JP2519110B2 - Otto-cycle engine - Google Patents

Otto-cycle engine

Info

Publication number
JP2519110B2
JP2519110B2 JP1326133A JP32613389A JP2519110B2 JP 2519110 B2 JP2519110 B2 JP 2519110B2 JP 1326133 A JP1326133 A JP 1326133A JP 32613389 A JP32613389 A JP 32613389A JP 2519110 B2 JP2519110 B2 JP 2519110B2
Authority
JP
Japan
Prior art keywords
engine
valve
knocking
intake
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1326133A
Other languages
Japanese (ja)
Other versions
JPH03189322A (en
Inventor
弘 兼坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP1326133A priority Critical patent/JP2519110B2/en
Priority to FR9016195A priority patent/FR2656036A1/en
Priority to DE4040415A priority patent/DE4040415C2/en
Priority to GB9027412A priority patent/GB2239901A/en
Publication of JPH03189322A publication Critical patent/JPH03189322A/en
Priority to US07/969,512 priority patent/US5230315A/en
Application granted granted Critical
Publication of JP2519110B2 publication Critical patent/JP2519110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/085Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はオットーサイクルエンジン、殊にミラーサイ
クルを併用したエンジンにおいて、膨脹比をディーゼル
エンジンの圧縮比と同程度の11乃至16に高めるととも
に、圧縮比をエンジンの運転状態に応じてノッキング発
生限界まで高くして出力を高め、且つ燃焼を改善せしめ
たオットーサイクルエンジンに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention increases the expansion ratio to 11 to 16 which is the same as the compression ratio of a diesel engine in an Otto cycle engine, particularly an engine using a Miller cycle together, The present invention relates to an Otto cycle engine in which a compression ratio is raised to a knocking occurrence limit according to an operating state of the engine to increase output and improve combustion.

〈従来の技術〉 一般によく知られたオットーサイクルエンジンは、圧
縮ストロークと膨張ストロークが同一、即ち圧縮比と膨
脹比とが同一に設定された構造を有している。そして上
記圧縮比は全負荷運転において発生するノッキングによ
り制限され、無過給エンジンでは通常10程度、また過給
エンジンでは8.5程度が限界で、従って膨脹比も8.5乃至
10となり、シリンダ内で発生した高温、高圧の燃焼ガス
は充分に膨脹することなく、有効な仕事量に変換されな
いまま高温の排気ガスとして排出され、従って熱効率は
低い。
<Prior Art> A generally well-known Otto cycle engine has a structure in which the compression stroke and the expansion stroke are the same, that is, the compression ratio and the expansion ratio are the same. The compression ratio is limited by knocking that occurs during full-load operation, and is usually about 10 for a non-supercharged engine and about 8.5 for a supercharged engine.
10, the high temperature, high pressure combustion gas generated in the cylinder does not expand sufficiently and is discharged as a high temperature exhaust gas without being converted into an effective work amount, so that the thermal efficiency is low.

周知の通り、かかる高温の排気ガスは熱効率を低下さ
せるばかりでなく、シリンダヘッドの熱応力を高め、亀
裂を発生させ、また排気弁を高温としてその強度を下
げ、時には折損させる。また過給エンジンでは、膨脹比
の低下によって更に排気温度は高くなり、例えば排気タ
ーボ過給の場合、排気タービンケーシング等に過大な熱
応力が加わってその許容限界を越えることがあり、この
ため過濃な混合気を吸気させて排気温度の過昇を抑えて
いるのが現状で、これが燃料消費率を高める原因となっ
ている。
As is well known, such high-temperature exhaust gas not only lowers the thermal efficiency, but also increases the thermal stress of the cylinder head, causes cracks, and raises the exhaust valve to a high temperature to lower its strength and sometimes break it. Further, in a supercharged engine, the exhaust temperature becomes higher due to a reduction in the expansion ratio.For example, in the case of exhaust turbo supercharging, excessive thermal stress may be applied to the exhaust turbine casing, etc. and exceed its allowable limit. At present, a rich air-fuel mixture is sucked in to suppress an excessive rise in exhaust temperature, which is a cause of increasing the fuel consumption rate.

当量比に近い燃料と空気の混合気を吸入するオットー
サイクルエンジンにおいて、負荷を低減するためには、
絞り弁によりエンジンの混合気吸入量を絞ることが行わ
れているが、この絞り弁による吸気の負圧は部分負荷時
の動力損失を増加させるばかりでなく、圧縮された混合
気の密度の低下、ひいては不完全燃焼または燃焼速度の
低下をもたらし、図示熱効率を低下せしめる。特に、絞
り損失の低減による熱効率の向上並びにNOXの低減の目
的で、排気再循環(以下EGRという)及び稀薄混合気燃
焼を行うときは燃焼不良となり、HCの排出量が増大する
がその量は当然規制を受けていた。また、寒地における
エンジンの始動は、圧縮比が充分に高くなく、始動困難
となっていた。
To reduce the load in an Otto cycle engine that inhales a mixture of fuel and air with an equivalence ratio,
Throttle valves are used to throttle the amount of air-fuel mixture intake, but the negative pressure of intake air due to these throttle valves not only increases power loss during partial load, but also reduces the density of the compressed air-fuel mixture. As a result, incomplete combustion or a decrease in the combustion speed is caused, and the indicated thermal efficiency is decreased. In particular, when exhaust gas recirculation (hereinafter referred to as EGR) and lean mixture combustion are performed for the purpose of improving thermal efficiency by reducing throttling loss and reducing NOX, combustion failure will occur and HC emissions will increase, but the amount is Of course it was regulated. Further, when starting an engine in a cold region, the compression ratio is not sufficiently high, which makes starting difficult.

〈発明が解決しようとする課題〉 圧縮比と膨脹比を同一にする従来公知のオットーサイ
クルエンジン(以下エンジンと称す)では、前記の如く
ノッキング現象に制約され、圧縮比の制限、従って膨脹
比も制限されて全負荷時の熱効率の低下、高過ぎる排気
温度によるエンジンの信頼性低下等を生じ、排気ターボ
過給の場合、殊に圧縮比の低い過給エンジンでは、更に
排気温度が高いので、排気温度低下の目的で過濃な混合
気が使われ、燃料消費を高めているばかりか、排気ター
ビンの熱負荷を増大して排気タービン、ケーシングへの
高価な耐熱合金の使用を余儀なくさせている。
<Problems to be Solved by the Invention> In a conventionally known Otto cycle engine (hereinafter referred to as an engine) in which the compression ratio and the expansion ratio are the same, the knocking phenomenon is restricted as described above, and the compression ratio is restricted, and accordingly the expansion ratio is also increased. Due to the restriction, the thermal efficiency at full load decreases, the reliability of the engine decreases due to too high exhaust temperature, and in the case of exhaust turbo supercharging, especially in a supercharging engine with a low compression ratio, the exhaust temperature is even higher. A rich mixture is used to reduce the exhaust temperature, which not only increases fuel consumption but also increases the heat load on the exhaust turbine, forcing the use of expensive heat-resistant alloys for the exhaust turbine and casing. .

