitted from the underwater object.

【0002】[0002]

【従来の技術】水中物体の送信器から送信される超音波
信号を同一平面に配置された3台の受信器で受信し、図
5に示すaとb、cとbの位相差とLより水中物体の深
度と水平面上の位置、つまり3次元の位置を算出してい
る。しかしこの方法は計算が複雑であるため演算回路が
複雑になり、計算時間もかかる。さらに水中物体が浅深
度のとき深度誤差が大きくなる。
2. Description of the Related Art An ultrasonic signal transmitted from a transmitter of an underwater object is received by three receivers arranged on the same plane, and the phase difference between a and b, c and b shown in FIG. The depth of the underwater object and the position on the horizontal plane, that is, the three-dimensional position are calculated. However, in this method, the calculation is complicated, so that the operation circuit is complicated and the calculation time is long. Further, when the underwater object is at a shallow depth, the depth error increases.

【0003】特開昭57−46171号公報には水中物
体に深度計を搭載し、計測した深度を周波数変調した後
超音波にして発信し、3つの受信器で受信したデータに
より水平面上の位置を算出し、1つの受信器で受信した
データを復調して深度のデータを得る。これにより水中
物体の3次元の位置を算出する。深度のデータがそのま
ま使用でき、水平面上の計算は簡単になるので、計算は
短時間になり、深度の誤差も無くなる。
Japanese Patent Application Laid-Open No. 57-46171 discloses a method in which a depth gauge is mounted on an underwater object, the measured depth is frequency-modulated, transmitted as an ultrasonic wave, and a position on a horizontal plane is obtained based on data received by three receivers. Is calculated, and data received by one receiver is demodulated to obtain depth data. Thereby, the three-dimensional position of the underwater object is calculated. Since the data of the depth can be used as it is and the calculation on the horizontal plane is simplified, the calculation is short and the error of the depth is eliminated.

【0004】[0004]

【発明が解決しようとする課題】上述の公報の装置で
は、受信器を3個必要としているため装置が複雑となっ
ている。また、深度のデータを周波数変調して超音波と
して水中を伝播し受信側で周波数復調して深度を取り出
す方法を採用しており、装置が複雑となっている。
The apparatus disclosed in the above publication requires three receivers, which complicates the apparatus. In addition, a method is employed in which depth data is frequency-modulated, propagated in water as ultrasonic waves, frequency-demodulated on the receiving side, and depth is extracted, and the apparatus is complicated.

【0005】本発明は上述の問題点に鑑みてなされたも
ので、2個の受信器と深度のデータで送信器の位置を測
定する方式を提供することを目的とする。また、深度デ
ータをパルス間隔として送信することにより装置の簡素
化を図ることを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method of measuring the position of a transmitter using two receivers and data of depth. Another object of the present invention is to simplify the apparatus by transmitting depth data as pulse intervals.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、水中物体の送信器から送信さ
れる信号を第1受信器と第2受信器で受信し、送信器と
第2受信器との距離Lと第1受信器と第2受信器との距
離mと第1受信器と第2受信器とが受信した送信器から
の信号の位相差Δtとを用いて直線Lと直線mとのなす
角度θxを求め、前記水中物体に深度計を搭載しその深
度Dを前記信号で送信し、少なくても一方の受信器の受
信した深度Dを求め、直線mを含み深度方向と直交する
面をXY平面とし、第2受信器の位置を原点としたX,
Y座標において、距離L,角度θx,深度Dを用いて送
信器のX,Y座標を算出する。
According to a first aspect of the present invention, a signal transmitted from a transmitter of an underwater object is received by a first receiver and a second receiver. A straight line is obtained by using the distance L to the second receiver, the distance m between the first receiver and the second receiver, and the phase difference Δt of the signals received by the first and second receivers from the transmitter. The angle θx between L and the straight line m is obtained, a depth gauge is mounted on the underwater object, the depth D is transmitted by the signal, and the depth D received by at least one of the receivers is obtained. X, with the plane orthogonal to the depth direction as the XY plane and the position of the second receiver as the origin
In the Y coordinate, the X and Y coordinates of the transmitter are calculated using the distance L, the angle θx, and the depth D.

