JPS6279382A - Underwater reference level measuring apparatus - Google Patents

Underwater reference level measuring apparatus

Info

Publication number
JPS6279382A
JPS6279382A JP21864585A JP21864585A JPS6279382A JP S6279382 A JPS6279382 A JP S6279382A JP 21864585 A JP21864585 A JP 21864585A JP 21864585 A JP21864585 A JP 21864585A JP S6279382 A JPS6279382 A JP S6279382A
Authority
JP
Japan
Prior art keywords
reference point
ultrasonic wave
transmitter
ultrasonic
computing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21864585A
Other languages
Japanese (ja)
Inventor
Norikazu Honma
本間 愼和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP21864585A priority Critical patent/JPS6279382A/en
Publication of JPS6279382A publication Critical patent/JPS6279382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable accurate measurement of a level at a position to be measured with respect to an underwater, reference point, by performing a specified computation of received wave outputs using a plurality of transmitters and receivers. CONSTITUTION:When a trigger signal T in a controller 3 is fed to a coordinate computing unit 32 and an ultrasonic transmitter 11, a pulse signal synchronous to the signal T and a modulation signal are provided to transmitters 1a and 1b respectively. Pulse-like signals at receivers 2a-2c are applied to a coordinates computing unit 32 sequentially, where the position (X-Y) of the transmitter 1a on the XY plane is calculated and fed to a recorder 4. Modulation signals at the receivers 2a and 2e are provided to a level computing unit 36 via a phase direction detector 35 and an angle computing unit 37. The computing unit 36 determines the angles of elevation and depression using a distance R being computed 32, an angle value beta and phase polarity value (+-) and the height of the transmitter 1b with respect to the reference point is calculated to be fed to a recorder 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中の基準レベル計測装置に関するO〔従来の
技術〕 近年、海洋土木工事の発展に供ない、土木工事の施工法
が近代化されてきた。例えば、港彎防波堤の建設におけ
る基礎着石均し工事はダイノ(−によって従来実施され
ていたが、この捨石均し作業を行う水中ロボット形式均
し機が出現し実用化されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an underwater reference level measuring device. It's here. For example, foundation stone leveling work in the construction of a harbor breakwater was conventionally carried out using Dyno (-), but an underwater robot-type leveling machine that performs this rubble leveling work has been developed and put into practical use.

従来の捨石均し工事は第9図に示す潜水夫の手作業によ
る方法と第10図に示す海底移動式捨石均し機による方
法があるが、手作業による方法は均し面に水中スタッフ
(計測棒)40を立て海面上に突出したスタッフ400
目盛りをレベル41により測量し均し基準面を設定する
。一方、均し機械の方も均し機械上に水中スタッフ50
を立て手作業と同様に海面より突出したスタッフの目盛
を既設のケーソン等からレベル51により計測する方法
が採用されており両者とも次の点に問題がある。
Conventional rubble leveling work can be done manually by a diver as shown in Figure 9, or by using a submarine mobile rubble leveling machine as shown in Figure 10. Measuring rod) 40 with a staff 400 protruding above the sea surface
Measure the scale using level 41 and set a leveling reference plane. On the other hand, the leveling machine also has an underwater staff of 50
The method used is to measure the scale of the staff protruding above the sea level using level 51 from an existing caisson, etc., in the same way as manual measurement.Both methods have the following problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

(1)  計測に時間がかかり工事施工上能率が低い。 (1) Measurement takes time and construction efficiency is low.

(21水中スタッフを用いるため大水深施工においての
計測は困難になる。
(21) Measurement in deep water construction becomes difficult because underwater staff are used.