また、エンジンの部分負荷時には、圧縮された混合気
の密度の低下、燃焼不良、熱効率の低下が生じる。更
に、絞り損失の低減及びNOxの低減の目的でEGR及び稀薄
混合気を使用することは燃焼不良を生じ、要求されるEG
R量及び充分に稀薄な混合気を使用できないのが現状で
ある。しかし、このとき更に圧縮比を高めて、圧縮温度
を高め、良好な燃焼を生ぜしめて熱効率の向上を図るこ
とは現状では不可能である。
Further, when the engine is partially loaded, the density of the compressed air-fuel mixture is reduced, combustion is poor, and thermal efficiency is reduced. Furthermore, the use of EGR and a lean mixture for the purpose of reducing throttling loss and NOx results in poor combustion and the required EG
At present, it is not possible to use an R amount and a sufficiently lean mixture. However, at this time, it is impossible to further improve the thermal efficiency by further increasing the compression ratio, raising the compression temperature, and producing good combustion.

ところで、実開昭64-21223号公報には、吸気弁上流側
の吸気通路に、エンジン出力軸により駆動され該吸気通
路を開閉するロータリバルブと、該バルブと同軸に設け
られ、かつ一体回転する被駆動軸と、前記エンジン出力
軸により回転駆動され前記被駆動軸と同軸に設けられた
駆動軸を備え、該駆動軸は超音波モータを介して前記被
駆動軸に係合し、前記駆動軸と前記被駆動軸との相対角
を前記超音波モータによって変化させ、それによって吸
気弁およびロータリバルブが共に開弁するオーバラップ
期間を変化させるロータリバルブ付エンジンが開示され
ている。
By the way, in Japanese Utility Model Laid-Open No. 64-21223, a rotary valve, which is driven by an engine output shaft to open and close the intake passage, is provided in the intake passage upstream of the intake valve, and the rotary valve is provided coaxially with the valve and rotates integrally. A driven shaft and a drive shaft that is rotationally driven by the engine output shaft and is provided coaxially with the driven shaft, the driving shaft engaging with the driven shaft via an ultrasonic motor, An engine with a rotary valve is disclosed in which the relative angle between the driven shaft and the driven shaft is changed by the ultrasonic motor, and thereby the overlap period in which both the intake valve and the rotary valve are opened is changed.

上記考案に依れば、アクセル開度の増加とともに超音
波モータの設定相対角が減少するように設定されたコン
ピュータプログラムにより、アクセルペダルの踏み込み
に反比例した相対角設定がなされ、吸気弁とロータリバ
ルブの開弁期間のオーバラップ期間を変えるとともに、
ノッキングセンサ等のノッキング感知手段または、吸気
圧センサ、吸気温センサ及び回転数センサ等の予測手段
からの入力信号に基づいて設定相対角を大とし、ロータ
リバルブのカットオフをはやめて圧縮比を低下させ、ノ
ッキングを抑制するが、エンジンの膨脹比を如何なる値
に設定するかが不明であり、実用的でない。
According to the above invention, the relative angle setting that is inversely proportional to the depression of the accelerator pedal is made by the computer program that is set so that the set relative angle of the ultrasonic motor decreases as the accelerator opening increases, and the intake valve and the rotary valve are set. While changing the overlap period of the valve opening period of
Increase the set relative angle based on an input signal from knocking sensing means such as a knocking sensor or prediction means such as an intake pressure sensor, an intake air temperature sensor and a rotation speed sensor, and stop the cutoff of the rotary valve to reduce the compression ratio. Although knocking is suppressed, it is not practical because it is unknown what value the expansion ratio of the engine should be set to.

本発明は上記に鑑み、エンジンの全負荷時の圧縮比を
ノッキング発生により制約される最大値となるよう調整
し、且つ膨脹比を圧縮比より大きな11乃至16に設定する
ことによって熱効率を高め、排気温度を下げるととも
に、部分負荷時においては、そのときのノッキング発生
限界まで更に圧縮比を高め、EGRまたは稀薄混合気であ
っても、良好な燃焼による熱効率の向上を目的として案
出されたものである。
In view of the above, the present invention increases the thermal efficiency by adjusting the compression ratio at full load of the engine to be the maximum value restricted by the occurrence of knocking, and setting the expansion ratio to 11 to 16 which is larger than the compression ratio. It was devised for the purpose of improving the thermal efficiency by good combustion even if the exhaust temperature is lowered and the knocking limit at that time is further increased at the time of partial load, even with EGR or a lean mixture, while lowering the exhaust temperature. Is.

〈課題を解決するための手段〉 前記目的を達成するための本発明のエンジンの構成
は、エンジンの吸気通路にバルブ開閉時期調整装置を備
えたロータリバルブを介装し、該バルブをエンジンの吸
気行程の下死点前で閉じることによって、エンジンの膨
脹比を全負荷時の圧縮比より高く11乃至16に設定する一
方、ノッキング感知乃至予測手段を設け、該手段により
ノッキング発生初期にこれを感知または予測して、その
信号により前記バルブ開閉時期調整装置を介して前記ロ
ータリーバルブの閉時期を早め、実質的圧縮比を可及的
に高く調節することを特徴とするものである。
<Means for Solving the Problems> An engine configuration according to the present invention for achieving the above object is such that a rotary valve having a valve opening / closing timing adjusting device is provided in an intake passage of the engine, and the valve is installed in the intake air of the engine. By closing before the bottom dead center of the stroke, the expansion ratio of the engine is set to 11 to 16 higher than the compression ratio at full load, while knocking sensing or predicting means is provided to detect this at the early stage of knocking occurrence. Alternatively, by predicting the signal, the closing timing of the rotary valve is advanced through the valve opening / closing timing adjusting device to adjust the substantial compression ratio as high as possible.

