JPH03248082A - Sea bottom detector - Google Patents

Sea bottom detector

Info

Publication number
JPH03248082A
JPH03248082A JP4892490A JP4892490A JPH03248082A JP H03248082 A JPH03248082 A JP H03248082A JP 4892490 A JP4892490 A JP 4892490A JP 4892490 A JP4892490 A JP 4892490A JP H03248082 A JPH03248082 A JP H03248082A
Authority
JP
Japan
Prior art keywords
seabed
series data
time series
pulse width
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4892490A
Other languages
Japanese (ja)
Other versions
JP2543610B2 (en
Inventor
Shigeru Aoyama
青山 繁
Masae Goto
後藤 昌江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2048924A priority Critical patent/JP2543610B2/en
Publication of JPH03248082A publication Critical patent/JPH03248082A/en
Application granted granted Critical
Publication of JP2543610B2 publication Critical patent/JP2543610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately sound water by quantizing the intensity of a receiving signal to store the same as time series data and detecting the sea bottom from the correlation of a rectangular wave having pulse width equal to that of the reflected wave from the sea bottom with the time series data. CONSTITUTION:An ROM 2 in which a control program is preliminarily written, an RAM 3, a display control circuit 7, the interface circuit 9 with a key input apparatus 8 and the interface circuit 28 with a tide meter control circuit are connected to the bus of a CPU 1. Ultrasonic transducers 10, 11, 12 are mutually separated by 120 deg. in a horizontal direction to transmit and receive an ultrasonic wave at a fixed dip. A transmission control circuit 15 generates a tone burst wave having definite frequency and definite time width to drive the transducer 11. The receiving signal of the transducer 11 is amplified and filtered to be converted by an intermediate frequency converting circuit 18 and quantized to be written in an echo level memory 21. An intermediate frequency signal is amplified to be converted to a rectangular wave signal by a comparator 25 and frequency is detected to be written in the address of a depth counter memory 27.

Description

【発明の詳細な説明】 la)産業上の利用分野 この発明は、超音波式の潮流計や、ドツプラーソナーな
どに適用される海底検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION la) Industrial Application Field The present invention relates to a seabed detection device applied to ultrasonic current meters, Doppler sonar, and the like.

(b)従来の技術 従来より、潮流を測定して操網や操船を援助する漁扮電
子機器として超音波式の潮流計が用いられている。
(b) Prior Art Conventionally, ultrasonic tidal current meters have been used as fishing electronic devices that measure tidal currents and assist in net maneuvering and boat maneuvering.

上記潮流計は水平指向方向が互いに120度づづ離れた
方向で一定の俯角で超音波の送受波を行い、海底反射波
のドツプラーシフト量によって船の移動方向と移動速度
を求め、また設定した深度からの反射波のドツプラーシ
フト量からその深度における潮流の流向と流速を測定す
るものである一般に、海底の超音波反射率は魚群やその
他の浮遊物体に比較して大きいため、従来より一定レベ
ル以上のエコーを海底反射波とみなして海底検出が行わ
れている。また、一般に海底反射波は深度が大きくなる
ほどその強度が著しく低下するため、いわゆるTVG補
正が行われる。更に、前回の超音波パルスの送受波によ
り検出された海底付近の受信信号を捕捉するために受信
ゲートを設け、その受信ゲート内の受信信号の強度によ
って増幅回路のゲインを調整するいわゆるAGC回路が
用いられている。
The above tidal current meter transmits and receives ultrasonic waves at a constant angle of depression with horizontal pointing directions 120 degrees apart from each other, and determines and sets the ship's moving direction and speed based on the amount of Doppler shift of the seabed reflected waves. This method measures the direction and velocity of the current at a certain depth from the amount of Doppler shift of reflected waves from the depth. Generally speaking, the ultrasonic reflectance of the ocean floor is large compared to schools of fish and other floating objects, so it is more constant than before. Seafloor detection is performed by treating echoes above this level as seafloor reflected waves. Furthermore, since the intensity of seafloor reflected waves generally decreases significantly as the depth increases, so-called TVG correction is performed. Furthermore, a so-called AGC circuit is installed in which a reception gate is provided to capture the reception signal near the seabed detected by the transmission and reception of the previous ultrasonic pulse, and the gain of the amplifier circuit is adjusted according to the strength of the reception signal within the reception gate. It is used.

(C)発明が解決しようとする課題 ところが、前記AGC回路を用い、エコーデータによっ
て海底検出を行う従来の装置では、受信ゲート内に比較
的大きなノイズが入った場合、そのノイズによって増幅
回路のゲインが低下し、本来の海底反射波のレベルが小
さくなって海底検出が不能となる場合がある。
(C) Problems to be Solved by the Invention However, in conventional equipment that uses the AGC circuit and detects the seabed based on echo data, when relatively large noise enters the receiving gate, the noise causes a gain in the amplifier circuit. As a result, the original level of waves reflected from the ocean floor becomes so small that it may become impossible to detect the ocean floor.

また、深々度においては海底反射波のレベルが著しく小
さくなり、海中のシーノイズおよび回路により生じるノ
イズレベルに近づく。したがって、超音波パルスの送波
パワーによって測定可能な深度が定まり、より深々度の
海底検出を行うためには大電力の超音波パルスを送受波
しなければならない。また、庭付魚群(海底魚)による
エコーを海底として誤って検出する場合もあった。
Furthermore, at depth, the level of seafloor reflected waves becomes significantly smaller, approaching the noise level caused by underwater sea noise and circuits. Therefore, the measurable depth is determined by the transmission power of the ultrasonic pulse, and in order to detect the seabed at a deeper depth, it is necessary to transmit and receive ultrasonic pulses with high power. In addition, there were cases in which echoes from schools of garden fish (bottom fish) were mistakenly detected as being on the ocean floor.