本発明は上呂己実情に鑑みてなされたもので、被測定位
置のレベルを水中スタッフを用いずに精密に測定する水
中の基準レベル計測装置を提供することを目的とする。
The present invention has been made in view of the current circumstances of Gero, and an object of the present invention is to provide an underwater reference level measuring device that accurately measures the level at a position to be measured without using an underwater staff.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、水中の基準点から水平に放射状等間隔
に配置した3個の第1の超音波受波手段と、m+I記基
準点から鉛直方向に配置した2個の第2の超音波受波手
段と、水中の被計測位置から超音波を発信する手段と、
前Iピ超音波が発信されてから前記3個の、Mlの超音
波受波手段が受波するまでの各時間に関連して前記被計
測位置の前記基準点からの水平距離?:算出する第1の
演算手段と、1旬記21i!の第2の超音波受波手段が
前記超音波を受波したときの位相差に関連して前記超音
波の到来方向を算出する第2の演算手段と、前記第1の
演算手段2こよって算出した水平距離と#J記第2の演
算手段によって算出した到来方向とに基づいて前記基準
点に対する被計測位置のレベルを算出する第3の演算手
段とから構成されている。
According to the present invention, three first ultrasonic receiving means are arranged horizontally at equal intervals radially from a reference point underwater, and two second ultrasonic receiving means are arranged vertically from a reference point m+I. A wave receiving means, a means for transmitting ultrasonic waves from a measured position underwater,
What is the horizontal distance of the measured position from the reference point in relation to each time period from when the first I-pi ultrasonic wave is transmitted until it is received by the three Ml ultrasonic wave receiving means? :The first calculation means to calculate and the first 21i! a second calculating means for calculating the arrival direction of the ultrasonic wave in relation to a phase difference when the second ultrasonic wave receiving means receives the ultrasonic wave, and the first calculating means 2 and a third calculating means for calculating the level of the measured position relative to the reference point based on the calculated horizontal distance and the direction of arrival calculated by the second calculating means described in #J.

〔作用〕[Effect]

水中の被計測位置から発イ6される超音波は、水中の基
準点に一定の位置関係で配設された3個の超fe!、受
波手段によって受波される。前記第1の演算手段は、前
記超音波が発信されてから31向の超音波受波手段が受
波するまでの各時間、音速等に基づいて前記基準点から
の被計測位置の水平距#を算出する。一方、被計測位置
から発信されろFMffi廿波は、前dピ基準点から鉛
直方向rこ配置された2個のFM超音波受波手段によっ
て受波される。前記第2の演算手段は2個のFM超冴波
が受波したFMi&i音波の位相差に基づいてその7M
超音波の到来方向?算出する。前記第3の演算手段は上
記算出した水平距離に超音波の到来方向の正接な乗算す
ることにより前記基準点に対する被計測位置のレベルを
算出する。
The ultrasonic waves emitted from the underwater measurement position are transmitted to three ultra-fe! , is received by the wave receiving means. The first calculating means calculates the horizontal distance # of the measured position from the reference point based on the time from when the ultrasonic wave is emitted until it is received by the ultrasonic wave receiving means in 31 directions, the speed of sound, etc. Calculate. On the other hand, the FMffi waves transmitted from the measured position are received by two FM ultrasonic wave receiving means arranged in the vertical direction r from the front reference point. The second calculation means calculates the 7M based on the phase difference of the FMi & i sound waves received by the two FM ultrasonic waves.
Direction of arrival of ultrasound? calculate. The third calculation means calculates the level of the measured position with respect to the reference point by multiplying the horizontal distance calculated above by a tangent of the direction of arrival of the ultrasonic wave.

〔実施例〕〔Example〕

以丁、本発明の実施例を添付図面を参照して詳細に説明
する〇 まず、本発明の詳細な説明する。いま、第4図に示され
るように水中の測定すべき位置に超音波送波器1が配置
されるとともに、水中の予設定された基準点0に超音波
受波装置2が配置されているとする。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. First, the present invention will be described in detail. Now, as shown in FIG. 4, an ultrasonic transmitter 1 is placed at the position to be measured underwater, and an ultrasonic receiver 2 is placed at a preset reference point 0 underwater. shall be.

上6d超音波受波装置2は基準点0かろ水平にかつ放射
状等間隔に配設された3つの超せ収受波器2aJ2b1
2Cと、基準点0から上下垂直に配設された2つの超音
波2d、2θとからなる。
The upper 6d ultrasonic receiver 2 includes three ultrasonic receivers 2aJ2b1 arranged horizontally from the reference point 0 and at equal radial intervals.
2C, and two ultrasonic waves 2d and 2θ arranged vertically above and below from the reference point 0.