〈作用〉 上記構成により、エンジンの全負荷時においては、ロ
ータリバルブはエンジンの吸気弁と同一閉弁時期で運転
されようとするが、このとき圧縮比が膨脹比と同一とな
って高すぎ、ノッキングを発生する。
<Operation> With the above configuration, when the engine is fully loaded, the rotary valve tends to be operated at the same closing timing as the intake valve of the engine, but at this time, the compression ratio becomes the same as the expansion ratio and is too high. Knocking occurs.

前記ノッキング感知乃至予測手段、例えばノックセン
サはこれを直ちに感知し、アクチュエータに命じて前記
ロータリバルブの弁閉時期を早め、これを吸気行程途中
にて閉じ、吸気行程の長さを短縮するから、膨脹比はそ
のままに実質的な圧縮比がノッキング発生限界以下に低
下し、ノッキングが回避される。このとき、圧縮比は通
常のエンジン程度に低下する。
The knocking sensing or predicting means, for example, a knock sensor, senses this immediately, commands the actuator to accelerate the valve closing timing of the rotary valve, and closes this in the middle of the intake stroke to shorten the intake stroke length. While the expansion ratio remains unchanged, the substantial compression ratio falls below the knocking occurrence limit, and knocking is avoided. At this time, the compression ratio drops to the level of a normal engine.

過給した場合には、圧縮された空気の密度及び温度は
更に高くなりノツキングが発生するので、前記ノツクセ
ンサと開閉時期調整装置と協働してロータリバルブ吸気
弁の閉時期は更に早められ、実質的圧縮比を更に低下さ
せるが、膨脹比は通常のエンジンより高く、熱効率は改
善される。
In the case of supercharging, the density and temperature of the compressed air become higher and knocking occurs. Therefore, the closing timing of the rotary valve intake valve is further advanced in cooperation with the knock sensor and the opening / closing timing adjusting device. Although it further lowers the dynamic compression ratio, the expansion ratio is higher than a normal engine and the thermal efficiency is improved.

エンジンの部分負荷時には、スロットルバルブを絞る
ことによって実質的圧縮比は低下してノッキングは発生
せず、ロータリバルブの弁閉時期を遅らせて実質的圧縮
比を高められるが、前記ノックセンサのノッキング感知
により最適圧縮比を選択し、ノッキング直前の良好な燃
焼状態を維持し、図示効率を高め、熱効率が改善され
る。
When the engine is partially loaded, the throttle valve is throttled to reduce the substantial compression ratio and knocking does not occur, and the valve closing timing of the rotary valve can be delayed to increase the substantial compression ratio. By selecting the optimum compression ratio, the good combustion state immediately before knocking is maintained, the indicated efficiency is increased, and the thermal efficiency is improved.

また、EGRにより絞り損失を低滅し、同様に稀薄混合
気の使用によって、過剰な空気を吸入して絞り損失を低
滅するとともに、空気サイクルに近づけて熱効率を更に
改善しNOxも低滅しようとする場合は、通常のエンジン
では燃焼不良となるが、前記ノックセンサと開閉時期調
整装置とが協働してロータリバルブの弁閉時期を遅らせ
ることによって実質的圧縮比を高め、圧縮密度及び温度
を高めて燃焼を改善する。
In addition, the EGR reduces the throttling loss, and the use of a lean air-fuel mixture also sucks excess air to reduce the throttling loss, and approaches the air cycle to further improve the thermal efficiency and reduce NOx. In this case, combustion will be poor in a normal engine, but the knock sensor and the opening / closing timing adjusting device cooperate to delay the valve closing timing of the rotary valve to increase the substantial compression ratio and increase the compression density and temperature. Improve combustion.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

本発明オットーサイクルエンジンは、基本的には第2
図に示すように、シリンダ1内でピストン2が摺動し、
コンロッド3によりクランク軸(図示せず)を回転せし
める4サイクルエンジンにおいて、そのシリンダヘッド
4に前記シリンダに臨んで点火栓5を、また吸気口6に
は吸気弁7と燃料噴射弁8が、更に排気口9には排気弁
10とが夫々設置されたもので、前記点火栓5はエンジン
のクランク軸と同期して点火作動を行い、また、吸気弁
7及び排気弁10も前記クランク軸と同期して周知のバル
ブ開閉機構により開閉されるもので、その開閉時期は通
常のエンジンと同様に設定してある。
The Otto cycle engine of the present invention is basically the second
As shown in the figure, the piston 2 slides in the cylinder 1,
In a four-cycle engine in which a crankshaft (not shown) is rotated by a connecting rod 3, a spark plug 5 is faced to the cylinder head 4 thereof, an intake valve 7 and a fuel injection valve 8 are further provided at an intake port 6, Exhaust valve at exhaust port 9
10 are installed respectively, the spark plug 5 performs ignition operation in synchronization with the crankshaft of the engine, and the intake valve 7 and the exhaust valve 10 are also known valve opening / closing mechanisms in synchronization with the crankshaft. The opening and closing timing is set in the same manner as a normal engine.

前記吸気口6と連通する吸気枝管11の一端には吸気マ
ニホールド12が設けられ、吸気通路が形成されている。
An intake manifold 12 is provided at one end of an intake branch pipe 11 that communicates with the intake port 6, and an intake passage is formed.

前記吸気枝管11には、制御弁としてのロータリバルブ
13が配置され、前記クランク軸から歯車伝達機構を介し
て駆動されるとともに、その上流には絞り弁14が配設さ
れている。
The intake branch pipe 11 has a rotary valve as a control valve.
13 is arranged and driven from the crankshaft through a gear transmission mechanism, and a throttle valve 14 is arranged upstream thereof.

第3図及び第4図は前記ロータリバルブ13の駆動機構
を含む開閉時期調整装置を示し、前記ロータリバルブ13
は吸気枝管11の途中に形成したバルブ体11a内にロータ
リバルブ13とピン15で固定した駆動軸16によって支持さ
れている。
3 and 4 show an opening / closing timing adjusting device including a drive mechanism for the rotary valve 13, and FIG.
Is supported by a rotary valve 13 and a drive shaft 16 fixed by a pin 15 in a valve body 11a formed in the middle of the intake branch pipe 11.

この駆動軸16は前記バルブ体11a内でロータリバルブ1
3を挟持するように配設された一対のスリーブ17、18及
び単体のスリーブ19を介して複数のベアリング20、21及
び22に支承されており、その一端には左ねじヘリカルス
プライン16aが形成されている。
The drive shaft 16 is a rotary valve 1 in the valve body 11a.
It is supported by a plurality of bearings 20, 21 and 22 via a pair of sleeves 17 and 18 and a single sleeve 19 arranged so as to sandwich 3 and a left-handed helical spline 16a is formed at one end thereof. ing.