【0007】図6に示すように第1受信器aと第2受信
器bが距離m離れ、音源(送信部)が直線mの延長線に
ある場合、両受信器の受信信号は図7に示すようにΔt
ずれ、このずれに音速vを掛けたΔt・vがm(m=Δ
t・v)となる。音源が図6に示すように直線mと角度
θxで交差するとき、音源に対するaとbの距離はnと
なり、n=Δt・vとなる。これによりCOSθx=n
/mを求めることができる。図5において、音源Oより
の垂直線とXY平面との交点をPとすると直線OPは深
度Dより導かれる音源Oと受信部3の垂直距離dを表
し、直線Obは音源Oと第2受信器bとの距離Lを表
す。P点のXY座標は次式で表される。 X=L・COSθx…(1) Y=√(h2 −X2 )=√((L2 −d2 )−X2 ))…(2)
As shown in FIG. 6, when the first receiver a and the second receiver b are apart from each other by a distance m and the sound source (transmitter) is an extension of the straight line m, the reception signals of both receivers are as shown in FIG. Δt as shown
Δt · v obtained by multiplying this deviation by the sound velocity v is m (m = Δ
tv). When the sound source intersects the straight line m at an angle θx as shown in FIG. 6, the distance between a and b with respect to the sound source is n, and n = Δt · v. Thus, COS θx = n
/ M can be determined. In FIG. 5, when the intersection of the vertical line from the sound source O and the XY plane is P, a straight line OP represents a vertical distance d between the sound source O and the receiving unit 3 derived from the depth D, and a straight line Ob represents the sound source O and the second reception line. Represents the distance L from the container b. The XY coordinates of the point P are represented by the following equation. X = L · COS θx (1) Y = √ (h 2 −X 2 ) = √ ((L 2 −d 2 ) −X 2 )) (2)

【0008】請求項2の発明では、請求項1の発明にお
いて、前記XY平面で前記直線mと直交し第2受信器の
位置を通る線上に第3受信器を設け、前記第2受信器と
ともに前記送信器のX,Y座標を算出する。
According to a second aspect of the present invention, in the first aspect of the present invention, a third receiver is provided on a line orthogonal to the straight line m on the XY plane and passing through a position of the second receiver, and together with the second receiver. The X and Y coordinates of the transmitter are calculated.

【0009】第1受信器aと第2受信器bだけではXY
座標の全ての象限を特定できないため、図6において直
線mに直交しbを通る直線上に第3受信器cを設ける。
[0009] XY only in the first receiver a and the second receiver b
Since all the quadrants of the coordinates cannot be specified, the third receiver c is provided on a straight line that passes through b and is orthogonal to the straight line m in FIG.

【0010】請求項3の発明では、請求項1または2の
発明において、前記深度Dを送信する信号は2個のパル
スからなりそのパルス間隔が深度Dを表すようになって
いる。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the signal for transmitting the depth D includes two pulses, and the pulse interval represents the depth D.

【0011】深度計の計測値を2個のパルスの間隔に対
応させた信号を生成し、この信号を送信器で送信する。
いずれの受信器もこの信号を受信するが、その内の1つ
の受信器の受信データより深度Dを得る。
A signal corresponding to the measured value of the depth gauge corresponding to the interval between two pulses is generated, and this signal is transmitted by the transmitter.
Each receiver receives this signal, but obtains a depth D from the received data of one of the receivers.

【0012】請求項4の発明では、請求項1または2の
発明において、前記距離Lを受信する信号は、いずれか
の受信器と送信器に同一タイミングで動作するタイマー
を設け送信器は所定時刻に送信し、受信器は前記所定時
刻と信号を受信した時刻の差から信号伝播時間を求めこ
の伝播時間より前記距離Lを算出する。
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the signal for receiving the distance L is provided with a timer which operates at the same timing in any one of the receiver and the transmitter, and the transmitter transmits the signal at a predetermined time. The receiver calculates the signal propagation time from the difference between the predetermined time and the time at which the signal was received, and calculates the distance L from the propagation time.