上dピ3つの受波器2 a+ 2 bH2Cは、本山知
人が先に提案した%願昭55年44349号に係る水中
の移動物体位置検出装置と同様の原理に基づき、2次元
平面上に2ける送波器10位直重本発明では基準点Oと
送波器1との水平距離、を検出するために用いられてい
る。すなわち、第5図に示されるようにXY平而面おい
て受波器2 ’ +2 br 2 Cが基準点0を中心
とする半径rの固成上に互に1200の間隔をあけて配
置されているから送波器1に対する各受改器2&12b
12Gの離間距離はそれぞれ異る。したがって、第6図
に示されるように送波器1で発生した超音波は、発生し
てから時間τ侵に受波器2aK裏りて受波され、その後
時間1.およびt、Kに受波器2bおよび2aによって
受波されろ。
The three receivers 2a+2bH2C are based on the same principle as the underwater moving object position detecting device proposed by Tomitomo Motoyama in Patent Application No. 44349 of 1982, and are based on the same principle as the underwater moving object position detection device proposed by Tomitomo Motoyama earlier. In the present invention, it is used to detect the horizontal distance between the reference point O and the transmitter 1. That is, as shown in FIG. 5, in the XY plane, the receivers 2' + 2 br 2 C are arranged at intervals of 1200 mm on a fixed plane of radius r centered on the reference point 0. Since each transmitter 2 & 12b for transmitter 1
The separation distance of 12G is different. Therefore, as shown in FIG. 6, the ultrasonic wave generated by the transmitter 1 is received by the receiver 2aK at a time .tau. after the ultrasonic wave is generated, and then is received by the receiver 2aK at a time .tau. and received by receivers 2b and 2a at t and K.

↓。↓.

いま、送+2!!器1と基準点0との距m−b−便用す
る一ソ 波長に比して十分大なるときは(R〉〉λ)、受波器2
に達する音数を平面波として考えろことがでざる・そこ
で、水中の音速’YO(m/5ac)とし、基準点0と
各受波器2af 2bl 2a間の距離をr(m)とす
ると、上目C時間t1ettはそれぞれ下式の関係が成
立する。なお、送波器1は、受波器2aと基準点0?:
帖ぶ直線よりも受波器2b方向に対してα0の方向に位
置しているものとする。
Send +2 now! ! When the distance between the receiver 1 and the reference point 0 is sufficiently large compared to the wavelength m-b-used (R〉〉λ), the receiver 2
It is impossible to think of the number of sounds reaching as a plane wave. Therefore, if the speed of sound in water is 'YO (m/5ac) and the distance between the reference point 0 and each receiver 2af 2bl 2a is r (m), then The relationship of the following formula holds true for the time C and time t1ett. Note that the transmitter 1 is connected to the receiver 2a at the reference point 0? :
It is assumed that it is located in the direction α0 with respect to the direction of the receiver 2b from the straight line.

ここで、Cおよびrは定数であるからtlおよびt、を
計測すればαが求まる。また上記τとCを乗算すれば距
離Rを求めることができろ。
Here, since C and r are constants, α can be found by measuring tl and t. Also, by multiplying the above τ and C, the distance R can be obtained.

また、基準点Oを原点とするXY平面上における送波器
1の位置(XIY)を下式から求めることができる。
Further, the position (XIY) of the transmitter 1 on the XY plane with the reference point O as the origin can be determined from the following formula.

ところで、第7図に示されるように送波器1が上下に移
行して高低ih?:生じた場合、送波器1によって発生
された超音波を各受波器2a*2br20のいずれかが
最初に受波するまでの時間をτ′とし、かつ七〇恢各受
波器のいずれかが順次受波l      ′ するまでの時間を1..1.とすると、これらのτおよ
び1..1.はh−0の場合の超音波の伝達時間τおよ
び時間差11.1.を用いて、τ′−′τ/!θ、1.
、.1.。θ、t’、at、ユθで表わされる。そして
、これらのτ′およびtto”zを上式(3)、(4)
に代入すると、(2)θが消去されろ。
By the way, as shown in FIG. 7, the transmitter 1 moves up and down and changes in height ih? : If the ultrasonic wave generated by the transmitter 1 is received by any of the receivers 2a * 2br20 for the first time, let τ' be the time required for the ultrasonic wave generated by the transmitter 1 to be received by any one of the receivers 2a*2br20, and The time it takes for each to sequentially receive waves l' is 1. .. 1. Then, these τ and 1. .. 1. is the ultrasonic transmission time τ and time difference in the case of h-0 11.1. Using τ′−′τ/! θ, 1.
,.. 1. . It is represented by θ, t', at, and yθ. Then, these τ′ and tto”z are expressed by the above equations (3) and (4).
Substituting into (2) θ will be eliminated.