23はクランク軸(図示せず)と歯車機構を介して伝導
連結されたタイミンクギヤで、該ギヤ23と一体の回転軸
24はベアリング25、26を介してエンジンに取り付けたブ
ラケット27に支持されるとともに、端部には右ねじヘリ
カルスプライン24aを形成し、前記左ねじヘリカルスプ
ライン16aとの間を、内側に上記両スプラインと噛み合
う突起28a、28bを形成した調整駒28により連結してい
る。
Reference numeral 23 is a timing gear that is conductively connected to a crankshaft (not shown) through a gear mechanism, and is a rotary shaft integrated with the gear 23.
24 is supported by a bracket 27 attached to the engine via bearings 25 and 26, and a right-handed screw helical spline 24a is formed at the end, and between the left-handed screw helical spline 16a and the above-mentioned splines on the inside. They are connected by an adjusting piece 28 formed with protrusions 28a and 28b that mesh with.

29は調整レバーで、軸30により支持され、一端は前記
調整駒28の凹部28cに嵌入されている。これによって、
例えば第3、4図の場合調整レバー29により調整駒28を
左方に移動すれば駆動軸16は回転軸24に対して所定の方
向に角変位し、調整駒28を右方に移動することによって
前記と逆方向に角変位させることができる。このように
調整駒28の軸方向の移動によって駆動軸16の回転タイミ
ングを変え、ロータリバルブ13の開閉時期が調整され
る。
Reference numeral 29 is an adjusting lever, which is supported by a shaft 30, and one end of which is fitted into the recess 28c of the adjusting piece 28. by this,
For example, in the case of FIGS. 3 and 4, if the adjustment lever 28 is moved to the left by the adjustment lever 29, the drive shaft 16 is angularly displaced in a predetermined direction with respect to the rotary shaft 24, and the adjustment piece 28 is moved to the right. With this, angular displacement can be performed in the opposite direction. Thus, the rotation timing of the drive shaft 16 is changed by the axial movement of the adjustment piece 28, and the opening / closing timing of the rotary valve 13 is adjusted.

なお、ロータリバルブ13は第2図に示されるように弁
開閉時期を約90°づつ設定してあり、且つ前記タイミン
グギヤ23によってクランク軸回転の1/2の回転速度で駆
動されるようになっている。
As shown in FIG. 2, the rotary valve 13 has valve opening / closing timings set at about 90 °, and is driven by the timing gear 23 at a rotation speed half the crankshaft rotation. ing.

一方、エンジンの吸気行程期間はクランク軸回転角度
で180°であり、従ってロータリバルブ13は吸気弁7と
同様にクランク軸の回転角度では約180°の開弁期間を
有する。
On the other hand, the intake stroke period of the engine is 180 ° in crankshaft rotation angle, and therefore the rotary valve 13 has a valve opening period of about 180 ° in crankshaft rotation angle, like the intake valve 7.

第1図は上記開閉時期調整装置をもつロータリバルブ
を備えた本発明4サイクルオットーサイクルエンジンを
示すもので、エンジンEの外壁にはノッキング感知乃至
予測手段、例えばノックセンサ31が取付けてある。該ノ
ックセンサ31は、ノッキングによるエンジンの振動に感
応して信号を発するもので、この信号は配線32、33を介
して、電源34よりの電気エネルギの供給を受けるアクチ
ュエータ35に伝達される。
FIG. 1 shows a four-cycle Otto-cycle engine of the present invention provided with a rotary valve having the above-mentioned opening / closing timing adjusting device. On the outer wall of the engine E, knocking sensing or predicting means such as a knock sensor 31 is attached. The knock sensor 31 emits a signal in response to engine vibration due to knocking, and this signal is transmitted to the actuator 35 which receives the supply of electric energy from the power source 34 via the wirings 32 and 33.

上記ノッキング信号を受けたアクチュエータ35は、ピ
ン37を固定したロッド36を左方に押し出し、レバー29を
軸30を中心に時計方向に回転させ、調整駒28を右方に押
して、前述のようにロータリバルブ13の閉弁時期を早
め、エンジンの実質的圧縮比を低下させるのである。図
中、39はクランク軸の前端38に固定されたクランク歯車
で、前記タイミングギヤ23を駆動するものであり、40は
排気管である。尚、過給装置(ターボチャージャ、スー
パーチャージャ)は通常のものを使用するので図示して
いない。
Upon receiving the knocking signal, the actuator 35 pushes out the rod 36 fixing the pin 37 to the left, rotates the lever 29 clockwise around the shaft 30, pushes the adjusting piece 28 to the right, and as described above. That is, the closing timing of the rotary valve 13 is advanced to reduce the substantial compression ratio of the engine. In the figure, 39 is a crank gear fixed to the front end 38 of the crankshaft, which drives the timing gear 23, and 40 is an exhaust pipe. The supercharging device (turbocharger, supercharger) is not shown because it is a normal one.

なお、前記ノッキング感知乃至予測手段としては、ノ
ックセンサ31のほか、エンジンの運転状態に応じて作動
するノッキング予測手段、即ち、エンジン水温センサ、
エンジン回転センサ、アクセルペダルセンサ、O2センサ
等エンジンの運転状態を感知して、ノツキングを予測す
るセンサ類(いずれも図示せず)も使用でき、開閉時期
調整装置と協働して、吸気ロータリバルブ13の弁開時期
を変化させることができる。
As the knocking sensing or predicting means, in addition to the knock sensor 31, a knocking predicting means that operates according to the operating state of the engine, that is, an engine water temperature sensor,
Sensors such as an engine rotation sensor, an accelerator pedal sensor, an O 2 sensor, etc. that detect the operating condition of the engine and predict knocking (none are shown) can also be used. In cooperation with the opening / closing timing adjustment device, the intake rotary The valve opening timing of the valve 13 can be changed.