【0013】上記方法で信号伝播時間が得られたらこの
伝播時間に水中の音速を乗ずれば距離Lは求まる。
When the signal propagation time is obtained by the above method, the distance L can be obtained by multiplying the propagation time by the speed of sound in water.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本実施形態の全体の
構成を示す図である。船舶1の船底より突き出して受信
部3が設けられており、水中を移動する水中物体2には
深度計4と、この深度計4の計測した深度Dをパルスに
変換して超音波で送信する送信部5とが設けられてい
る。なお、深度Dは水面と深度計4の垂直距離を示し、
受信部3と送信部5との垂直距離dは下式で表される。 d=D−Δd1−Δd2…(3) Δd1:水面と受信部3との垂直距離 Δd2:送信部5と深度計4との垂直距離
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of the present embodiment. A receiving unit 3 is provided so as to protrude from the bottom of the marine vessel 1, and a depth gauge 4 and a depth D measured by the depth gauge 4 are converted into a pulse and transmitted by ultrasonic waves to an underwater object 2 moving underwater. A transmission unit 5 is provided. The depth D indicates the vertical distance between the water surface and the depth gauge 4,
The vertical distance d between the receiving unit 3 and the transmitting unit 5 is represented by the following equation. d = D−Δd1−Δd2 (3) Δd1: vertical distance between the water surface and the receiving unit 3 Δd2: vertical distance between the transmitting unit 5 and the depth gauge 4

【0015】図2は送信部5の構成を示すブロック図で
ある。深度表示パルス発生器20は深度計4より得られ
る深度Dを表す電圧または電流値を第1タイマ21から
のタイミングに合わせて深度Dを表す深度パルス22に
変換する。深度パルス22は図に示すように2個のパル
スよりなり、両者の間隔kが深度Dと一定の関係を有す
るように変換される。この深度パルス22は一定の周期
Tで発生する。図3は深度パルス22の間隔kと深度D
との関係を示す一例で、間隔kと深度Dが比例関係にあ
る場合を示す。
FIG. 2 is a block diagram showing the configuration of the transmitting section 5. The depth display pulse generator 20 converts a voltage or current value representing the depth D obtained from the depth meter 4 into a depth pulse 22 representing the depth D in accordance with the timing from the first timer 21. The depth pulse 22 is composed of two pulses as shown in the figure, and is converted so that the interval k between them has a fixed relationship with the depth D. The depth pulse 22 is generated at a constant cycle T. FIG. 3 shows the interval k of the depth pulse 22 and the depth D.
In this example, the interval k and the depth D are in a proportional relationship.

【0016】プリアンプ23はこの深度パルス22を電
圧増幅し、電力増幅器24は更に電力増幅する。送信器
25は水晶発振器などの発振器で構成され電力増幅され
た深度パルス22を超音波に変換し水中に送信する。
The preamplifier 23 amplifies the voltage of the depth pulse 22, and the power amplifier 24 further amplifies the power. The transmitter 25 is composed of an oscillator such as a crystal oscillator, converts the power-amplified depth pulse 22 into an ultrasonic wave, and transmits the ultrasonic wave into water.

【0017】図4は受信部3の構成を示すブロック図で
ある。30は3個の第1受信器a,第2受信器b,第3
受信器cの配置を示す図で、水平面(XY平面)上、原
点に第2受信器b、X軸上原点よりmの距離に第1受信
器a、Y軸上原点よりm1の距離に第3受信器cが配置
されている。
FIG. 4 is a block diagram showing the configuration of the receiving section 3. As shown in FIG. Reference numeral 30 denotes three first receivers a, second receivers b,
FIG. 6 is a diagram showing the arrangement of the receiver c, on the horizontal plane (XY plane), the second receiver b at the origin, the first receiver a at a distance of m from the origin on the X axis, and the first receiver a at a distance m1 from the origin on the Y axis. 3 receivers c are arranged.

【0018】各受信器a〜cは送信器25からの超音波
を受信しこれを電気信号に変換し、図2に示す深度パル
ス22を復調する。COSθx演算部31は第1受信器
aと第2受信器bの出力または第2受信器bと第3受信
器cの出力とからCOSθxを算出する。θxは音源O
(送信部5)と第2受信器bとの距離Lを表す直線L
と、第1受信器aと第2受信器bとの距離mを表す直線
mとの交差角、または直線Lと、第2受信器bと第3受
信器cとの距離m1を表す直線m1との交差角である。
Each of the receivers ac receives the ultrasonic wave from the transmitter 25, converts the ultrasonic wave into an electric signal, and demodulates the depth pulse 22 shown in FIG. The COS θx calculator 31 calculates COS θx from the outputs of the first receiver a and the second receiver b or the outputs of the second receiver b and the third receiver c. θx is sound source O
A straight line L representing the distance L between the (transmitter 5) and the second receiver b
And an intersection angle of a straight line m representing a distance m between the first receiver a and the second receiver b, or a straight line L, and a straight line m1 representing a distance m1 between the second receiver b and the third receiver c. Is the intersection angle with