これにより、送波61の高低差によってはX、Y座襟1
1が変化しないことがわかる。
As a result, depending on the height difference of the transmitting wave 61, the X and Y seat collars 1
It can be seen that 1 does not change.

また、ここで上式(3) 、 (4)に基づ<(XIY
)の値から求まる距離p、 (−5’〒−,2)と、笑
測距雅R(−τ′×C)を次式(5)に代入すれば高さ
hを求めることができる。
Also, based on the above formulas (3) and (4), <(XIY
), the height h can be obtained by substituting the distance p, (-5'〒-,2) and the distance measurement R (-τ'×C) into the following equation (5).

h −四’   ・−・・・・(5) しかし、上式(5)から求められる高さhの精度は、超
音波パルスの立ち上がり特性に依存し、精度の良い測定
は実際上困難である。
h - 4' ... (5) However, the accuracy of the height h determined from the above equation (5) depends on the rise characteristics of the ultrasonic pulse, and accurate measurement is difficult in practice. .

そこで、本発明においては上記2っの受波器2 d。Therefore, in the present invention, the above two receivers 2d.

2eを用いて、送波器1の高さを正確に求める◎いま、
第8図に示されるように送波器1が高さhに位置してい
ると、受波器2d、2θは離間距離lで配置されている
ので、送波器1から発生された超音波を異なる位相で受
波する。このとき、基準点Oからみた送波器1の俯仰角
なβとし、力・つ超音波によって同波数変調された変調
波の波長をλpとすると、受波器2d、26間の位相差
Δφは次゛式(6)で示されろ。
2e to accurately determine the height of transmitter 1◎Now,
As shown in FIG. 8, when the transmitter 1 is located at a height h, the receivers 2d and 2θ are arranged at a distance l, so that the ultrasonic wave are received with different phases. At this time, if β is the elevation angle of the transmitter 1 seen from the reference point O, and λp is the wavelength of the modulated wave modulated with the same wave number by the force/tsu ultrasound, then the phase difference Δφ between the receivers 2d and 26 is is expressed by the following equation (6).

したがって、位相差Δφを測定し、その位相差Δφを次
式(7)に代入して俯仰角β欠求めろことがざらに、先
のXY平面上における送波61の位置計鼻で得られた距
離R,お工び上式(7)に基づく俯仰角βを次式(8)
に代入すると、基準点0に対する送波器1の高さを求め
ろことができる。
Therefore, the phase difference Δφ is measured, and the phase difference Δφ is substituted into the following equation (7) to obtain the depression/elevation angle β. The distance R and the angle of depression β based on the above formula (7) can be calculated using the following formula (8).
By substituting , we can find the height of the transmitter 1 with respect to the reference point 0.

h−R−tanβ・・・・・・(8ン また、送波器lの位置は上式(3)、(4)および(8
)に基づき、2!l:単点0を原点とする3次元空間に
示すこともできろ。
h-R-tanβ (8) Also, the position of the transmitter l is determined by the above equations (3), (4) and (8).
) Based on 2! l: Can it also be shown in a three-dimensional space with a single point 0 as the origin?

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

第1図は本発明に係る水中の基準レベル計測装置の一実
施例を示しており、第2図はこの実施例の通用態様例を
示している。
FIG. 1 shows an embodiment of an underwater reference level measuring device according to the present invention, and FIG. 2 shows an example of a general aspect of this embodiment.

この実施例では、海低の移動物体10に超音波送波器:
at1bおよび超音波発振装置11が袋層され、海中の
基準点Oに超音波受波装置2が配置され、海上に制御波
ma、X−Y記録器4および高さ記録器5が設置されて
いる。
In this embodiment, an ultrasonic transmitter is attached to a moving object 10 at low sea level.
at1b and the ultrasonic oscillator 11 are stacked, an ultrasonic receiver 2 is placed at a reference point O in the sea, and a control wave ma, an X-Y recorder 4, and a height recorder 5 are installed on the sea. There is.

