JP2679192B2 - Undersea terrain display - Google Patents
Undersea terrain displayInfo
- Publication number
- JP2679192B2 JP2679192B2 JP31603088A JP31603088A JP2679192B2 JP 2679192 B2 JP2679192 B2 JP 2679192B2 JP 31603088 A JP31603088 A JP 31603088A JP 31603088 A JP31603088 A JP 31603088A JP 2679192 B2 JP2679192 B2 JP 2679192B2
- Authority
- JP
- Japan
- Prior art keywords
- seabed
- topography
- doppler shift
- doppler
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海底地形表示装置に関し、特に、所定の航路
に沿って進行する船から垂直下方に形成する扇形の送受
波特性を介して音響によるファンビームの送受信を行な
い、海底面に関する同時多点の地形データを連続的に得
て、これを表示する海底地形表示装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seabed terrain display device, and more particularly, to an acoustic wave via a fan-shaped transmission / reception characteristic formed vertically downward from a ship traveling along a predetermined route. TECHNICAL FIELD The present invention relates to a seabed topography display device that transmits and receives fan beams by, continuously obtains simultaneous multipoint topography data on the seabed, and displays the data.
従来、この種の海底地形表示装置は、複数の独立した
音響ビームを所望の射方向に形成して海底を同時多点式
に照射し、その反射波から海底地形を求める方法をとっ
ていた。Conventionally, this type of seabed topography display device has adopted a method of forming a plurality of independent acoustic beams in a desired direction of irradiation to irradiate the seabed in a multi-point manner at the same time, and obtaining the seabed topography from the reflected waves.
〔発明が解決しようとする課題〕 上述した従来の海底地形表示装置は、同時多点測深の
できる複数の測深儀によって互いに独立し複数の音響ビ
ームを形成する方法であり、測深点の位置精度分解能を
向上するためには送受波器が著しく大型化し、また、測
深点数を増加させるには装置規模が増大するほか搭載す
るプラットホームにも制約を生ずるという欠点がある。[Problems to be Solved by the Invention] The above-mentioned conventional seafloor topography display device is a method of forming a plurality of acoustic beams independently of each other by a plurality of sounding instruments capable of performing multi-point sounding at the same time. There is a drawback that the transmitter / receiver is remarkably large in order to improve the measurement efficiency, and the device scale is increased in order to increase the number of sounding points and the mounted platform is also restricted.
本発明の目的は上述した欠点を除去し、プラットホー
ムの制約を著しく緩和し、簡素な構成で連続的海底地形
を表示しうる海底地形表示装置を提供することにある。An object of the present invention is to eliminate the above-mentioned drawbacks, relieve the constraints of the platform significantly, and provide a seabed terrain display device capable of displaying continuous seabed terrain with a simple structure.
本発明の装置は、所定の航路に沿って進行する船から
海底に向けて音響ビームを発射しつつ連続的に得られる
反射波によって海底の地形を表示する海底地形表示装置
において、船の進行方向と直交しかつ鉛直方向から所定
の傾角を付与して下方に形成した扇形の送波および受波
ビームを介して海底面からの反射音を航路に沿って移動
しつつ取得するファンビーム送受信手段と、前記ファン
ビーム送受信手段の移動に対応した連続する海底反射面
から得られる反射音に含まれる連続的ドプラシフトと、
平坦な海底を対象としてモデル化してあらかじめ算出し
た前記ファンビーム送受信手段による連続的ドプラシフ
トとを比較し、海底地形に対応する前記2つの連続的ド
プラシフトの差分データにもとづいて海底地形を表示す
る海底地形表示手段とを備えて構成される。The device of the present invention is a seabed topography display device for displaying the topography of the seabed by reflected waves continuously obtained while emitting an acoustic beam from a ship traveling along a predetermined route toward the seabed. Fan beam transmitting and receiving means for acquiring reflected sound from the sea bottom while moving along the route via a fan-shaped transmitted wave and received beam formed below with a predetermined inclination from the vertical direction and A continuous Doppler shift included in a reflected sound obtained from a continuous seabed reflecting surface corresponding to the movement of the fan beam transmitting / receiving means,
A seabed topography that compares the continuous Doppler shift by the fan beam transmitting / receiving means modeled for a flat seabed in advance and displays the seabed topography based on the difference data of the two continuous Doppler shifts corresponding to the seabed topography And a display means.