潮流計やトンプラーソナーにおいては、海底反射波の抽
出精度によって対地速度の測定精度が定まるため、いか
に正確な海底検出を行うかが技術的課題の一つであった
For tide meters and Tompler sonar, the accuracy of measuring ground speed is determined by the accuracy of extracting waves reflected from the ocean floor, so one of the technical challenges was how to accurately detect the ocean floor.

この発明の目的は、深々度においても海底を正確に検出
できるようにした海底検出装置を提供することにある。
An object of the present invention is to provide a seabed detection device that can accurately detect the seabed even at great depths.

(d1課題を解決するための手段 この発明の請求項1は海中に対する超音波パルスの送波
および海底反射波の受波により、海底を検出する海底検
出装置において、 受波信号の強度を量子化して時系列データとして記憶す
るエコーレベル記憶手段と、 パルス幅が予定する海底反射波のパルス幅に等しい矩形
波信号と上記時系列データとの相関をとって、相関値の
最大となる点を基準として海底を検出する海底検出手段
とを備えたことを特徴とする。
(Means for Solving Problem d1) Claim 1 of the present invention is a seabed detection device that detects the seafloor by transmitting ultrasonic pulses into the sea and receiving waves reflected from the seabed, which quantizes the intensity of the received signal. an echo level storage means for storing time-series data as time-series data, and a rectangular wave signal whose pulse width is equal to the expected pulse width of the seabed reflected wave, and the above-mentioned time-series data. The invention is characterized by comprising a seabed detection means for detecting the seabed.

この発明の請求項2に係る海底検出装置は、請求項1に
記載した予定する海底反射波のパルス幅を、超音波ビー
ムの広がりによって生じる各深度における仮想海底への
超音波ビームの放射範囲と、送受波器に対する距離方向
の幅と、送波信号のパルス幅とにより定めることを特徴
とする。
The seabed detection device according to claim 2 of the present invention sets the pulse width of the planned seabed reflected wave according to claim 1 to the emission range of the ultrasonic beam to the virtual seabed at each depth caused by the spread of the ultrasonic beam. , is characterized by being determined by the width in the distance direction with respect to the transducer and the pulse width of the transmitted signal.

この発明の請求項3に係る海底検出装置は、請求項1ま
たは2記載の海底検出装置において最大深度から浅い方
向へ上記時系列データと上記矩形波信号との相関をとる
ことを特徴とする。
A seabed detection device according to a third aspect of the present invention is characterized in that in the seabed detection device according to the first or second aspect, the time series data and the rectangular wave signal are correlated in a direction from the maximum depth to the shallowest depth.

さらに、この発明の請求項4は、海中に対する超音波パ
ルスの送波および海底反射波の受波により海底を検出す
る海底検出装置において、複数回の超音波パルスの送受
により得た各受波信号の強度を量子化して、それぞれ時
系列データとして記憶するエコーレベル記憶手段と、記
憶した複数回分の時系列データを発生順に順次移動平均
してエコーデータを求める平均化エコーデータ生成手段
とを備えたことを特徴とする。
Furthermore, claim 4 of the present invention provides a seabed detection device that detects the seabed by transmitting ultrasonic pulses into the sea and receiving reflected waves from the seabed, in which each received signal is obtained by transmitting and receiving ultrasonic pulses a plurality of times. echo level storage means for quantizing the intensity of the data and storing each as time series data, and averaged echo data generation means for obtaining echo data by sequentially moving average the stored time series data for a plurality of times in the order of occurrence. It is characterized by

(e)作用 請求項1に係る海底検出装置では、先ず、エコーレベル
記憶手段により受波信号(エコー)の強度が量子化され
て時系列データとし記憶される。
(e) Effect In the seabed detection device according to claim 1, first, the intensity of the received signal (echo) is quantized and stored as time series data by the echo level storage means.

このようにして−旦記憶された時系列データは、海底検
出手段により、パルス幅が予定する海底反射波のパルス
幅に等しい矩形波信号との相関が求められ、その相関値
の最大となる点を基準とじて海底が検出され−る。
The time series data stored in this way is correlated with a rectangular wave signal whose pulse width is equal to the expected pulse width of the seabed reflected wave by the seabed detection means, and the point at which the correlation value is maximum is determined. The sea floor is detected based on

海中に送波される超音波パルスは一定周波数および一定
時間幅を存する1・−ンバースト波であり、海底反射波
のパルス幅も送波された超音波パルスのパルス幅に略等
しいはずである。したがって、受波信号に海底反射波が
含まれていれば、上記矩形波信号との相関値は海底反射
波の位置で最大となる。
The ultrasonic pulse transmitted into the sea is a 1-in burst wave having a constant frequency and a constant time width, and the pulse width of the seabed reflected wave should also be approximately equal to the pulse width of the transmitted ultrasonic pulse. Therefore, if the received signal includes a seabed reflected wave, the correlation value with the rectangular wave signal will be maximum at the position of the seabed reflected wave.