上記制御装置3におけるトリガ信号発生器31は、トリ
ガ信号’r?:1@期的に発生している。この信号Tは
座標演算器32に印り口されるとともに、ラインAY介
して超音波送振装置1illに送出される。この送振装
置11における超音波信号発振器11aは、このトリガ
信号Tに同期したパルス信号を形成するとともに、周波
数変調信号(し1えば搬送波100KHz、変調波1K
Hz)を発生している。これらのパルス信号および変v
!4信号は、増幅器11bによって増幅された後、送波
器1aおよび1bに印加される。したがって、送波器1
aおよび1bは、パルス状の超音波および変調された超
音波を発生する。
The trigger signal generator 31 in the control device 3 generates a trigger signal 'r? :1@ Occurs periodically. This signal T is input to the coordinate calculator 32 and sent to the ultrasonic transmitter 1ill via the line AY. The ultrasonic signal oscillator 11a in this vibration transmitting device 11 forms a pulse signal synchronized with this trigger signal T, and also generates a frequency modulated signal (for example, a carrier wave of 100 KHz and a modulated wave of 1 KHz).
Hz). These pulse signals and variable v
! After the four signals are amplified by amplifier 11b, they are applied to transmitters 1a and 1b. Therefore, transmitter 1
a and 1b generate pulsed ultrasound and modulated ultrasound.

上記超音波受波装置2の受波器2 ’ + 2 ” t
 2Cが上記パルス状の超音波を例え(ま゛各受波器2
a→2b→2Cの順番で受波すると、各受波器2a。
Receiver 2 ′ + 2 ”t of the ultrasonic wave receiving device 2
2C is an example of the above pulsed ultrasonic wave (each receiver 2
When receiving waves in the order of a → 2b → 2C, each receiver 2a.

2b 、 2cからその順番でパルス信号が帯域増幅器
33を介して座標演算器32に出力されろ。演算器32
はトリガ信号発生器31からのトリガ信号Tおよび各受
波器2a、2bおよび2Cからの各パルス信号Pa 、
PbおよびPc?:入力し、第3図に示されろようなこ
れら各信号に基づ(時間τおよび時間差”IIt!を求
めろ。そして、時間τと音速0を乗算して距離Rを昇出
し、さらにこの距離Rおよび各時間差11.1.をパラ
メータとする上式(3) 、 (4)に基づいて、XY
平面における送波器1aの位置(x、y)を算出し、こ
の位置(X、Y)をX−Y記録器4に出力する@x−Y
記録器4はこの位m(XIY)をdピ録する。
Pulse signals from 2b and 2c are output to the coordinate calculator 32 via the band amplifier 33 in that order. Arithmetic unit 32
are the trigger signal T from the trigger signal generator 31 and each pulse signal Pa from each receiver 2a, 2b and 2C,
Pb and Pc? : input, and based on these signals as shown in Figure 3 (calculate the time τ and time difference "IIt!"), multiply the time τ by the speed of sound 0 to obtain the distance R, and then Based on the above equations (3) and (4) with distance R and each time difference 11.1. as parameters, XY
Calculate the position (x, y) of the transmitter 1a on the plane and output this position (X, Y) to the X-Y recorder 4@x-Y
The recorder 4 records d copies of m(XIY).

一方、受波器2d12f3が上記送波器1bからの変調
された超音波を受波すると、各受波器2a。
On the other hand, when the receiver 2d12f3 receives the modulated ultrasonic wave from the transmitter 1b, each receiver 2a.

2θから変調信号が帯域増幅器34を介して位相方向検
出器35に出力される。この検出器35は受波器2d、
2θからの各変調信号?入力すると、各変調信号間の位
相ずれの方向を判定し、この判定結果(±)をレベル演
算器36に入力する。また、上記各変調信号は検出器3
5をprして角度演算器37にも入力される。角度演算
器37は各変―信号の位相差j′Δφ1を検出し、この
位相差1Δφ(をパラメータとする上式(7)に基づい
て角度iβlを求める。この角度1β1はレベル演算器
36に入力される。
A modulated signal from 2θ is outputted to a phase direction detector 35 via a band amplifier 34. This detector 35 includes a receiver 2d,
Each modulation signal from 2θ? When input, the direction of phase shift between each modulation signal is determined, and the determination result (±) is input to the level calculator 36. In addition, each of the above modulated signals is transmitted to the detector 3.
5 is also input to the angle calculator 37. The angle calculator 37 detects the phase difference j'Δφ1 of each variable signal, and calculates the angle iβl based on the above equation (7) with this phase difference 1Δφ( as a parameter. This angle 1β1 is sent to the level calculator 36. is input.