次に、図面を参照して本発明を説明する。第1図は本
発明の一実施例の構成を示すブロック図である。第1図
に示す実施例は、船の進行方向に対して垂直下方に所定
の広がり角のファンビームによる送,受波ビームを形成
し、送信パルスおよび反射音の送受波を行なうラインア
レイ構成の送受波器1と、送受波器1に所定のファンビ
ーム特性を付与し海底反射における送受信信号の授受を
行なうファンビーム送受信部2と、ファンビーム送受信
部2で取得した海底反射音に含まれるドプラシフトを抽
出し、これとモデル化した仮定の平坦海底を対象として
あらかじめ算出しドルラシフトとの差を得て海底地形デ
ータを得てこれを表示する海底地形表示部3と、全体の
動作制御を行なう制御部4とを備えて成る。Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. The embodiment shown in FIG. 1 has a line array structure in which a transmitting and receiving beam is formed by a fan beam having a predetermined divergence angle vertically downward with respect to the traveling direction of a ship, and a transmitting pulse and a reflected sound are transmitted and received. The wave transmitter / receiver 1, a fan beam transmitter / receiver 2 that gives a predetermined fan beam characteristic to the wave transmitter / receiver 1 to transmit / receive a transmission / reception signal in seabed reflection, and a Doppler shift included in the seabed reflected sound acquired by the fan beam transmitter / receiver 2. , The seabed topography display unit 3 that calculates and preliminarily calculates the modeled hypothetical seafloor, obtains the seafloor topography data by obtaining the difference from the Dorla shift, and controls the overall operation control. And part 4.
次に、第1図の実施例の動作について説明する。第2
図は、第1図の実施例のファンビーム送受信の説明図で
ある。Next, the operation of the embodiment shown in FIG. 1 will be described. Second
The figure is an illustration of fan beam transmission and reception in the embodiment of FIG.
所定の航路Lに沿って海上を進行する船11の装備する
送受波器1から、航路L上の点B0で進行方向と垂直方向
かつ鉛直方向から所定の傾きδを有する扇形のファンビ
ーム5を海底に向けて送出し、海底領域6の反響音を送
受信間の経過時間に対応する進行距離Dの点A0で受け、
次次に連続的に繰返す。たとえば、送信された音響信号
7は、海底領域6の点Pで反射し、反射信号8となって
点A0で捕捉される。第2図で、A,Bはそれぞれ海上の点A
0およびB0の海底投影点がある。A fan-shaped fan beam 5 having a predetermined inclination δ from the vertical direction to the traveling direction at a point B 0 on the route L from a transducer 1 equipped on a ship 11 traveling along the prescribed route L on the sea. To the bottom of the sea, and receive the echo sound of the seabed region 6 at the point A 0 of the traveling distance D corresponding to the elapsed time between transmission and reception,
Then repeat continuously. For example, the transmitted acoustic signal 7 is reflected at the point P of the seabed area 6 and becomes the reflected signal 8 and is captured at the point A 0 . In Figure 2, A and B are points A on the sea, respectively.
There are submarine projection points of 0 and B 0 .
第3図は、第2図のファンビーム送受信におけるドプ
ラシフト発生の説明図である。FIG. 3 is an explanatory diagram of Doppler shift occurrence in the fan beam transmission / reception of FIG.