このように受波信号のレベルによって直接海底検出を行
うのではなく、受波信号に含まれる海底反射波を、抽出
しようとする信号との相関をとることによって検出する
ようにしたため、比較的レベルの高い他のエコーやノイ
ズが含まれていても、その波形の違いから海底反射波の
みを選択的に検出できるようになる。
In this way, instead of directly detecting the seabed based on the level of the received signal, the seafloor reflected waves included in the received signal are detected by correlating them with the signal to be extracted, so the detection level is relatively low. Even if other high-frequency echoes and noise are included, only the waves reflected from the ocean floor can be selectively detected because of the difference in their waveforms.

例えば、第7図の上段に示すような受波信号が得られた
とき、Sで示す矩形波信号との相関結果は同図の下段に
示すようになる。このように例えば幅の狭いノイズNと
の相関値は低く、海底反射波GEとの相関値は非常に大
きくなる。
For example, when a received signal as shown in the upper part of FIG. 7 is obtained, the correlation result with the rectangular wave signal indicated by S is as shown in the lower part of the figure. In this way, for example, the correlation value with the narrow noise N is low, and the correlation value with the seabed reflected wave GE is very large.

この発明の請求項2に係る海底検出装置では、上記「予
定する海底反射波のパルス幅」が、超音波ビームの広が
りによって生じる各深度における仮想海底への超音波ビ
ームの放射範囲と、送受波器に対する距離方向の幅と、
送波信号のパルス幅とにより定まる。
In the seabed detection device according to claim 2 of the present invention, the above-mentioned "planned pulse width of the seabed reflected wave" corresponds to the emission range of the ultrasonic beam to the virtual seabed at each depth caused by the spread of the ultrasonic beam, and the transmission and reception wave. The width in the distance direction from the container,
It is determined by the pulse width of the transmission signal.

第4図および第5図は超音波ビームの広がりおよび海底
反射波のパルス幅の変化を示す図である。第4図に示す
ように超音波送受波器から送波される超音波ビームは一
定の指向角を有し、深度が深(なるほど海底への放射範
囲が広くなり、送受波器と海底間の距離は海底の放射範
囲Wの広がりに比例して距離方向にLの幅が生じる。従
って第5図に示すように深度が深(なるほど海底反射波
のパルス幅が広くなる。
FIGS. 4 and 5 are diagrams showing the spread of the ultrasonic beam and changes in the pulse width of the waves reflected from the seabed. As shown in Figure 4, the ultrasonic beam transmitted from the ultrasonic transducer has a fixed directivity angle, and the deeper the depth (the wider the radiation range to the seafloor, the greater the distance between the transducer and the seafloor). As for the distance, the width L occurs in the distance direction in proportion to the spread of the radiation range W on the seabed. Therefore, as shown in FIG. 5, the deeper the depth (the wider the pulse width of the seabed reflected wave becomes).

第6図(A)、  (B)にパルス幅の異なる海底反射
波と矩形波信号との相関結果の例を示す。同図(A)は
海底反射波のパルス幅と矩形波信号(図においては矩形
波信号の幅のみ表している。)のパルス幅とが等しい場
合、同図(B)は海底反射波のパルス幅と矩形波信号の
パルス幅とが異なる場合について、それぞれ示している
。同図(A)に示すように、深度の浅い方から深い方へ
相関を求める場合、相関結果のピークは海底位置から矩
形波信号のパルス幅(相関幅)だけ後方に一点のみ現れ
る。従って、相関結果のピーク点より相関幅だけ浅いと
ころを海底として検出することができる。これに対して
、同図(B)に示すように、海底反射波のパルス幅と矩
形波信号のパルス幅とが異なる場合には、相関結果のピ
ークが幅を持つことになる。したがって、請求項2に係
る海底検出装置のように、海底反射波のパルス幅に応じ
て相関をとるべき矩形波信号のパルス幅を変化させれば
、深度に関わらず一点のピークを存する相関結果を得る
ことができ、海底を正確に検出することができる。
FIGS. 6(A) and 6(B) show examples of correlation results between seafloor reflected waves with different pulse widths and rectangular wave signals. The figure (A) shows the pulse width of the seabed reflected wave when the pulse width of the rectangular wave signal (only the width of the rectangular wave signal is shown in the figure) is equal, and the figure (B) shows the pulse width of the seafloor reflected wave. Cases in which the width and the pulse width of the rectangular wave signal are different are shown. As shown in FIG. 4A, when the correlation is calculated from shallow to deep, the peak of the correlation result appears at only one point behind the seabed position by the pulse width (correlation width) of the rectangular wave signal. Therefore, a place shallower than the peak point of the correlation result by the correlation width can be detected as the seabed. On the other hand, as shown in FIG. 3B, if the pulse width of the seabed reflected wave and the pulse width of the rectangular wave signal are different, the peak of the correlation result will have a width. Therefore, as in the seabed detection device according to claim 2, if the pulse width of the rectangular wave signal to be correlated is changed according to the pulse width of the seabed reflected wave, the correlation result will have a single peak regardless of the depth. can be obtained and the seabed can be detected accurately.

尚、深度の深い方から浅い方へ相関を求める場合にも、
上記した関係(相関結果のピークに幅が生じるか否か)
は同様であるが、その場合には次に述べるように、相関
結果のピーク点を直接海底として求めることができる。
Furthermore, when seeking correlation from deeper to shallower depths,
The above relationship (whether there is a range in the peak of the correlation result or not)
is similar, but in that case, the peak point of the correlation result can be directly determined as the sea floor, as described below.