本発明の4サイクルオットーサイクルエンジンでは、
ポンプ損失を最小とし、熱効率を最大とするため、膨脹
比を「11乃至16」と通常のオットーサイクルエンジンの
「10」よりも遥かに大きく設定してあり、従って全負荷
時において、ロータリバルブ13の閉時期はアクチュエー
タ35によって吸気弁開閉時期と同時期に閉じられようと
するが、圧縮比は膨脹比と同じになり、このままでは圧
縮比が高すぎ、エンジン運転開始によって当然にノッキ
ングを発生する。しかし、このノッキングの発生は直ち
にノックセンサ31に感知され、その信号がアクチュエー
タ35に伝えられる。これによって、アクチュエータ35は
ロッド36を動かし、前記の如くロータリバルブ13の閉時
期を早め、吸気行程途中にて閉じることになる。
In the 4-cycle Otto-cycle engine of the present invention,
In order to minimize the pump loss and maximize the thermal efficiency, the expansion ratio is set to "11 to 16", which is much larger than the normal Otto cycle engine "10", so at full load the rotary valve 13 The actuator tends to be closed at the same time as the intake valve opening / closing timing by the actuator 35, but the compression ratio becomes the same as the expansion ratio, and the compression ratio is too high as it is, and naturally knocking occurs when the engine starts operating. . However, the occurrence of this knocking is immediately sensed by knock sensor 31, and the signal is transmitted to actuator 35. As a result, the actuator 35 moves the rod 36 to advance the closing timing of the rotary valve 13 as described above, and to close the rotary valve 13 during the intake stroke.

上記経過を第5図のp−v線図により説明すれば、吸
気行程の上死点の点1より吸気を始め、下死点の点7で
吸気を終了し、点7より圧縮行程を開始する。このまゝ
圧縮すれば点線のように移行し、圧縮上死点においては
混合気は断熱圧縮され、圧縮圧力は点8となり、高すぎ
る圧力とそれに伴う高温はノッキングを発生する。この
ノッキングの発生は直ちにノックセンサ31により感知さ
れ、その信号に応じてアクチュエータ35はロータリバル
ブ13の閉時期を早めるように作動するから、ノッキング
感知後の吸気行程途中の点2で吸気通路を閉じる。従っ
て吸気行程下死点での圧力は点7から徐々に下がり、点
2以降の吸気行程においてはシリンダ内の混合気は断熱
膨脹しつつ体積を増大し、吸気行程下死点においては点
3と大気圧以下に圧力が下がる。(なおこのとき温度も
低下する。) 圧縮行程は点3より開始され、点2で圧力が大気圧と
なり、温度もそれに応じて上昇するが、実質的な圧縮行
程は点2より開始され、点4の圧縮上死点で終了するか
ら、実質的圧縮比はそのときのノッキング限界以下に低
下し、圧縮圧力は点4と点8よりも低下し、同時に圧縮
温度も低下してノッキングが回避されるのである。
The above process will be described with reference to the p-v diagram of FIG. 5. The intake stroke starts at point 1 at the top dead center of the intake stroke, ends at point 7 at the bottom dead center, and starts the compression stroke at point 7. To do. If this compression is continued, it moves as shown by the dotted line, and at the compression top dead center, the air-fuel mixture is adiabatically compressed, the compression pressure becomes point 8, and too high pressure and accompanying high temperature cause knocking. The occurrence of this knocking is immediately detected by the knock sensor 31, and the actuator 35 operates so as to advance the closing timing of the rotary valve 13 in response to the signal, so that the intake passage is closed at point 2 in the intake stroke after the knocking is detected. . Therefore, the pressure at the bottom dead center of the intake stroke gradually decreases from point 7, and in the intake stroke after point 2, the air-fuel mixture in the cylinder expands adiabatically and increases in volume, and at the bottom dead center of the intake stroke, it becomes point 3. The pressure drops below atmospheric pressure. (At this time, the temperature also decreases.) The compression stroke starts at point 3, the pressure becomes atmospheric pressure at point 2, and the temperature rises accordingly, but the substantial compression stroke starts at point 2, Since it ends at the compression top dead center of 4, the substantial compression ratio falls below the knocking limit at that time, the compression pressure falls below points 4 and 8, and at the same time the compression temperature also falls to avoid knocking. It is.

ノッキング限界に例えば圧縮比「10」を設定した従来
公知のエンジンでは、前記の如く膨脹比も10となり、シ
リンダ内で発生する図示仕事量は第5図点2-4-5-9-2で
囲まれる面積となるが、本発明のエンジンの場合は、膨
脹行程は点5-6と通常のエンジンの点5-9よりも長く、従
って仕事量は第5図点2-4-5-6-7-2で囲まれた面積とな
るから、結局、点2-9-6-7-2で囲まれる面積分(影線
部)だけ通常のエンジンより面積、即ち図示仕事量が大
きく、点1-2間で供給された混合気の量、燃料使用量は
同一でありながら出力は向上し、従って熱効率は高まる
のである。
In the conventionally known engine in which the compression ratio is set to "10" for the knocking limit, the expansion ratio is 10 as described above, and the indicated work amount generated in the cylinder is at point 2-4-5-9-2 in Fig. 5. In the case of the engine of the present invention, the expansion stroke is longer than the point 5-6 and the point 5-9 of the normal engine, so the work amount is enclosed by the point 5-4-5-6 in FIG. -7-2 is the area surrounded by the area, so after all, the area surrounded by the point 2-9-6-7-2 (the shaded area) is larger than the normal engine, that is, the work shown in the figure is larger. Although the amount of air-fuel mixture and the amount of fuel supplied are the same between 1 and 2, the output is improved and therefore the thermal efficiency is increased.

過給した場合は、高い吸気圧力によってノツキングを
発生しやすいが、このときもノツクセンサ31と開閉時期
調整装置との協働により、更に実質的在縮比を低下させ
るようにロータリバルブ13の閉じ時期は早められ、第5
図の点2は更に左方となる。このとき実質的圧縮比は更
に低下するが、大きな膨張比は変ることがなく、熱効率
の低下や排気温度が高まることもない。
When supercharging occurs, knocking is likely to occur due to high intake pressure, but at this time also, the closing timing of the rotary valve 13 is further reduced by the cooperation of the knock sensor 31 and the opening / closing timing adjusting device so as to further reduce the effective compression ratio. Is accelerated, the fifth
Point 2 in the figure is further to the left. At this time, the substantial compression ratio further decreases, but the large expansion ratio does not change, and the thermal efficiency does not decrease and the exhaust gas temperature does not increase.

上記のように同一燃料量で仕事量が大きいということ
は、別の言葉で言えば、点9より更に点6まで膨脹すれ
ば、排気温度は低下し、エンジン各部の熱負荷を低減し
得ると言うことになる。
In other words, the fact that the work amount is large with the same fuel amount as described above means that if the point 9 is further expanded to the point 6, the exhaust gas temperature is lowered and the heat load on each part of the engine can be reduced. I will say.