船11の進行方向に直交するファンビームパターンの送
受波指向性による垂直方向の音響ビームによる送波信号
による海底からの反射信号を受波し、海底の反射位置に
対応した船11の移動による反射信号の周波数シフト、す
なわちドプラシフトを検出することによって海底の反射
位置に対応する深度が連続的に得られる。The reflected signal from the seabed is received by the transmission signal of the vertical acoustic beam due to the transmission / reception directivity of the fan beam pattern orthogonal to the traveling direction of the ship 11, and the reflection by the movement of the ship 11 corresponding to the reflection position of the seabed is received. By detecting the frequency shift of the signal, that is, the Doppler shift, the depth corresponding to the reflection position of the seabed is continuously obtained.
第2図の点A0で受信した信号は、第3図における反射
点Pからの反射信号音速ベクトル10aに対し船11に搭載
された送受波器1の移動速度ベクトル9の反射点方向に
対応した反射点対応速度ベクトル成分10bによるドプラ
効果を付与されて受信周波数にドプラシフトを生じ、周
波数が反射点方向に対応した変化を生じる。このドプラ
効果による周波数シフト量Δfは、海底が一様に平坦で
あれば、あらかじめ送受波器1の移動速度と深度情報を
含む反射点方向によって決定でき、反射波は送受波器1
の直下から次第に遠ざかる方向の反射点に移動するに従
い増加するドプラシフトを生ずる。The signal received at the point A 0 in FIG. 2 corresponds to the reflection point direction of the moving velocity vector 9 of the transducer 1 mounted on the ship 11 with respect to the reflected signal sound velocity vector 10a from the reflection point P in FIG. The Doppler effect is imparted by the reflection point-corresponding velocity vector component 10b to cause a Doppler shift in the reception frequency, and the frequency changes corresponding to the reflection point direction. The frequency shift amount Δf due to the Doppler effect can be determined in advance by the moving speed of the transducer 1 and the direction of the reflection point including depth information if the seabed is uniformly flat.
A Doppler shift that increases as it moves to a reflection point in a direction gradually distant from immediately below is generated.
この場合、あらかじめ決定したモデル化平坦海底のド
プラシフトと、実際に得られる受信信号のドプラシフト
の差分は海底の高低すなわち海底地形によってもたらさ
れるものであるので、このドプラシフトの差分を求めて
海底の地形を逆算出しようとするのが本発明の基本的特
徴である。In this case, the difference between the Doppler shift of the modeled flat seabed determined in advance and the Doppler shift of the received signal actually obtained is caused by the height of the seabed, that is, the seafloor topography. The basic feature of the present invention is to perform the inverse calculation.
第4図は、本発明におけるドプラシフトから海底地形
を得る方法を説明するための特性図である。FIG. 4 is a characteristic diagram for explaining the method of obtaining the seabed topography from the Doppler shift in the present invention.
第4図(a)はモデル化した平坦海底によるドプラシ
フト特性図で、受信波は直下海点反射開始点Qから次第
に遠ざかる方向の反射点に移動するに従いドプラによる
周波数シフトΔfを生じ、仮定した平坦な海底による海
底平坦時ドプラシフト12は、直下海底反射開始点Qから
特定の関数で次第に増大するものとして表現できる。FIG. 4 (a) is a modeled Doppler shift characteristic diagram of the flat seabed. As the received wave moves to a reflection point in a direction that gradually moves away from the sea point reflection start point Q immediately below, a frequency shift Δf due to Doppler occurs and the assumed flatness is obtained. The Doppler shift 12 when the seabed is flat due to a large seafloor can be expressed as gradually increasing with a specific function from the seafloor reflection start point Q immediately below.