この発明の請求項3に係る海底検出装置では、上記時系
列データと上記矩形波信号との相関処理が、最大深度か
ら浅い方向へ行われる。
In the seabed detection device according to claim 3 of the present invention, correlation processing between the time series data and the rectangular wave signal is performed in a direction from the maximum depth to a shallower depth.

一般に、海底の質(状態)や庭付魚群などの影害によっ
て海底の開始深度(海底反射波の開始点)が判別しにく
い場合がある。例えば第8図に示すように、海底反射波
の直前に庭付魚群の反射波が重なり、あたかも1つの海
底反射波のように見える。これに対し、海底反射波の後
方(海底の中)からは、よほど送信出力が大きくない限
り、超音波パルスが反射されることはない。したがって
、海底反射波の直後は略シーノイズレベルか装置の持つ
ノイズレベルとなる。この点に着目し、上記方法によっ
て正確な海底検出が可能となる。すなわち、第9図(A
)に示すように、浅い方から最大深度方向へ相関をとる
と、求められた相関結果の最初のピーク点から矩形波信
号のパルス幅(相関幅)Bだけ手前を誤って開始深度と
して検出する場合がある。これに対し同図(B)に示す
ように最大深度から浅い方向へ相関をとれば、相関結果
の最初(後ろ側)のピーク点を海底の開始深度として正
しく検出することが可能となる。
In general, it may be difficult to determine the starting depth of the seabed (the starting point of seafloor reflected waves) depending on the quality (condition) of the seabed and the influence of schools of garden fish. For example, as shown in Fig. 8, the waves reflected from a school of garden fish overlap just before the waves reflected from the seabed, making it appear as if they were a single wave reflected from the seabed. On the other hand, ultrasonic pulses will not be reflected from behind the seabed reflected waves (inside the seabed) unless the transmission output is extremely large. Therefore, immediately after the waves reflected from the ocean floor are approximately the sea noise level or the noise level of the equipment. Focusing on this point, the above method enables accurate seabed detection. That is, Fig. 9 (A
), when correlation is taken from the shallowest direction to the maximum depth, the starting depth is mistakenly detected as the pulse width (correlation width) B of the square wave signal from the first peak point of the obtained correlation result. There are cases. On the other hand, if the correlation is taken from the maximum depth to the shallower direction as shown in FIG. 2B, the first (backward) peak point of the correlation result can be correctly detected as the starting depth of the seabed.

この発明の請求項4に係る海底検出装置では、エコーレ
ベル記憶手段によって複数回の超音波パルスの送受によ
り得られた各受信信号の強度が量子化されて、それぞれ
時系列データとして記憶される。そして、平均化エコー
データ生成手段によって、複数回分の時系列データが発
生順に順次移動平均されてエコーデータが求められる。
In the seabed detection device according to claim 4 of the present invention, the echo level storage means quantizes the intensity of each received signal obtained by transmitting and receiving ultrasonic pulses a plurality of times, and stores each as time series data. Then, the averaged echo data generation means sequentially moves and averages the time-series data for a plurality of times in the order of occurrence to obtain echo data.

第1θ図は上記平均化作用の説明図である。同図におい
て(1)、  (2)、  (3)  ・・・は順次記
憶された時系列データを、横軸を深度、縦軸をエコーレ
ベルとして表したものである。また、(1〜4)は(1
)〜(4)に示した4つの時系列データを平均化したも
の、(2〜5)はく2)〜(5)の4つの時系列データ
を平均化したもの、同様に(3〜6)は(3)〜(6)
の4つの時系列データを平均化したものである。このよ
うに順次受波信号を移動平均することにより、ランダム
に発生するノイズ成分が減少し、相対的に海底反射波の
検出能力が向上する。このため深々度においても正確な
海底検出が可能となる。
FIG. 1θ is an explanatory diagram of the above-mentioned averaging effect. In the figure, (1), (2), (3) . . . represent sequentially stored time series data, with the horizontal axis representing depth and the vertical axis representing echo level. Also, (1 to 4) is (1
) to (4), (2 to 5), (2) to (5), and (3 to 6). ) are (3) to (6)
This is the average of four time series data. By sequentially moving and averaging the received signals in this way, randomly generated noise components are reduced, and the ability to detect seafloor reflected waves is relatively improved. Therefore, accurate seabed detection is possible even at great depths.

m実施例 この発明の実施例である潮流計のブロック図を第1図に
示す。
Embodiment FIG. 1 shows a block diagram of a tidal current meter which is an embodiment of the present invention.

第1図において、1は潮流計全体の制御を統括するCP
Uである。このCPUのバスには、制御プログラムが予
め書き込まれたROM2、その制御プログラムの実行に
際して各種データバッファとして用いられるRAM3、
表示データが書き込まれるVRAM4、VRAM4の続
出制御を行う表示制御回路7、キー人力装置8とのイン
ターフェイス回路9および後述する潮流計制御回路との
インターフェイス回路28が接続されている。なお、ビ
デオ出力回路5はVRAM4からの読み出した信号から
映像信号を発生してCRT6へ出力する。
In Fig. 1, 1 is the CP that controls the entire control of the tidal current meter.
It is U. The bus of this CPU includes a ROM 2 in which a control program is written in advance, a RAM 3 used as various data buffers when executing the control program,
Connected are a VRAM 4 into which display data is written, a display control circuit 7 that performs successive output control of the VRAM 4, an interface circuit 9 with the key human power device 8, and an interface circuit 28 with a tidal current meter control circuit to be described later. Note that the video output circuit 5 generates a video signal from the signal read from the VRAM 4 and outputs it to the CRT 6.