【0019】深度演算部32はいずれかの受信器(図4
では第1受信器a)の受信信号のパルス間隔kから深度
Dを演算する。第2タイマ33は送信部の第1タイマ2
1と同一のタイミング機能を有し、かつ測定開始前に同
期をとっておく。距離演算部34は第1タイマ21と第
2タイマ33に予め設定した送信時刻から第2受信器b
が受信した時刻までの音波伝播時間を算出し、この時間
に水中の音速を乗算して音源Oと第2受信器bとの距離
Lを算出する。三次元座標演算部35はCOSθx,距
離L,深度Dより導かれる受信部3と送信部5の垂直距
離dを上述の(1),(2)式に代入して音源OのX,
Y座標を算出する。X,Y座標は第2受信器bを原点と
する水平面に設けた座標である。このX,Y座標に深度
DをZ座標として加えることにより音源O(送信部5)
の三次元座標が得られる。位置表示部36は三次元座標
演算部35で算出した音源O、つまり水中物体2の3次
元位置を画面に表示する。
The depth calculator 32 is connected to one of the receivers (FIG. 4)
Then, the depth D is calculated from the pulse interval k of the received signal of the first receiver a). The second timer 33 is the first timer 2 of the transmitting unit.
It has the same timing function as 1 and is synchronized before the start of measurement. The distance calculator 34 calculates the second receiver b from the transmission time preset in the first timer 21 and the second timer 33.
Calculates the sound wave propagation time up to the time of reception, and multiplies this time by the speed of sound in water to calculate the distance L between the sound source O and the second receiver b. The three-dimensional coordinate calculation unit 35 substitutes the vertical distance d between the receiving unit 3 and the transmitting unit 5 derived from COS θx, distance L, and depth D into the above equations (1) and (2), and
Calculate the Y coordinate. The X and Y coordinates are coordinates provided on a horizontal plane with the second receiver b as the origin. By adding the depth D as the Z coordinate to the X and Y coordinates, the sound source O (transmitting unit 5)
Are obtained. The position display unit 36 displays the sound source O calculated by the three-dimensional coordinate calculation unit 35, that is, the three-dimensional position of the underwater object 2 on the screen.

【0020】図5は音源Oの位置を3次元座標で表す説
明図である。図6は第1受信器aと第2受信器bとの直
線距離mを表す直線mと音源Oからの直線との交差角θ
xを求める説明図である。また、図7は第1受信器aと
第2受信器bの受信した音源Oからの受信信号の位相差
を示す。以下図5〜7を参照して音源Oの位置を3次元
で表示する方法を説明する。
FIG. 5 is an explanatory diagram showing the position of the sound source O in three-dimensional coordinates. FIG. 6 shows an intersection angle θ between a straight line m representing a straight line distance m between the first receiver a and the second receiver b and a straight line from the sound source O.
FIG. 9 is an explanatory diagram for obtaining x. FIG. 7 shows the phase difference between the received signals from the sound source O received by the first receiver a and the second receiver b. Hereinafter, a method of displaying the position of the sound source O in three dimensions will be described with reference to FIGS.