第4図(b)は、実際の海底によるドプラシフト特性
図で、第4図(a)に示す海底平坦時ドプラシフト12を
点線で重畳して示している。第4図(b)は、海底平坦
時ドプラシフト12を呈するモデル化された平坦な海底に
対し、q点を境界として、より深い海底からの反射に含
まれるドプラシフト量は大となり、より浅い海底からの
反射に含まれるドプラシフト量は小となり、それぞれ深
海底ドプラシフト14および浅海底ドプラシフト13のよう
な周波数シフト特性を示す。第4図(b)に示す2つの
周波数シフト特性のうち、点線で示す平坦なモデル化特
性はあらかじめ送受波器1の移動速度と反射点方向によ
って決定され、反射点方向には深度情報が含まれる。FIG. 4B is a Doppler shift characteristic diagram based on the actual seabed, and shows the Doppler shift 12 when the seabed is flat, which is shown in FIG. Fig. 4 (b) shows that for a modeled flat seabed exhibiting a Doppler shift of 12 when the seabed is flat, the amount of Doppler shift included in the reflection from the deeper seabed becomes large at the q point as a boundary, and from the shallower seabed. The amount of Doppler shift included in the reflection of is small and exhibits frequency shift characteristics such as deep sea bottom Doppler shift 14 and shallow sea bottom Doppler shift 13, respectively. Of the two frequency shift characteristics shown in FIG. 4 (b), the flat modeling characteristic indicated by the dotted line is previously determined by the moving speed of the transceiver 1 and the reflection point direction, and the reflection point direction includes depth information. Be done.
海底地形を求める海域の深度情報は既知であり、船11
の速度、ファンビーム特性も既知である。また、1回の
送波ビーム照射によって、照射される海底の照射野も既
知である。従って、たとえば種種の深度のモデル化した
平坦海底のそれぞれについての直下点を代表点として設
定し、これら代表点のそれぞれについてのプラットフォ
ーム進行に伴うドプラシフトをあらかじめ算出して深度
ごとの関数形式で格納しておき、これを仮想平坦海底に
よるドプラシフトとしつ用意して、これを実際のドプラ
シフトから減算することによって海底の形状によるドプ
ラシフトの変動分を抽出できる。こうして得られる海底
地形対応ドプラシフト15を第4図(c)に示す。The depth information of the sea area for which the seabed topography is sought is already known, and ships 11
The speed and fan beam characteristics of are also known. Further, the irradiation field of the seabed that is irradiated by one transmission beam irradiation is also known. Therefore, for example, set the direct point for each of the modeled flat seabeds of various depths as a representative point, and calculate the Doppler shift associated with the platform progress for each of these representative points in advance and store it in the function form for each depth. It is possible to extract the fluctuation amount of the Doppler shift due to the shape of the seabed by preparing this as a Doppler shift by the virtual flat seabed and subtracting this from the actual Doppler shift. The Doppler shift 15 corresponding to the seafloor topography obtained in this way is shown in FIG. 4 (c).
ふたたび第1図に戻って実施例の説明を続行する。 Returning to FIG. 1, the description of the embodiment will be continued.
ファンビーム送受信部4は、送信器21、送信電力増幅
器22からなり送受波器1と組合せて送波ファンビームを
形成する送信系と、受信器24、受波指向性形成器25から
成る受信計と、送受切替器23を備え、制御部4からの送
信トリガ201によって送信器21を作動させ、送信器21に
よって発生した送信電気信号をファンビーム特性に対応
して送信電力増幅器22によって増幅し、制御部4の出力
する送受切替信号202で制御される送受切換器23を経由
してラインアレイ構成の送受波器1から所定の扇形の送
波音響ビームに変換されて水中へ送出される。海底から
の反射波は再び送受波器1で受信され、送受切換器23を
経て受波指向性形成器25により所定の扇形の受波音響ビ
ームに形成され受信器24によって必要なレベル信号とし
て出力される。受信器24は制御部4の受信制御信号203
を受けつつ受波指向性形成器25とともに受信動作を行な
う。The fan beam transmission / reception unit 4 includes a transmitter 21, a transmission power amplifier 22, and a transmission system that forms a transmission fan beam in combination with the transmitter / receiver 1, and a receiver including a receiver 24 and a reception directivity former 25. And a transmission / reception switch 23, and the transmitter 21 is operated by the transmission trigger 201 from the control unit 4, and the transmission electric signal generated by the transmitter 21 is amplified by the transmission power amplifier 22 in accordance with the fan beam characteristic, The transmission / reception switch 23, which is controlled by the transmission / reception switching signal 202 output from the control unit 4, is converted from the wave transmitter / receiver 1 having the line array configuration into a predetermined fan-shaped transmission acoustic beam and transmitted to the water. The reflected wave from the seabed is again received by the transmitter / receiver 1, passed through the transmission / reception switch 23, formed into a predetermined fan-shaped received acoustic beam by the wave reception directivity former 25, and output as a required level signal by the receiver 24. To be done. The receiver 24 receives the reception control signal 203 of the control unit 4.
The receiving operation is performed together with the wave receiving directivity forming device 25 while receiving.
ファンビーム送受信部2から出力される受信信号は海
底地形表示部3に供給される。The received signal output from the fan beam transmitting / receiving unit 2 is supplied to the seabed topography display unit 3.
海底地形表示部3は、受信信号に含まれるドプラ周波
数成分を抽出する周波数シフト回路31、受信信号から抽
出したドプラ周波数成分からモデル化した平坦海底のド
プラ周波数成分を減算し海底に対応したドプラ周波数成
分を抽出する周波数シフト減算回路32、海底に対応した
ドプラ周波数成分を海底地形に対応したレベルに変換す
る周波数/レベル変換回路33、海底地形に対応したレベ
ルを直下深度に変換出力する直下深度演算出力回路34、
前回測深時の直下深度にもとづき、あらかじめ設定して
格納してあるほぼ同一深度のモデル化平坦海底による関
数表現のドプラ周波数シフト量を出力する周波数シフト
量関数発生回路35、および表示器36を備えて構成され
る。The seafloor topography display unit 3 includes a frequency shift circuit 31 for extracting a Doppler frequency component included in the received signal, a Doppler frequency component for the flat seabed modeled from the Doppler frequency component extracted from the received signal, and a Doppler frequency corresponding to the seabed. Frequency shift subtraction circuit 32 for extracting components, frequency / level conversion circuit 33 for converting Doppler frequency components corresponding to the seabed to a level corresponding to the seafloor topography, direct depth calculation for converting and outputting the level corresponding to the seafloor topography Output circuit 34,
Based on the depth immediately below the previous bathymetric, modeled at approximately the same depth that has been set and stored in advance.Frequency shift amount function generation circuit 35 that outputs the Doppler frequency shift amount of the function representation by the flat seabed, and display 36 Consists of
周波数シフト検出回路31は、受信信号と送信周波数を
比較し、ドプラ周波数成分を抽出し、ドプラシフト信号
311として周波数シフト減算回路32に供給する。The frequency shift detection circuit 31 compares the reception signal with the transmission frequency, extracts the Doppler frequency component, and outputs the Doppler shift signal.
It is supplied to the frequency shift subtraction circuit 32 as 311.
周波数シフト量関数発生回路35は、制御部4からトリ
ガ信号302を受けて動作し、外部から船11、従って送受
波器1の移動速度情報352を受け、また、後述する直下
深度演算出力回路34から前回送信時の直下深度信号341
を得て、制御部4の送出するトリガ信号302によって動
作駆動されて前回送信時の直下深度近傍の深度に対応す
るモデル化平坦海底の周波数シフト量を第4図(a)に
示す如き連続的関数量で表現する周波数シフト関数351
として周波数シフト減算回路32に供給する。The frequency shift amount function generation circuit 35 operates by receiving the trigger signal 302 from the control unit 4, receives the moving speed information 352 of the ship 11, that is, the wave transmitter / receiver 1 from the outside, and the direct depth calculation output circuit 34 described later. Depth signal 341 immediately below from the last transmission
Then, the frequency shift amount of the modeled flat seabed, which is driven by the trigger signal 302 sent from the control unit 4 and corresponds to the depth in the vicinity of the immediately below depth at the time of the previous transmission, is continuous as shown in FIG. 4 (a). Frequency shift function expressed in function quantity 351
Is supplied to the frequency shift subtraction circuit 32.
周波数シフト減算回路32は、入力したドプラシフト信
号311から周波数シフト関数351で表現された仮定平坦海
面によるドプラ周波数を減算し、仮定平坦海面に対する
実際の海底の凹凸を反映した海底地形に対応するドプラ
周波数の変動分を海底地形対応周波数シフト信号321と
して周波数/レベル変換回路33に供給する。The frequency shift subtraction circuit 32 subtracts the Doppler frequency by the assumed flat sea surface expressed by the frequency shift function 351 from the input Doppler shift signal 311, and the Doppler frequency corresponding to the seafloor topography reflecting the actual seabed unevenness with respect to the assumed flat sea surface. Is supplied to the frequency / level conversion circuit 33 as the seabed topography corresponding frequency shift signal 321.
海底地形に対応した周波数シフト信号321は、周波数
/レベル変換回路33で海底地形に対応したレベル出力に
変換して表示器36に供給表示される。この表示器36は、
制御部4から提供される表示掃引トリガ301によって掃
引を起動される。The frequency shift signal 321 corresponding to the seafloor topography is converted into a level output corresponding to the seafloor topography by the frequency / level conversion circuit 33 and supplied and displayed on the display 36. This indicator 36
The sweep is activated by the display sweep trigger 301 provided from the control unit 4.
一方、海底地形に対応した周波数/レベル変換回路33
の出力は直下深度演算出力回路34に供給され、直下深度
信号341を得てこれを周波数シフト量関数発生回路35に
出力し、次の測深の海底平坦な場合の周波数シフト関数
を発生する場合の深度パラメータとする。On the other hand, the frequency / level conversion circuit 33 corresponding to the seabed topography
The output of is supplied to the direct depth calculation output circuit 34, and the direct depth signal 341 is obtained and output to the frequency shift amount function generation circuit 35 to generate the frequency shift function in the case where the seabed at the next bathymetry is flat. It is a depth parameter.
なお、初回測深時のみこの直下深度は外部から深度初
期値301として与える。Note that the depth immediately below is given as an initial depth value 301 from the outside only during the first sounding.
こうして、ファンビーム送受波と、実際ドプラ周波数
と深度がほぼ同じ仮定平坦海底のドプラ周波数差分を介
して求める海底地形情報とにもとづいて多数の測深儀を
用いることなく連続して海底地形を表示することができ
る。In this way, the seabed topography is displayed continuously without using many sounding instruments based on the fan-beam transmission / reception and the seabed topography information obtained through the Doppler frequency difference of the assumed flat seabed where the actual Doppler frequency and depth are almost the same. be able to.
以上説明したように本発明は、ファンビーム送受波器
の移動による音響信号のドップラシフトの周波数シフト
量を、海底地形に対応した周波数シフト量として連続的
に計測して測深し、連続した海底地形として表示するこ
とができ、かつ音響ビーム形成数が回路のみで実施でき
るための、従来のこの種の海底地形表示装置と比較して
著しく小型化ができ、かつプラットホームに対する条件
も著しく緩和できるという効果がある。INDUSTRIAL APPLICABILITY As described above, according to the present invention, the frequency shift amount of the Doppler shift of the acoustic signal due to the movement of the fan beam transmitter / receiver is continuously measured as a frequency shift amount corresponding to the seabed topography, and bathymetry is performed. Since it can be displayed as, and the number of acoustic beam forming can be implemented only by the circuit, it can be significantly downsized as compared with the conventional seabed terrain display device of this type, and the condition for the platform can be significantly eased. There is.