上記インターフェイス回路28に接続されている潮流計
制御回路について以下に説明する。10.11および1
2は水平指向方向が互いに120度づつ離れた方向で、
一定の俯角で超音波の送受波を行う送受波器である。同
図においてはこのうち1つの超音波送受波器11に接続
されている1チャンネル部分の回路について示している
。送信制御回路15は一定周波数、一定時間幅のトーン
バースト波を発生し、増幅回路14および送信出力回路
13によって超音波送受波器11が駆動される。超音波
送受波器11の受波信号は増幅回路16により増幅され
、フィルタ17により所定帯域の信号が濾波され、中間
周波変換回路18により中間周波数に変換される。さら
に、LOG圧縮回路により対数圧縮され、A/Dコンバ
ータ20により量子化されてエコーレベルメモリ21に
書き込まれる。深度カウンタ22は送信制御回路15が
送信パルスを発生する毎にOからカウントアツプを開始
し、エコーレベルメモリ21の書込アドレスを選択する
。一方、中間周波信号は増幅回路24により一定振幅に
まで増幅され、コンパレータ25によって矩形波信号に
変換され、周波数検出回路26によるディジタル処理に
よって周波数検出が行われ、その結果が上記深度カウン
タ22により選択される周波数データメモリ27のアド
レスに書き込まれる。CPUIはインターフェイス回路
28を介して送信制御回路15に対し、送信トリガ信号
発生し、またエコーレベルメモリ21および周波数デー
タメモリ27の所定深度の内容を読み込む。その際、T
VG回路23によってエコーレベルメモリ21の出力デ
ータがTVG補正される。
The current meter control circuit connected to the interface circuit 28 will be described below. 10.11 and 1
2 is a direction in which the horizontal direction directions are 120 degrees apart from each other,
This is a transducer that transmits and receives ultrasonic waves at a constant angle of depression. The figure shows a circuit for one channel connected to one of the ultrasonic transducers 11. The transmission control circuit 15 generates a tone burst wave with a constant frequency and a constant time width, and the ultrasonic transducer 11 is driven by the amplifier circuit 14 and the transmission output circuit 13. A received signal from the ultrasonic transducer 11 is amplified by an amplifier circuit 16, a signal in a predetermined band is filtered by a filter 17, and converted to an intermediate frequency by an intermediate frequency conversion circuit 18. Furthermore, the signal is logarithmically compressed by the LOG compression circuit, quantized by the A/D converter 20, and written into the echo level memory 21. The depth counter 22 starts counting up from O every time the transmission control circuit 15 generates a transmission pulse, and selects a write address in the echo level memory 21. On the other hand, the intermediate frequency signal is amplified to a constant amplitude by the amplifier circuit 24, converted to a rectangular wave signal by the comparator 25, frequency detection is performed by digital processing by the frequency detection circuit 26, and the result is selected by the depth counter 22. The frequency data is written to the address of the frequency data memory 27. The CPUI generates a transmission trigger signal to the transmission control circuit 15 via the interface circuit 28, and also reads the contents of the echo level memory 21 and the frequency data memory 27 at a predetermined depth. At that time, T
The VG circuit 23 performs TVG correction on the output data of the echo level memory 21 .

上記RAM3内の概略構成を第2図に示す。同図におい
てM (1,*)□は船首方向を指向する超音波送受波
器の受波信号(正確には、その信号が対数圧縮され、量
子化され、さらにTVG補正された結果のデータ)が予
め定められた単位深度毎に記憶する領域であり、M (
1,*) )I=M (4、*)Hによって過去4回分
のデータが一時記憶される。EA (*)Hは上記4回
分の時系列データを平均化した結果を記憶する領域であ
る。さらにEC(*) HはEAOk)11に求められ
たデ−タと矩形波信号との相関結果を記憶する領域であ
る。同様に“R”の添字を付したものは船首方向から1
20度離れた右舷後方を指向する超音波送受波器による
受波信号から求められる各種データを記憶する領域、“
L”の添字を付したものは船首方向から120度離れた
左舷後方を指向する超音波送受波器の受波信号により得
られる各種データを記憶する領域である。また、その他
にカウンタや演算用のワーキングエリアが設けられてい
る。
A schematic configuration of the RAM 3 is shown in FIG. In the same figure, M (1, *) □ is the received signal of the ultrasonic transducer pointing toward the bow direction (more precisely, the signal is logarithmically compressed, quantized, and further TVG corrected). is the area to be stored for each predetermined unit depth, and M (
1, *) ) I=M (4, *) Data for the past four times is temporarily stored by H. EA (*)H is an area that stores the result of averaging the above four times of time series data. Further, EC(*)H is an area for storing the correlation result between the data obtained by EAOk) 11 and the rectangular wave signal. Similarly, those with the suffix "R" are 1 point from the bow direction.
An area for storing various data obtained from signals received by an ultrasonic transducer directed toward the starboard rear 20 degrees away.
The area with the suffix "L" is an area for storing various data obtained from the received signal of the ultrasonic transducer pointing toward the port side, 120 degrees away from the bow direction.In addition, there are areas for counters and calculations. There is a working area.

次に、上記CPUの処理手順を第3図(A)〜(C)に
示す。
Next, the processing procedure of the CPU is shown in FIGS. 3(A) to 3(C).