レベル演算器36は検出器36の判定結果(至)に基づ
いて角度1β1の正負?判定し、この判定によって俯仰
角βを求め、さらにこの俯仰角βをパラメータとする上
式(8)に基づいて基準点0に対する送波器1bの高さ
±hff:31F、出し、これを高さ記録器5に出力す
る。高さ記録器5はこの高さ士h?:記録する。
The level calculator 36 determines whether the angle 1β1 is positive or negative based on the determination result (toward) of the detector 36. Based on this determination, the elevation angle β is obtained, and based on the above equation (8) using this elevation angle β as a parameter, the height of the transmitter 1b with respect to the reference point 0 is ±hff: 31F, and this is output to the recorder 5. Is the height recorder 5 this height tester h? :Record.

こうして、移動物体10に装着された送波器1aの位置
(X、Y)および送波器1bの高さ±hが記録され、こ
の記録から海底の状態を知ることができろ〇 なお、上記実施例では2種の超音波を発生する各送波器
ta、lbを設けたが、これに限定されろものでなく、
1つの送波器によって2種の超音波を発生させてもよい
。また、XY平面上におけろ位置を検出するためにパル
ス状の超音波を用いたが、この代りに同波数変調した超
音波送波器いてもよい。
In this way, the position (X, Y) of the transmitter 1a attached to the moving object 10 and the height ±h of the transmitter 1b are recorded, and from this record it is possible to know the state of the ocean floor. In the embodiment, transmitters ta and lb that generate two types of ultrasonic waves are provided, but the present invention is not limited to this.
Two types of ultrasonic waves may be generated by one transmitter. Further, although pulsed ultrasonic waves are used to detect the position on the XY plane, an ultrasonic transmitter that modulates the same wave number may be used instead.

また、座標演算器32、レベル演算器36、角度演8器
37の代りにマイクロコンビーータ乞用いてももちろん
よい。
Furthermore, a microconbeater may of course be used in place of the coordinate calculator 32, level calculator 36, and angle calculator 37.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、水中スタッフ等乞
用いずに、超音波を用いて水中の基準点に対する被gt
測位置のレベル演算器に計測することができろ。
As explained above, according to the present invention, ultrasonic waves are used to determine the gt position relative to an underwater reference point without using underwater staff or the like.
Be able to measure the position using the level calculator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水中の基準レベル計測装置iiの
一実施例を示すブロック図、第2図は第1図に示した実
施例の適用態様例を示す図、第3図は第1図に示した実
施例における各信号のタイミングチャート、第4図、第
5図、第6図、第7図Hよび第8図は本発明の詳細な説
明するために用いられた図、第9図は潜水夫の手作業に
よる従来の捨石均し工事を示す図、第1θ図は海底移動
式捨石均し機による従来の捨石均し工事を示す図である
a 1・・・超音波送波器、2・−超音波受波装置、3・・
・制御装置、4−X −Y記録器、5−高さ記録器、1
0・・・移動物体、11・・・超音波受波装置“−7′
− 出願人代理人  木 村 刊 久  8′”、・第2図 第3図 1グ 第4図 第7図 第8図 第9図 第10図
FIG. 1 is a block diagram showing an embodiment of the underwater reference level measuring device ii according to the present invention, FIG. 2 is a diagram showing an example of application of the embodiment shown in FIG. 1, and FIG. Timing charts of each signal in the embodiment shown in the figures, FIGS. 4, 5, 6, 7H and 8 are used for detailed explanation of the present invention. The figure shows conventional rubble leveling work done manually by a diver, and Figure 1θ shows the conventional rubble leveling work using a seabed mobile rubble leveling machine. a1... Ultrasonic wave transmission device, 2--ultrasonic wave receiver, 3...
・Control device, 4-X-Y recorder, 5-height recorder, 1
0... Moving object, 11... Ultrasonic wave receiver "-7'
- Applicant's agent Kimura Published by Hisashi 8', Figure 2, Figure 3, Figure 1, Figure 4, Figure 7, Figure 8, Figure 9, Figure 10.