第1図は本発明の一実施例の構成を示すブロック図、第
2図は第1図の実施例のファンビーム送受信の説明図、
第3図は第2図のファンビーム送受信におけるドプラシ
フト発生の説明図、第4図(a)はモデル化した平坦海
底によるドプラシフト特性図、第4図(b)は実際の海
底によるドプラシフトの一例を示すドプラシフト特性
図、第4図(c)は第4図(a)と第4図(b)のドプ
ラシフト差分による実際の海底地形対応のドプラシフト
特性図である。 1……送受波器、2……ファンビーム送受信部、3……
海底地形表示部、4……制御部、ファンビーム、6……
海底領域、7……音響信号、8……反射信号、9……送
受波器移動速度ベクトル、10a……反射信号音速ベクト
ル、10b……反射点対応速度ベクトル、11……船、12…
…海底平坦時ドプラシフト、13……浅海底ドプラシフ
ト、14……深海底ドプラシフト、15……海底地形対応ド
プラシフト、21……送信器、22……送信電力増幅器、23
……送受切替器、24……受信器、25……受波指向性形成
器、31……周波数シフト検出回路、32……周波数シフト
減算回路、33……周波数/レベル変換器、34……直下深
度演算回路、35……周波数シフト量関数発生回路、36…
…表示器。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is an explanatory view of fan beam transmission / reception of the embodiment of FIG. 1,
FIG. 3 is an explanatory diagram of Doppler shift occurrence in fan beam transmission / reception in FIG. 2, FIG. 4 (a) is a modeled Doppler shift characteristic diagram by a flat seabed, and FIG. 4 (b) is an example of an actual Doppler shift by the seabed. The Doppler shift characteristic diagram shown in FIG. 4 (c) is a Doppler shift characteristic diagram corresponding to the actual seabed topography based on the Doppler shift difference in FIGS. 4 (a) and 4 (b). 1 ... Transceiver, 2 ... Fan beam transceiver, 3 ...
Submarine topography display unit, 4 …… Control unit, fan beam, 6 ……
Seabed area, 7 ... Acoustic signal, 8 ... Reflection signal, 9 ... Transceiver moving velocity vector, 10a ... Reflection signal sound velocity vector, 10b ... Reflection point corresponding velocity vector, 11 ... Ship, 12 ...
… Doppler shift when the sea floor is flat, 13 …… Shallow sea bottom Doppler shift, 14 …… Deep sea bottom Doppler shift, 15 …… Doppler shift corresponding to seabed topography, 21 …… Transmitter, 22 …… Transmit power amplifier, 23
...... Transmission / reception switch, 24 …… Receiver, 25 …… Reception directivity shaper, 31 …… Frequency shift detection circuit, 32 …… Frequency shift subtraction circuit, 33 …… Frequency / level converter, 34 …… Direct depth calculation circuit, 35 ... Frequency shift amount function generation circuit, 36 ...
…display.
Claims (1)
向けて音響ビームを発射しつつ連続的に得られる反射波
によって海底の地形を表示する海底地形表示装置におい
て、 船の進行方向と直交しかつ鉛直方向から所定の傾角を付
与して下方に形成した扇形の送波および受波ビームを介
して海底面からの反射音を航路に沿って移動しつつ取得
するファンビーム送受信手段と、 前記ファンビーム送受信手段の移動に対応した連続する
海底反射面から得られる反射音に含まれる連続的ドプラ
シフトと、平坦な海底を対象としてモデル化してあらか
じめ算出した前記ファンビーム送受信手段による連続的
ドプラシフトとを比較し、海底地形に対応する前記2つ
の連続的ドプラシフトの差分データにもとづいて海底地
形を表示する海底地形表示手段と、 を備えて成ることを特徴とする海底地形表示装置。1. A submarine topography display device for displaying the topography of a seabed by reflected waves continuously obtained while emitting an acoustic beam from a ship traveling along a predetermined route to the bottom of the sea. Fan beam transmitting and receiving means for acquiring reflected sound from the sea bottom while moving along the route via a fan-shaped transmitting and receiving beam formed below by imparting a predetermined inclination from the perpendicular direction and a vertical direction, A continuous Doppler shift included in reflected sound obtained from a continuous seabed reflection surface corresponding to the movement of the fan beam transmitting / receiving unit, and a continuous Doppler shift by the fan beam transmitting / receiving unit modeled in advance for a flat seabed; And a seabed topography display means for displaying the seabed topography based on the difference data of the two continuous Doppler shifts corresponding to the seabed topography. Bathymetry display apparatus characterized in that it comprises a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31603088A JP2679192B2 (en) | 1988-12-13 | 1988-12-13 | Undersea terrain display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31603088A JP2679192B2 (en) | 1988-12-13 | 1988-12-13 | Undersea terrain display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02159591A JPH02159591A (en) | 1990-06-19 |