第3図(A)に示すように、先ず受波信号の平均化処理
(第10図参照)の回数1nに初期値1を設定しくnl
)、カウンタCに初期値1を設定する(n2)。このカ
ウンタCは第2図に示した受波信号の記憶領域のどの箇
所にデータを読み込むかを指定するもので、M (C,
*) u 、M (C。
As shown in Figure 3 (A), first set the initial value 1 to the number of times 1n of averaging processing of the received signal (see Figure 10).
), and sets the initial value 1 to the counter C (n2). This counter C specifies where in the storage area of the received signal shown in Fig. 2 the data is to be read, and M (C,
*) u, M (C.

’k)s+およびM(C,*)tに対しそれぞれ深度0
から最大深度(max)までデータを読み込む(n3)
。その後複数回の受波信号を平均化して記憶領域EA 
(*) M 、 EA (*) RおよびEA(*)L
へそれぞれ書き込む(n4)。但し平均化回数mが1で
ある場合にはEA (*)の内容はM(1,*)の内容
に等しい。その後、カウンタCの値を次回のデータ読み
込みに備えてインクリメントする(n5→n7)。但し
、C= MであるときにはCを初期値lに戻す(n5−
+n6)。
depth 0 for 'k)s+ and M(C,*)t, respectively.
Read data from to maximum depth (max) (n3)
. After that, the received signals are averaged several times and stored in the storage area EA.
(*) M, EA (*) R and EA (*) L
(n4). However, when the number of averaging times m is 1, the contents of EA (*) are equal to the contents of M (1, *). Thereafter, the value of counter C is incremented in preparation for the next data reading (n5→n7). However, when C = M, C is returned to the initial value l (n5-
+n6).

続いて第3図(B)に示す手順で上記EA (*)に求
めた平均化データと矩形波信号との相関処理を行ってそ
の結果を記憶領域EC(*)に書き込む。先ず、深度り
として最大値(max)を設定して(n8)、相関幅(
矩形波信号の幅)Bを、送波した超音波パルスの持続時
間を距離単位で表した時間Pに深度りの比例成分a−D
を加算した値として求める(n9)(第4図および第5
図参照)。その後、EA (D)〜EA (D−B)の
内容、すなわち深度りから深度D−Bの各深度における
記憶領域EAのデータを加算する(n 10)。そして
その加算値を深度りで示される記憶領域ECに書き込む
(nil)。この処理を深度りが相関幅Bに達するまで
、深度りを単位深度dづつ浅くするとともに順次繰り返
す(n l 2→n 13→n9・・・)。
Subsequently, in the procedure shown in FIG. 3(B), correlation processing is performed between the averaged data obtained in the above EA (*) and the rectangular wave signal, and the result is written in the storage area EC (*). First, set the maximum value (max) as the depth (n8), and then set the correlation width (
The width of the rectangular wave signal) B is the duration of the transmitted ultrasonic pulse expressed in distance units, and the proportional component a-D of the depth is
(n9) (Figures 4 and 5)
(see figure). After that, the contents of EA (D) to EA (D-B), that is, the data of the storage area EA at each depth from depth DB to depth DB are added (n10). Then, the added value is written into the storage area EC indicated by the depth (nil). This process is sequentially repeated while decreasing the depth by unit depth d until the depth reaches the correlation width B (n l 2 → n 13 → n9 . . . ).

続いて第3図(C)に示す処理手順によって相関結果か
ら海底を検出するととにも対地船速を求める。先ず、求
められた相関値のピーク点を検出し、ピーク点の値を大
きいものから順にソーティングし、最もピーク値の高い
位置を基準にして海底を検出する(n 14−=n 1
5)。なお、相関値からピーク点を検出する方法として
、第11図に示すように検出すべき位置から前後方向に
相関幅B離れた点の相関値より一定値以上高い値である
箇所を抽出し、その範囲内の最大値をピーク点としてみ
なすことができる。ただし、庇付魚群の影響等により、
相関値のピークに幅をもつ場合には第9図(B)に示し
たように、ピーク点のうち最も深い位置を海底として検
出する。このようにして海底検出を行った後、その深度
に対応する周波数データを周波数データメモリ (第1
図中27)から読み込み、3方向の海底反射波のドツプ
ラーシフトから対地船速および移動方向を算出する(n
17)。その後、受波信号のノイズレベルを検出して、
そのノイズレベルに応じた平均化回数mを設定する(n
18)。例えばノイズレベルが非常に大きく対地船速が
比較的小さい場合には平均化回数fL′1を多くし、対
地船速か大きい場合またはノイズレベルが小さい場合に
は平均化回数mを少なくする。その後送信トリガを発生
して、全ての受波信号が帰来までの時間待ちを行い、以
上に示した処理を繰り返す(1119−1120−’n
 3・・・)。
Subsequently, according to the processing procedure shown in FIG. 3(C), the seabed is detected from the correlation results, and the ship's speed relative to the ground is determined. First, the peak point of the obtained correlation value is detected, the values of the peak points are sorted in descending order, and the seabed is detected based on the position with the highest peak value (n14-=n1
5). In addition, as a method of detecting a peak point from a correlation value, as shown in FIG. 11, a location where the value is higher than a certain value or more than the correlation value at a point separated by a correlation width B in the front-rear direction from the position to be detected is extracted, The maximum value within that range can be regarded as the peak point. However, due to the influence of fish schools with eaves, etc.
When the peak of the correlation value has a width, as shown in FIG. 9(B), the deepest position among the peak points is detected as the seabed. After detecting the seabed in this way, the frequency data corresponding to the depth is stored in the frequency data memory (first
27) in the figure, and calculate the speed of the ship relative to the ground and the direction of movement from the Doppler shift of the seabed reflected waves in three directions (n
17). Then, detect the noise level of the received signal and
Set the number of times m of averaging according to the noise level (n
18). For example, when the noise level is very high and the speed of the ship relative to the ground is relatively low, the number of averaging times fL'1 is increased, and when the speed of the ship relative to the ground is high or the noise level is small, the number of averaging times m is decreased. After that, a transmission trigger is generated, and the process waits until all the received signals return, and the process shown above is repeated (1119-1120-'n
3...).