Claims (1)

【特許請求の範囲】[Claims]  水中の基準点から水平に放射状等間隔に配置した3個
の第1の超音波受波手段と、前記基準点から鉛直方向に
配置した2個の第2の超音波受波手段と、被計測位置か
ら超音波を発信する手段と、前記超音波が発信されてか
ら前記3個の第1の超音波受波手段が受波するまでの各
時間に関連して前記被計測位置の前記基準点からの水平
距離を算出する第1の演算手段と、前記2個の第2の超
音波受波手段が前記超音波を受波したときの位相差に関
連して前記超音波の到来方向を算出する第2の演算手段
と、前記第1の演算手段によつて算出した水平距離と前
記第2の演算手段によつて算出した到来方向とに基づい
て前記基準点に対する被計測位置のレベルを算出する第
3の演算手段とを具えた水平の基準レベル計測装置。
three first ultrasonic wave receiving means disposed horizontally at equal intervals radially from a reference point in the water, two second ultrasonic wave receiving means disposed vertically from the reference point, and a measured object. means for transmitting ultrasonic waves from a position; and the reference point of the measured position in relation to each time period from when the ultrasonic waves are emitted to when the three first ultrasonic wave receiving means receive the waves. a first calculating means for calculating a horizontal distance from the ultrasonic wave, and calculating an arrival direction of the ultrasonic wave in relation to a phase difference when the ultrasonic wave is received by the two second ultrasonic wave receiving means. and calculates the level of the measured position relative to the reference point based on the horizontal distance calculated by the first calculation means and the direction of arrival calculated by the second calculation means. A horizontal reference level measuring device comprising: a third calculation means for calculating a horizontal reference level;
JP21864585A 1985-10-01 1985-10-01 Underwater reference level measuring apparatus Pending JPS6279382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21864585A JPS6279382A (en) 1985-10-01 1985-10-01 Underwater reference level measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21864585A JPS6279382A (en) 1985-10-01 1985-10-01 Underwater reference level measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6279382A true JPS6279382A (en) 1987-04-11

Family

ID=16723190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21864585A Pending JPS6279382A (en) 1985-10-01 1985-10-01 Underwater reference level measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6279382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010272A1 (en) * 2006-07-19 2008-01-24 Panasonic Electric Works Co., Ltd. Mobile object position detecting system
WO2008010269A1 (en) * 2006-07-19 2008-01-24 Panasonic Electric Works Co., Ltd. System for detecting position of mobile object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010272A1 (en) * 2006-07-19 2008-01-24 Panasonic Electric Works Co., Ltd. Mobile object position detecting system
WO2008010269A1 (en) * 2006-07-19 2008-01-24 Panasonic Electric Works Co., Ltd. System for detecting position of mobile object

Similar Documents

Publication Publication Date Title
US4532617A (en) System for locating a towed marine object
US4229809A (en) Acoustic under sea position measurement system
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
JPS5855477B2 (en) sonar device
US4970698A (en) Self-calibrating sonar system
JPS6279382A (en) Underwater reference level measuring apparatus
US3727178A (en) Echo sounding distance measurement method and apparatus
JPH0361915B2 (en)
JP2004138481A (en) Position measuring device and robot using it
JP2820311B2 (en) Acoustic navigation measurement system for submersibles
JPH0694456A (en) Sounding system by gps kinematic positioning method
JPH10332825A (en) Method and system for surveying topography of seabed
JPH11202042A (en) Underwater positioning system
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
JPH0156383B2 (en)
JPS6050296B2 (en) Water temperature measurement method on ships
JPH11211809A (en) Underwater position measuring method
JP2000241545A (en) Device and method for detecting distance to navigation object
JP3225249B2 (en) Buoy acoustic positioning device
JPH11183580A (en) Underwater position measuring device
RU2431154C1 (en) Method of determining depth and depth finder to this end
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPS6239336Y2 (en)
JPH01245181A (en) Wide area sounding machine
RU1838802C (en) Method of measurement of depth of sea