更に、圧縮比を高めうる大気状態やエンジンの作動状
態、例えば、エンジンの軽負荷運転時のように燃焼室壁
温度が低い場合には、ロータリバルブ13の閉じ時期を遅
らせ、圧縮比を高めることにより、エンジンEの吸気量
を増大させ、出力を増加させる機能を本発明のエンジン
は有している。
Further, if the combustion chamber wall temperature is low, such as in an atmospheric condition or an engine operating condition where the compression ratio can be increased, for example, when the temperature of the combustion chamber wall is low, the closing timing of the rotary valve 13 should be delayed to increase the compression ratio. Thus, the engine of the present invention has a function of increasing the intake amount of the engine E and increasing the output.

このことは、例えば自動車の停車からの加速におい
て、連続高負荷走行時より一時的に高出力を発生し、加
速能力を高めることができることを示している。
This indicates that, for example, when accelerating a vehicle after it is stopped, a high output is generated temporarily than during continuous high-load running, and the acceleration capability can be increased.

次に部分負荷時においては、これを第6図のp−v線
図(理解し易いように負圧は正圧の5倍のスケールで記
入した)により説明すると、従来公知のエンジンではス
ロットルバルブにより吸気を絞り、吸気行程において吸
気圧力は点10まで低下し、点12で吸気行程を終了する。
このときの吸気温度は点1より点10までの断熱膨脹によ
って低下するが、点1-10-12-13-1で囲まれた仕事量によ
って、換言すれば点1と点10の圧力差によって加速され
た空気の流れは減速されるとき熱に変換されて再び大気
の温度に回復し、点12の温度は略大気温度となり、点12
より圧縮行程となり、点13で大気圧となり、点1-13が大
気圧換算で吸入した混合気の量となる。点14の圧縮上死
点では、全負荷時と同じ圧縮比、同じ圧縮温度となる
が、全負荷時に比し密度は低く、燃焼速度は遅くなり、
p−v線図は第6図の1点鎖線の点14-23となり、斜線
で示した点14-15-23-14で囲まれる面積分(影線部)だ
け仕事量は失われ、このときの図示仕事量は点13-14-23
-18-19-13で囲まれた面積となり、熱効率は低下してい
るのが現状である。
Next, at the time of partial load, this will be explained with reference to the p-v diagram of FIG. 6 (negative pressure is written on a scale of 5 times positive pressure for easy understanding). The intake air is throttled by, and the intake pressure decreases to point 10 in the intake stroke, and the intake stroke ends at point 12.
The intake air temperature at this time decreases due to adiabatic expansion from point 1 to point 10, but due to the work surrounded by points 1-10-12-13-1, in other words, due to the pressure difference between points 1 and 10. When the accelerated air flow is decelerated, it is converted into heat and returns to the atmospheric temperature again, and the temperature at point 12 becomes approximately atmospheric temperature.
The compression stroke becomes more, the atmospheric pressure is obtained at point 13, and the amount of the air-fuel mixture taken in is converted at atmospheric pressure at points 1-13. At the compression top dead center of point 14, the same compression ratio and the same compression temperature as at full load are obtained, but the density is lower and the combustion speed becomes slower than at full load,
The p-v diagram becomes the point 14-23 of the one-dot chain line in Fig. 6, and the work is lost by the area surrounded by the shaded points 14-15-23-14 (shaded area). The indicated work amount is 13-14-23
The area surrounded by -18-19-13 is the current situation, and the thermal efficiency is decreasing.

特に、公害対策や熱効率向上の目的でEGRや空気/燃
料比を大きくした稀薄混合気の使用は燃焼不良を生じ易
く、前述のように図示熱効率が低下し、オットーサイク
ルエンジンの部分負荷時の熱効率向上を阻外する要因と
なっているのが現状である。
In particular, the use of a lean air-fuel mixture with a large EGR or air / fuel ratio for the purpose of pollution control and improvement of thermal efficiency is liable to cause combustion failure, and as shown above, the thermal efficiency shown in the figure decreases and the thermal efficiency at the partial load of the Otto cycle engine The current situation is a factor that hinders improvement.

本発明のエンジンの吸気行程においては、スロットル
バルブ14によって点20まで吸気圧力を下げ、吸気行程途
中の点21においてロータリバルブ13を閉じるが、ピスト
ン2は更に下降し、混合気は断熱膨脹しつつ圧力と温度
を下げ、点22で吸気行程下死点となり、圧縮行程に変
り、点21で再び吸気状態の圧力及び温度となる。
In the intake stroke of the engine of the present invention, the intake pressure is reduced to a point 20 by the throttle valve 14, and the rotary valve 13 is closed at a point 21 in the middle of the intake stroke, but the piston 2 is further lowered and the air-fuel mixture is adiabatically expanded. The pressure and temperature are reduced, and at point 22, the intake stroke bottom dead center is reached, and the compression stroke is reached. At point 21, the pressure and temperature in the intake state are restored.

前述の理由により、点21の混合気の温度は点12、即ち
大気温度と略同じで、点21から実質的な圧縮行程が始ま
り、点14で圧縮行程が終る。
For the reason described above, the temperature of the air-fuel mixture at the point 21 is substantially the same as the temperature at the point 12, that is, the atmospheric temperature, and the substantial compression stroke starts at the point 21 and ends at the point 14.

従来公知のエンジンの圧縮行程である点12-14に比し本
発明のエンジンの圧縮行程は点21-14と長く、双方のエ
ンジンの燃焼室容積は同一と言う前提からすれば、圧縮
比は高く、点14、即ち圧縮上死点の混合気温度を高くす
ることが可能である。このときノックセンサ31がノッキ
ングを感知しなければ、アクチュエータ35は自動的に更
にロータリーバルブ13の閉弁を遅らせることによって実
質的圧縮行程を更に長く、即ち圧縮比を更に高め、ノッ
クセンサがノッキングを感知して始めて圧縮比を下げる
ことによって、本発明のエンジンは許容される最高の燃
焼速度で燃焼し、p−v線図で表わせば、点14-15-23と
なり、更に膨脹行程も長く、点16まで膨脹し、点17より
排気行程に入り、図示仕事量は点13-14-15-16-17-13で
囲まれた面積から絞り損失の仕事量である点1-20-21-13
-1の面積を差し引いた面積となる。
The compression stroke of the engine of the present invention is longer than the compression stroke of the conventional engine 12-14 and the compression stroke of the engine of the present invention is 21-14. It is possible to raise the temperature of the air-fuel mixture at the point 14, that is, the compression top dead center. At this time, if the knock sensor 31 does not detect knocking, the actuator 35 automatically delays the closing of the rotary valve 13 to further lengthen the compression stroke, that is, further increase the compression ratio, and the knock sensor prevents knocking. By sensing and lowering the compression ratio for the first time, the engine of the present invention burns at the maximum allowable burning velocity, which is represented by points 14-15-23 in the pv diagram, and has a long expansion stroke. It expands to point 16 and enters the exhaust stroke from point 17, and the indicated work is the work of throttle loss from the area surrounded by points 13-14-15-16-17-13. 13
It is the area minus the area of -1.

更に、公害対策及び熱効率向上の目的で、EGRまたは
過剰な空気の吸入による稀薄混合気を燃焼させる場合、
燃焼不良を発生するが、本発明のエンジンでは、ノツキ
ング限界にまでロータリバルブ13の開時期を遅らせるこ
とによって、実質的圧縮比を、例えば第6図の点22まで
圧縮比を16まで高め、良好な燃焼と高い熱効率とするこ
とができる。
Furthermore, when burning a lean air-fuel mixture by inhaling EGR or excess air for the purpose of pollution control and improvement of thermal efficiency,
Although combustion failure occurs, in the engine of the present invention, by delaying the opening timing of the rotary valve 13 to the knocking limit, the substantial compression ratio is increased up to, for example, point 22 in FIG. It is possible to achieve high combustion efficiency and high thermal efficiency.

本発明のエンジンでは部分負荷においても高い熱効率
が得られるのである。同様に、始動時においては本発明
のエンジンは圧縮比を膨脹比まで、ロータリバルブ13の
閉弁時期を遅らせることによって、高めることが可能
で、圧縮温度を高め、低温始動が容易になるのである。
The engine of the present invention can achieve high thermal efficiency even at partial load. Similarly, at the time of starting, the engine of the present invention can increase the compression ratio up to the expansion ratio by delaying the closing timing of the rotary valve 13, increasing the compression temperature and facilitating cold start. .

〈発明の効果〉 本発明は上述の如く、エンジンの吸気通路にバルブ開
閉時期調整装置を備えたロータリバルブを介装し、該バ
ルブをエンジンの吸気行程の下死点前で閉じることによ
って、エンジンの膨脹比を全負荷時の圧縮比より高く11
乃至16に設定する一方、ノッキング感知乃至予測手段を
設け、該手段によりノッキング発生初期にこれを感知ま
たは予測して、その信号により前記バルブ開閉時期調整
装置を介して前記ロータリバルブの閉時期を早め、実質
的圧縮比を可及的に高く調節するように構成したので、
エンジンの圧縮比はそのときの運転状態に応じたノッキ
ング限界近くに高く維持され、高い膨脹比によって熱効
率を向上させることができる。
<Effects of the Invention> As described above, according to the present invention, a rotary valve having a valve opening / closing timing adjusting device is provided in the intake passage of the engine, and the valve is closed before the bottom dead center of the intake stroke of the engine. The expansion ratio of 11 is higher than the compression ratio at full load.
On the other hand, a knocking detection or prediction means is provided to detect or predict the knocking at the initial stage of knocking occurrence, and the signal is used to accelerate the closing timing of the rotary valve via the valve opening / closing timing adjusting device. Since it is configured to adjust the substantial compression ratio as high as possible,
The compression ratio of the engine is kept high near the knocking limit according to the operating state at that time, and the thermal efficiency can be improved by the high expansion ratio.

また、エンジンの部分負荷では、ノッキングが発生し
にくく、ノックセンサとアクチュエータによりロータリ
バルブの閉弁時期は遅らされ、ノッキング限界近くにま
で圧縮比を高め、これによってEGR率を高め、または空
気/燃料比の大きな混合気であっても、燃焼速度を高
め、大きな膨脹比とあいまって熱効率を高めることがで
きる。
Further, at partial load of the engine, knocking is less likely to occur, and the knock sensor and the actuator delay the closing timing of the rotary valve to increase the compression ratio close to the knocking limit, thereby increasing the EGR rate, or increasing the air / air ratio. Even with an air-fuel mixture having a large fuel ratio, it is possible to increase the combustion speed and, together with the large expansion ratio, improve the thermal efficiency.

また、本発明のエンジンの膨脹比をディーゼルエンジ
ンと同程度とすれば、オットーサイクルの方がディーゼ
ルサイクルより図示効率が高く、燃焼圧力の低いオット
ーサイクルエンジンの摩擦損失が少ないばかりか、軽い
ピストン、コンロッド等は更に摩擦損失を軽減し、燃料
消費率をディーゼルエンジンより低下させることができ
る。
Further, if the expansion ratio of the engine of the present invention is set to be about the same as that of a diesel engine, the Otto cycle has higher indicated efficiency than the diesel cycle, and the friction loss of the Otto cycle engine with low combustion pressure is small, and the light piston, Connecting rods and the like can further reduce friction loss and lower the fuel consumption rate compared to diesel engines.

ディーゼルエンジンはNOx、HC、COなどの排気量が三
元触媒を使うオットーサイクルエンジンより多く、パテ
ィキュレートに到っては解決の目途さえついていない今
日、本発明によるエンジンは熱効率もディーゼルエンジ
ンより高まるばかりか、排出物規制問題をも解決するこ
とができるという大きなメリットがある。
The diesel engine has a larger displacement of NOx, HC, CO, etc. than the Otto-cycle engine using a three-way catalyst, and even if there is no way to resolve the particulates, the engine according to the present invention has higher thermal efficiency than the diesel engine. Not only that, but it also has the great merit of being able to solve the emission control problem.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明オットーサイクルエンジンの全体構成
図、第2図は要部断面図、第3図、第4図はバルブ開閉
時期調整装置の断面図、第5図、第6図は本発明エンジ
ンの性能曲線図である。 1;シリンダ、2;ピストン、4;シリンダヘッド、6;吸気
口、7;吸気弁、9;排気口、10;排気弁、11;排気枝管、1
2;吸気マニホールド、13;ロータリバルブ、14;絞り弁、
16;駆動軸、17、18、19;スリーブ、20、21、22、25、2
6:ベアリング、23;タイミングギヤ、24;回転軸、28;調
整駒、29;調整レバー、31;ノックセンサ、35;アクチュ
エータ、36;ロッド。
FIG. 1 is an overall configuration diagram of an Otto cycle engine of the present invention, FIG. 2 is a sectional view of essential parts, FIGS. 3 and 4 are sectional views of a valve opening / closing timing adjusting device, and FIGS. 5 and 6 are present inventions. It is a performance curve figure of an engine. 1; cylinder, 2; piston, 4; cylinder head, 6; intake port, 7; intake valve, 9; exhaust port, 10; exhaust valve, 11; exhaust branch pipe, 1
2; intake manifold, 13; rotary valve, 14; throttle valve,
16; drive shaft, 17, 18, 19; sleeve, 20, 21, 22, 25, 2
6: bearing, 23; timing gear, 24; rotary shaft, 28; adjusting piece, 29; adjusting lever, 31; knock sensor, 35; actuator, 36; rod.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンの吸気通路にバルブ開閉時期調整
装置を備えたロータリバルブを介装し、該バルブをエン
ジンの吸気行程の下死点前で閉じることによって、エン
ジンの膨脹比を全負荷時の圧縮比より高く11乃至16に設
定する一方、ノッキング感知乃至予測手段を設け、該手
段によりノッキング発生初期にこれを感知または予測し
て、その信号により前記バルブ開閉時期調整装置を介し
て前記ロータリバルブの閉時期を早め、実質的圧縮比を
可及的に高く調節することを特徴とするオットーサイク
ルエンジン。
1. An expansion ratio of an engine at full load is provided by interposing a rotary valve having a valve opening / closing timing adjusting device in an intake passage of the engine and closing the valve before bottom dead center of an intake stroke of the engine. The compression ratio is set to 11 to 16 higher than the compression ratio, and knocking sensing or predicting means is provided, which senses or predicts at the early stage of knocking occurrence, and a signal from the means detects or predicts the rotary timing via the valve opening / closing timing adjusting device. An Otto cycle engine characterized by advancing the valve closing timing and adjusting the substantial compression ratio as high as possible.
JP1326133A 1989-12-18 1989-12-18 Otto-cycle engine Expired - Lifetime JP2519110B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1326133A JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine
FR9016195A FR2656036A1 (en) 1989-12-18 1990-12-18 INTERNAL COMBUSTION ENGINE WITH OTTO CYCLE.
DE4040415A DE4040415C2 (en) 1989-12-18 1990-12-18 Four-stroke engine
GB9027412A GB2239901A (en) 1989-12-18 1990-12-18 Engine charge intake control
US07/969,512 US5230315A (en) 1989-12-18 1992-10-30 Otto-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326133A JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine

Publications (2)

Publication Number Publication Date
JPH03189322A JPH03189322A (en) 1991-08-19
JP2519110B2 true JP2519110B2 (en) 1996-07-31

Family

ID=18184432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326133A Expired - Lifetime JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine

Country Status (4)

Country Link
JP (1) JP2519110B2 (en)
DE (1) DE4040415C2 (en)
FR (1) FR2656036A1 (en)
GB (1) GB2239901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108691590A (en) * 2017-03-31 2018-10-23 马勒国际有限公司 Valve actuator for internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972924A1 (en) * 1998-07-14 2000-01-19 Konotech s.r.o. Method for operating a piston engine
AUPR531501A0 (en) 2001-05-30 2001-06-21 Bishop Innovation Limited Variable valve timing mechanism for a rotary valve
GB2446809A (en) 2007-02-09 2008-08-27 Michael John Gill Controlling flow into the combustion chamber of an Otto-cycle internal combustion engine
EP2162606A4 (en) * 2007-05-29 2017-12-20 AB Engine Incorporated High efficiency internal combustion engine
DE102013215764A1 (en) * 2013-08-09 2015-02-12 Volkswagen Aktiengesellschaft Reciprocating internal combustion engine and method for controlling the inlet side of a reciprocating internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148932A (en) * 1979-05-07 1980-11-19 Kanesaka Gijutsu Kenkyusho:Kk Engine
JPS5855329B2 (en) * 1980-09-26 1983-12-09 株式会社 兼坂技術研究所 gasoline engine
JPS5896017U (en) * 1981-12-22 1983-06-29 マツダ株式会社 Control device for supercharged engine
JPS61164036A (en) * 1985-01-11 1986-07-24 Mazda Motor Corp Intake control device of engine
JPS6258016A (en) * 1985-09-06 1987-03-13 Kanesaka Gijutsu Kenkyusho:Kk Intake device for engine
KR910002898B1 (en) * 1986-11-27 1991-05-09 마쯔다 가부시기가이샤 Supercharged engine
JPS6421223U (en) * 1987-07-30 1989-02-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108691590A (en) * 2017-03-31 2018-10-23 马勒国际有限公司 Valve actuator for internal combustion engine
CN108691590B (en) * 2017-03-31 2021-08-13 马勒国际有限公司 Valve drive for an internal combustion engine

Also Published As

Publication number Publication date
FR2656036A1 (en) 1991-06-21
DE4040415C2 (en) 1995-11-30
DE4040415A1 (en) 1991-07-18
JPH03189322A (en) 1991-08-19
GB2239901A (en) 1991-07-17
FR2656036B1 (en) 1995-05-19
GB9027412D0 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
US6125801A (en) Lean-burn variable compression ratio engine
JP3298352B2 (en) diesel engine
US5123388A (en) Otto-cycle engine
US20020162320A1 (en) Direct-injection spark-ignition engine with a turbo charging device
JP2002242709A (en) 4-cycle engine for automobile
JP2002256911A (en) Combustion control device of engine
JP2000064863A (en) Four-cycle internal combustion engine
JP2004218522A (en) Control device for internal combustion engine equipped with variable compression ratio mechanism
JPS587816B2 (en) variable compression ratio internal combustion engine
JPH11182312A (en) Cold/warm-up operation control device for diesel engine
JP3690078B2 (en) Spark ignition engine
JP3992016B2 (en) Control device for premixed compression self-ignition internal combustion engine
JP3743414B2 (en) Engine starter
WO2017145554A1 (en) Internal combustion engine control apparatus
JP2519110B2 (en) Otto-cycle engine
US6286466B1 (en) Internal-combustion engine
US5230315A (en) Otto-cycle engine
JPH10274064A (en) Engine with mechanical supercharger
JP2004060551A (en) Control device of internal combustion engine
JP2004204745A (en) System and method for controlling engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP2020045839A (en) Two-stroke engine for supercharger
JP2566232B2 (en) Valve timing controller for engine with supercharger
JP3903832B2 (en) Control method for internal combustion engine
WO2010095258A1 (en) Internal combustion engine