(g)発明の効果 請求項1記載の発明によれば、受波信号に他のエコーや
比較的大きなノイズが重畳されるような場合であっても
、目的とする海底反射波のみを正確に抽出することがで
きる。
(g) Effects of the Invention According to the invention described in claim 1, even if other echoes or relatively large noise are superimposed on the received signal, only the desired seafloor reflected waves can be accurately detected. can be extracted.

また、請求項2に係る発明によれば、深度に関わらず抽
出すべき海底反射波の位置を正確に求めることができる
Further, according to the invention according to claim 2, the position of the seabed reflected wave to be extracted can be accurately determined regardless of the depth.

請求項3に係る発明によれば、海底の質(状態)や庭付
魚群の存在によっても、海底の開始深度を正確に判別す
ることができる。
According to the invention according to claim 3, the starting depth of the seabed can be accurately determined based on the quality (condition) of the seabed and the presence of schools of garden fish.

さらに、請求項4記載の発明によれば、海底反射波の検
出能力が向上し、深々度での微弱な受波信号からも容易
に海底検出を行うことができる。
Furthermore, according to the fourth aspect of the present invention, the ability to detect seabed reflected waves is improved, and seabed detection can be easily performed even from weak received signals at great depths.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例である潮流計のブロック図、
第2図は同装置のRAMの概略構成図、第3図(A)〜
(C)は同潮流計の処理手順を表すフローチャートであ
る。第4図は超音波ビームの広がりと送受波器に対する
距離方向の幅との関係を表す図、第5図は深度と海底反
射波のパルス幅との関係を表す図、第6図は海底反射波
のパルス幅と矩形波信号の幅および相関結果との関係を
表す図である。第7図は受波信号および受波信号と矩形
波信号との相関結果の例を示す図である。 第8図は受波信号の海底反射波付近の例を示す図である
。第9図(A)、  (B)は相関方向の違いによる海
底検出方法を説明するための図である。 第10図は受波信号の平均化処理を説明する図である。 第11図は相関結果からピーク値を検出する方法を説明
する図である。 10.11.12=超音波送受波器。
FIG. 1 is a block diagram of a tidal current meter that is an embodiment of this invention.
Figure 2 is a schematic configuration diagram of the RAM of the same device, Figure 3 (A) ~
(C) is a flowchart showing the processing procedure of the tidal current meter. Figure 4 is a diagram showing the relationship between the spread of the ultrasonic beam and the width in the distance direction with respect to the transducer, Figure 5 is a diagram showing the relationship between depth and the pulse width of the seabed reflected wave, and Figure 6 is the seabed reflection. FIG. 3 is a diagram showing the relationship between the pulse width of a wave, the width of a rectangular wave signal, and a correlation result. FIG. 7 is a diagram showing an example of a received signal and a correlation result between the received signal and a rectangular wave signal. FIG. 8 is a diagram illustrating an example of a received signal near a seabed reflected wave. FIGS. 9(A) and 9(B) are diagrams for explaining a seabed detection method using different correlation directions. FIG. 10 is a diagram illustrating the averaging process of received signals. FIG. 11 is a diagram illustrating a method of detecting a peak value from correlation results. 10.11.12 = Ultrasonic transducer.

Claims (4)

【特許請求の範囲】[Claims] (1)海中に対する超音波パルスの送波および海底反射
波の受波により、海底を検出する海底検出装置において
、 受波信号の強度を量子化して時系列データとして記憶す
るエコーレベル記憶手段と、 パルス幅が予定する海底反射波のパルス幅に等しい矩形
波信号と上記時系列データとの相関をとって、相関値の
最大となる点を基準として海底を検出する海底検出手段
とを備えたことを特徴とする海底検出装置。
(1) In a seabed detection device that detects the seafloor by transmitting ultrasonic pulses into the sea and receiving seabed reflected waves, an echo level storage means for quantizing the intensity of the received signal and storing it as time series data; Seabed detection means for correlating a rectangular wave signal whose pulse width is equal to the expected pulse width of the seabed reflected wave with the above-mentioned time series data and detecting the seabed using the point at which the correlation value is maximum as a reference. A submarine detection device featuring:
(2)上記予定する海底反射波のパルス幅を、超音波ビ
ームの広がりによって生じる各深度における仮想海底へ
の超音波ビームの放射範囲と、送受波器に対する距離方
向の幅と、送波信号のパルス幅とにより定める請求項1
記載の海底検出装置。
(2) The pulse width of the seabed reflected waves planned above is determined by the radiation range of the ultrasonic beam to the virtual seabed at each depth caused by the spread of the ultrasonic beam, the width in the distance direction to the transducer, and the width of the transmitted signal. Claim 1 defined by the pulse width
The seabed detection device described.
(3)最大深度から浅い方向へ上記時系列データと上記
矩形波信号との相関をとる請求項1または2記載の海底
検出装置。
(3) The seabed detection device according to claim 1 or 2, wherein the correlation between the time series data and the rectangular wave signal is taken from the maximum depth to the shallow direction.
(4)海中に対する超音波パルスの送波および海底反射
波の受波により海底を検出する海底検出装置において、 複数回の超音波パルスの送受により得た各受波信号の強
度を量子化して、それぞれ時系列データとして記憶する
エコーレベル記憶手段と、 記憶した複数回分の時系列データを発生順に順次移動平
均してエコーデータを求める平均化エコーデータ生成手
段とを備えたことを特徴とする海底検出装置。
(4) In a seabed detection device that detects the seafloor by transmitting ultrasonic pulses into the sea and receiving waves reflected from the seabed, the intensity of each received signal obtained by transmitting and receiving multiple ultrasonic pulses is quantized, Seabed detection characterized by comprising an echo level storage means for storing each time series data as time series data, and an averaged echo data generation means for obtaining echo data by sequentially moving averaging the stored time series data for a plurality of times in the order of occurrence. Device.
JP2048924A 1990-02-27 1990-02-27 Submarine reflected wave position detector Expired - Fee Related JP2543610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048924A JP2543610B2 (en) 1990-02-27 1990-02-27 Submarine reflected wave position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048924A JP2543610B2 (en) 1990-02-27 1990-02-27 Submarine reflected wave position detector