JP2679192B2 true JP2679192B2 (en) | 1997-11-19 |
Family
ID=18072472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31603088A Expired - Lifetime JP2679192B2 (en) | 1988-12-13 | 1988-12-13 | Undersea terrain display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2679192B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8300499B2 (en) | 2009-07-14 | 2012-10-30 | Navico, Inc. | Linear and circular downscan imaging sonar |
US8305840B2 (en) | 2009-07-14 | 2012-11-06 | Navico, Inc. | Downscan imaging sonar |
US9142206B2 (en) | 2011-07-14 | 2015-09-22 | Navico Holding As | System for interchangeable mounting options for a sonar transducer |
US9182486B2 (en) | 2011-12-07 | 2015-11-10 | Navico Holding As | Sonar rendering systems and associated methods |
US9268020B2 (en) * | 2012-02-10 | 2016-02-23 | Navico Holding As | Sonar assembly for reduced interference |
US9354312B2 (en) | 2012-07-06 | 2016-05-31 | Navico Holding As | Sonar system using frequency bursts |
US10151829B2 (en) | 2016-02-23 | 2018-12-11 | Navico Holding As | Systems and associated methods for producing sonar image overlay |
US11367425B2 (en) | 2017-09-21 | 2022-06-21 | Navico Holding As | Sonar transducer with multiple mounting options |
-
1988
- 1988-12-13 JP JP31603088A patent/JP2679192B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02159591A (en) | 1990-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4270191A (en) | Doppler current meter for use at great depths | |
US8767509B2 (en) | Method and device for measuring a contour of the ground | |
US6438071B1 (en) | Method for producing a 3D image | |
US7894303B2 (en) | Detection device, detection program and detection method | |
JPH05249239A (en) | Three-dimensional measurement and topography imaging sonar | |
CN103251429A (en) | Ultrasonic imaging apparatus | |
CN107049361A (en) | It is imaged using the speed of sound of shearing wave | |
JP6724593B2 (en) | Active sonar and control method of active sonar | |
JP2016090452A (en) | Detection device and underwater detection device | |
JP2679192B2 (en) | Undersea terrain display | |
US8164983B2 (en) | Fish finder | |
JP5497302B2 (en) | Synthetic aperture sonar | |
Murino et al. | Underwater 3D imaging by FFT dynamic focusing beamforming | |
Kozaczka et al. | Images of the Seabed of the Gulf of Gdańsk Obtained by Means of the Parametric Sonar | |
RU2721307C1 (en) | Acoustic method and apparatus for measuring sea-wave parameters | |
JP3528580B2 (en) | Object measuring device | |
JP3583838B2 (en) | Ultrasonic underwater detector | |
JP3583908B2 (en) | Target measuring device | |
JP2850871B2 (en) | Active signal processing circuit | |
JP6757083B2 (en) | Echo sounder and multi-beam echo sounder | |
JP7049572B1 (en) | Underwater positioning system and method | |
Keary et al. | Simulation of the correlation velocity log using a computer based acoustic model | |
JP2520734B2 (en) | Ultrasonic power flow measuring device | |
RU100838U1 (en) | DEVICE FOR DETERMINING THE PARAMETERS OF BODIES LOCATED AT THE BOTTOM OF THE RESERVOIRS | |
JP2022138365A (en) | Echo-sounding device |