【0021】図5において、受信器a,b,cは水平面
(これをX,Y平面とする)に配置され、bを原点とし
X軸上に距離m離れてaが配置され、Y軸上に距離m1
離れてcが配置されている。X,Y平面に直交し原点を
通る座標をZ座標とする。音源Oを通る垂直線とX,Y
平面との交点をPとすると距離OPは(3)式で示した
dを表す。P点よりX軸に下ろした垂線とX軸の交点が
音源OのX座標を表し、Y軸に下ろした垂線とY軸の交
点が音源OのY座標を表わす。対角線bPの距離をhと
する。また、音源Oとbとの距離をLとする。直線Lと
直線mとの交差角をθxとする。なお,音源Oの位置に
よっては直線Lと直線m1との交差角をθxとする。距
離Lは上述のように、第1タイマ21と第2タイマ33
に予め設定した送信時刻から第2受信器bが受信した時
刻までの音波伝播時間を算出し、この時間に水中の音速
を乗算して算出される。dは(3)式により求められ、
m,m1は定数である。
In FIG. 5, receivers a, b, and c are arranged on a horizontal plane (these planes are defined as X and Y planes), and a is arranged at a distance m on the X axis with b as the origin and on the Y axis. To distance m1
C is located away. The coordinates orthogonal to the X and Y planes and passing through the origin are defined as Z coordinates. Vertical line passing through sound source O and X, Y
Assuming that the intersection point with the plane is P, the distance OP represents d shown in Expression (3). The intersection of the perpendicular drawn from the point P to the X axis and the X axis represents the X coordinate of the sound source O, and the intersection of the perpendicular drawn to the Y axis and the Y axis represents the Y coordinate of the sound source O. The distance between the diagonal lines bP is h. The distance between the sound sources O and b is L. The intersection angle between the straight line L and the straight line m is defined as θx. Note that, depending on the position of the sound source O, the intersection angle between the straight line L and the straight line m1 is θx. As described above, the distance L is determined by the first timer 21 and the second timer 33.
Is calculated from the transmission time set in advance to the time when the second receiver b receives the sound wave, and this time is multiplied by the sound speed in water. d is obtained by equation (3),
m and m1 are constants.

【0022】図6と図7を用いてθxを求める方法を説
明する。音源Oより第1受信器aと第2受信器bにはほ
ぼ平行に音波が伝達される。b点より音源Oに直線を引
きこの直線へa点からの垂直線が交差する点をeとし、
直線beの距離をnとすると、角度abeは交差角θx
となる。故にCOSθx=n/mとなる。ここでnは音
源Oからのaとbとの距離の差であり、この差は第1受
信器aと第2受信器bとが受信した信号の位相ずれから
算出される。図7に示すように第1受信器aと第2受信
器bの受信信号の波形間にはΔtの位相ずれが生じる。
この位相ずれΔtに水中の音速vを乗じた値はnとなる
(n=Δt・v)。これによりCOSθx,θxを得る
ことができ、(1),(2)式を用いて音源OのX,Y
座標を算出することができる。さらにdをZ座標にとる
ことにより、音源Oの3次元座標を得ることができる。
以上の説明は音源OがX軸側にある場合を説明したが、
Y軸側にある場合は第2受信器bと第3受信器cの距離
m1を用いてCOSθxを算出する。音源OがX軸とY
軸の中間にある場合はm,m1のいずれを用いてもよ
い。
A method for obtaining θx will be described with reference to FIGS. Sound waves are transmitted from the sound source O to the first receiver a and the second receiver b almost in parallel. A straight line is drawn from the point b to the sound source O, and a point at which the vertical line from the point a intersects this straight line is e,
Assuming that the distance of the straight line be is n, the angle abe is the intersection angle θx
Becomes Therefore, COS θx = n / m. Here, n is the difference in the distance between a and b from the sound source O, and this difference is calculated from the phase shift of the signals received by the first receiver a and the second receiver b. As shown in FIG. 7, a phase shift of Δt occurs between the waveforms of the received signals of the first receiver a and the second receiver b.
The value obtained by multiplying the phase shift Δt by the sound velocity v in water is n (n = Δt · v). As a result, COS θx and θx can be obtained, and X, Y of the sound source O can be obtained using the equations (1) and (2).
The coordinates can be calculated. Further, by taking d as the Z coordinate, the three-dimensional coordinates of the sound source O can be obtained.
In the above description, the case where the sound source O is on the X axis side has been described.
If it is on the Y-axis side, COS θx is calculated using the distance m1 between the second receiver b and the third receiver c. Sound source O is X axis and Y
When it is at the middle of the axis, either m or m1 may be used.

【0023】[0023]

【発明の効果】以上の説明より明らかなように、本発明
では、水中物体より深度を示す超音波を送信しこれを2
この受信器で受信して水平面上の位置を求め、これに深
度のデータを加えることにより水中物体の3次元位置を
演算することができる。また、深度を2個のパルスの間
隔で表示することにより深度信号生成や超音波への変
換、またこの超音波からパルス信号への変換が容易にで
きる。
As is clear from the above description, according to the present invention, an ultrasonic wave indicating the depth of an underwater object is transmitted and transmitted.
The three-dimensional position of the underwater object can be calculated by obtaining the position on the horizontal plane received by the receiver and adding depth data to the position. In addition, by displaying the depth at intervals of two pulses, it is possible to easily generate a depth signal, convert to an ultrasonic wave, and convert the ultrasonic wave to a pulse signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of an embodiment of the present invention.

【図2】送信部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a transmission unit.

【図3】パルス間隔kと深度Dの関係を示す図である。FIG. 3 is a diagram showing a relationship between a pulse interval k and a depth D.

【図4】受信部の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of a receiving unit.

【図5】音源Oの位置を算出する説明図である。FIG. 5 is an explanatory diagram for calculating a position of a sound source O;

【図6】第1受信器aと第2受信器bを結ぶ直線mと音
源Oからの音波の経路との交差角θxを求める説明図で
ある。
FIG. 6 is an explanatory diagram for obtaining an intersection angle θx between a straight line m connecting a first receiver a and a second receiver b and a path of a sound wave from a sound source O;

【図7】第1受信器aと第2受信器bの受信信号の位相
ずれを説明する図である。
FIG. 7 is a diagram for explaining a phase shift between received signals of a first receiver a and a second receiver b.

【符号の説明】[Explanation of symbols]

1 船舶 2 水中物体 3 受信部 4 深度計 5 送信部 20 深度表示パルス発生器 21 第1タイマ 22 深度パルス 23 プリアンプ 24 電力増幅器 25 送信器 30 受信器の配置 31 COSθx演算部 32 深度演算部 33 第2タイマ 34 距離演算部 35 3次元座標演算部 36 位置表示部 a 第1受信器 b 第2受信器 c 第3受信器 O 音源 DESCRIPTION OF SYMBOLS 1 Ship 2 Underwater object 3 Receiving part 4 Depth gauge 5 Transmitting part 20 Depth display pulse generator 21 First timer 22 Depth pulse 23 Preamplifier 24 Power amplifier 25 Transmitter 30 Receiver arrangement 31 COSθx calculating part 32 Depth calculating part 33 2 timer 34 distance calculation unit 35 three-dimensional coordinate calculation unit 36 position display unit a first receiver b second receiver c third receiver O sound source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水中物体の送信器から送信される信号を
第1受信器と第2受信器で受信し、送信器と第2受信器
との距離Lと第1受信器と第2受信器との距離mと第1
受信器と第2受信器とが受信した送信器からの信号の位
相差Δtとを用いて直線Lと直線mとのなす角度θxを
求め、前記水中物体に深度計を搭載しその深度Dを前記
信号で送信し、少なくても一方の受信器の受信した深度
Dを求め、直線mを含み深度方向と直交する面をXY平
面とし、第2受信器の位置を原点としたX,Y座標にお
いて、距離L,角度θx,深度Dを用いて送信器のX,
Y座標を算出することを特徴とする水中測位方式。
1. A signal transmitted from a transmitter of an underwater object is received by a first receiver and a second receiver, a distance L between the transmitter and the second receiver, a first receiver, and a second receiver. Distance m and the first
The angle θx between the straight line L and the straight line m is obtained by using the phase difference Δt of the signal from the transmitter received by the receiver and the second receiver, and a depth gauge is mounted on the underwater object, and the depth D is obtained. An X, Y coordinate transmitted by the above-mentioned signal and obtained by at least one of the receivers to obtain a depth D, a plane including the straight line m and orthogonal to the depth direction is defined as an XY plane, and the position of the second receiver is set as an origin. , The X of the transmitter using the distance L, the angle θx, and the depth D,
An underwater positioning method characterized by calculating a Y coordinate.
【請求項2】 前記XY平面で前記直線mと直交し第2
受信器の位置を通る線上に第3受信器を設け、前記第2
受信器とともに前記送信器のX,Y座標を算出すること
を特徴とする請求項1記載の水中測位方式。
A second line orthogonal to the straight line m on the XY plane;
Providing a third receiver on a line passing through the position of the receiver;
The underwater positioning system according to claim 1, wherein the X and Y coordinates of the transmitter and the receiver are calculated.
【請求項3】 前記深度Dを送信する信号は2個のパル
スからなりそのパルス間隔が深度を表すようになってい
ることを特徴とする請求項1または2記載の水中測位方
式。
3. The underwater positioning system according to claim 1, wherein the signal for transmitting the depth D includes two pulses, and the pulse interval indicates the depth.
【請求項4】 前記距離Lを受信する信号は、いずれか
の受信器と送信器に同一タイミングで動作するタイマー
を設け送信器は所定時刻に送信し、受信器は前記所定時
刻と信号を受信した時刻の差から信号伝播時間を求めこ
の伝播時間より前記距離Lを算出することを特徴とする
請求項1または2記載の水中測位方式。
4. A signal which receives the distance L is provided with a timer which operates at the same timing in one of the receiver and the transmitter, the transmitter transmits the signal at a predetermined time, and the receiver receives the signal at the predetermined time. 3. The underwater positioning system according to claim 1, wherein a signal propagation time is obtained from a difference between the times, and the distance L is calculated from the propagation time.
JP304098A 1998-01-09 1998-01-09 Underwater positioning system Pending JPH11202042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP304098A JPH11202042A (en) 1998-01-09 1998-01-09 Underwater positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP304098A JPH11202042A (en) 1998-01-09 1998-01-09 Underwater positioning system

Publications (1)

Publication Number Publication Date
JPH11202042A true JPH11202042A (en) 1999-07-30

Family

ID=11546208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP304098A Pending JPH11202042A (en) 1998-01-09 1998-01-09 Underwater positioning system

Country Status (1)

Country Link
JP (1) JPH11202042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027687A (en) * 2009-07-29 2011-02-10 Tobishima Corp Detector for sound or vibration generation point
EP2820443A1 (en) * 2012-03-02 2015-01-07 Go Science Group Ltd Determining position of underwater node
CN113242097A (en) * 2021-06-21 2021-08-10 Oppo广东移动通信有限公司 Underwater positioning method and related device
CN114791588A (en) * 2022-05-12 2022-07-26 中国人民解放军海军潜艇学院 Underwater acoustic pulse positioning method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027687A (en) * 2009-07-29 2011-02-10 Tobishima Corp Detector for sound or vibration generation point
EP2820443A1 (en) * 2012-03-02 2015-01-07 Go Science Group Ltd Determining position of underwater node
US9170319B2 (en) 2012-03-02 2015-10-27 Go Science Group Ltd Determining position of underwater node
CN113242097A (en) * 2021-06-21 2021-08-10 Oppo广东移动通信有限公司 Underwater positioning method and related device
CN113242097B (en) * 2021-06-21 2022-11-11 Oppo广东移动通信有限公司 Underwater positioning method and related device
CN114791588A (en) * 2022-05-12 2022-07-26 中国人民解放军海军潜艇学院 Underwater acoustic pulse positioning method and system

Similar Documents

Publication Publication Date Title
JP5730008B2 (en) Underwater position detection system, ship-side receiver, and underwater position detection method
JPH11202042A (en) Underwater positioning system
JPS61262674A (en) Apparatus for measuring position in water
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JP2528973B2 (en) Underwater detector
JPH05223916A (en) Underwater position measuring apparatus
JP2820311B2 (en) Acoustic navigation measurement system for submersibles
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2004191125A (en) Underwater position measuring method and underwater position measuring device
JPH11183580A (en) Underwater position measuring device
JP3040614B2 (en) Ultrasonic tidal current distribution measuring device
JPH06180358A (en) Position detecting method for pinger
JP3040615B2 (en) Ultrasonic tidal current distribution measuring device
JPH0331787A (en) Method and device for verifying water depth
JPS6279382A (en) Underwater reference level measuring apparatus
JP2024049517A (en) Position measuring system, position measuring device and position measuring method
JP2016161363A (en) Optical coordinate measurement device
JPH06331741A (en) Water temperature measuring/displaying system
JPH0762660A (en) Rubble mound leveled surface measurement system
JPS622182A (en) Underwater position measuring instrument
JPS63153470A (en) Ultrasonic flow velocity measuring instrument, ultrasonic sound velocity measuring instrument, and ultrasonic flow velocity/flow direction/sound velocity measuring instrument
JP2000221019A (en) Ultrasonic distance measuring equipment
JPS60238727A (en) Vibration measuring instrument
JPH05240719A (en) Ultrasonic remote water temperature measuring device
WO2019069803A1 (en) Ultrasonic wave transmitter, propagation time measurement device, gas concentration measurement device, propagation time measurement program, and propagation time measurement method