Publications (2)

Publication Number Publication Date
JPH03248082A true JPH03248082A (en) 1991-11-06
JP2543610B2 JP2543610B2 (en) 1996-10-16

Family

ID=12816805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048924A Expired - Fee Related JP2543610B2 (en) 1990-02-27 1990-02-27 Submarine reflected wave position detector

Country Status (1)

Country Link
JP (1) JP2543610B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093484A (en) * 2005-09-29 2007-04-12 Koden Electronics Co Ltd Seabed detecting method and fish detector
JP2011145311A (en) * 2011-05-02 2011-07-28 Koden Electronics Co Ltd Seabed detection method and fish finding device
JP2013213826A (en) * 2013-06-17 2013-10-17 Koden Electronics Co Ltd Seabed detection method and fish finding device
JP2015232502A (en) * 2014-06-10 2015-12-24 Kddi株式会社 Sound wave reception time calculation device, method, and program, and distance estimation system equipped with said device
JP2016003864A (en) * 2014-06-13 2016-01-12 国立研究開発法人海上技術安全研究所 Method and device for measuring distance in turbid water, and underwater apparatus
KR20190032143A (en) * 2017-09-18 2019-03-27 숭실대학교산학협력단 Apparatus and method for target detection, recording medium for performing the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938604A (en) * 1982-08-27 1984-03-02 Toshiba Corp Supersonic monitor for nuclear reactor
JPS641993A (en) * 1987-06-23 1989-01-06 Nec Corp Echo sounder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938604A (en) * 1982-08-27 1984-03-02 Toshiba Corp Supersonic monitor for nuclear reactor
JPS641993A (en) * 1987-06-23 1989-01-06 Nec Corp Echo sounder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093484A (en) * 2005-09-29 2007-04-12 Koden Electronics Co Ltd Seabed detecting method and fish detector
JP2011145311A (en) * 2011-05-02 2011-07-28 Koden Electronics Co Ltd Seabed detection method and fish finding device
JP2013213826A (en) * 2013-06-17 2013-10-17 Koden Electronics Co Ltd Seabed detection method and fish finding device
JP2015232502A (en) * 2014-06-10 2015-12-24 Kddi株式会社 Sound wave reception time calculation device, method, and program, and distance estimation system equipped with said device
JP2016003864A (en) * 2014-06-13 2016-01-12 国立研究開発法人海上技術安全研究所 Method and device for measuring distance in turbid water, and underwater apparatus
KR20190032143A (en) * 2017-09-18 2019-03-27 숭실대학교산학협력단 Apparatus and method for target detection, recording medium for performing the method

Also Published As

Publication number Publication date
JP2543610B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US9268022B2 (en) Underwater detection device and underwater detecting method
EP3153884B1 (en) Detection apparatus, fish finder, and radar
JP5301882B2 (en) Pulse signal transmitter / receiver
JP2008267834A (en) Underwater detection device
US4290125A (en) Fish detector capable of detecting species of fish
CN108398690B (en) Submarine backscattering intensity measuring method
CN110703261A (en) Side-scan sonar bottom tracking method based on multi-peak scoring system
JPH03248082A (en) Sea bottom detector
US11802949B2 (en) Underwater information visualizing device
US5150335A (en) Frequency interrupt continuous transmit active sonar transmission and signal processing technique
US20060140054A1 (en) Noise adaptive sonar signal processor
JP2007178125A (en) Bottom quality detector and detecting method
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
JP3528580B2 (en) Object measuring device
Trevorrow An evaluation of a steerable sidescan sonar for surveys of near-surface fish
JP2002168937A (en) Device and method for detecting position of submerged target
JPH02115782A (en) Estimated stranding distance instrument
KR0164914B1 (en) Fish finder
JP3236140B2 (en) Ultrasonic algae measuring device
JP2015210142A (en) Fish detector, single fish detection method and single fish detection program
CN111123275B (en) Matching method and system for side-scan sonar echo signals
CN215575663U (en) Submarine buried cable detection system based on parametric array
JP3162873B2 (en) Ship speed measuring device
CN109031311B (en) Bistatic large-scale diversity angle active detection method based on time sliding window processing
JP2801997B2 (en) Tidal current measurement method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees