JPH03189322A - Otto cycle engine - Google Patents

Otto cycle engine

Info

Publication number
JPH03189322A
JPH03189322A JP1326133A JP32613389A JPH03189322A JP H03189322 A JPH03189322 A JP H03189322A JP 1326133 A JP1326133 A JP 1326133A JP 32613389 A JP32613389 A JP 32613389A JP H03189322 A JPH03189322 A JP H03189322A
Authority
JP
Japan
Prior art keywords
engine
rotary valve
intake
point
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1326133A
Other languages
Japanese (ja)
Other versions
JP2519110B2 (en
Inventor
Hiroshi Kanesaka
兼坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP1326133A priority Critical patent/JP2519110B2/en
Priority to FR9016195A priority patent/FR2656036A1/en
Priority to GB9027412A priority patent/GB2239901A/en
Priority to DE4040415A priority patent/DE4040415C2/en
Publication of JPH03189322A publication Critical patent/JPH03189322A/en
Priority to US07/969,512 priority patent/US5230315A/en
Application granted granted Critical
Publication of JP2519110B2 publication Critical patent/JP2519110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/085Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve heat efficiency by means of high expansion and compression ratios by arranging a rotary valve provided with a valve opening/closing timing adjustor at an intake passage of an engine. CONSTITUTION:A rotary valve 13 is arranged at an intake branched pipe 11, and is driven by a timing gear 23 from a crank shaft via a crank gear 39. An actuator 35 moves an adjusting piece 28 to an axial direction via a rod 36 an adjusting lever 29 to change the rotation timing of a driving shaft 16 so as to adjust the opening/closing timing of a rotary valve 13. An expansion ratio of an engine E is set higher than the compression ratio at the time of full load operation by closing the rotary valve 13 just before a bottom dead center of intake stroke. The expansion ratio is sensed and predicted by a knocking sensor 31 at the beginning of knocking generation, and the closing timing of the rotary valve 13 is quicken via an actuator 35 by the signal so as to adjust a substantial compression ratio. The expansion and compression ratios are raised, and heat efficiency is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はオツトーサイクルエンジン、殊にミラーサイク
ルを併用したエンジンにおいて、負荷に応じてノッキン
グ発生限界まで膨脹比を高くして熱効率を高めたオツト
ーサイクルエンジンに関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention improves thermal efficiency in an Otto cycle engine, especially in an engine that uses a Miller cycle, by increasing the expansion ratio to the limit of knocking depending on the load. This relates to an Otto cycle engine.

〈従来の技術〉 一般によく知られたオツトーサイクルエンジン及びディ
ーゼルエンジンは、ともに圧縮比と膨脹比とを同一に設
定した構造を有している。上記圧縮比は全負荷運転にお
いて発生するノッキングにより制限され、無過給エンジ
ンでは通常10程度が限界で、従って膨脹比も10とな
り、シリンダ内で発生した高温、高圧の燃焼ガスは充分
に膨張することなく、有効な仕事量に変換されないまま
高温の排気ガスとして排出され、従って熱効率は低い。
<Prior Art> A generally well-known Otto cycle engine and a diesel engine both have a structure in which the compression ratio and the expansion ratio are set to be the same. The above compression ratio is limited by the knocking that occurs during full-load operation, and the limit for non-supercharged engines is usually around 10. Therefore, the expansion ratio is also 10, and the high temperature and high pressure combustion gas generated in the cylinder is sufficiently expanded. The heat is discharged as high-temperature exhaust gas without being converted into useful work, resulting in low thermal efficiency.

周知の通り、かかる高温の排気ガスは熱効率を低下させ
るばかりでなく、シリンダヘッドの熱応力を高め、亀裂
を発生させ、また排気弁を高温としてその強度を下げ1
時には折損させる。また。
As is well known, such high-temperature exhaust gas not only reduces thermal efficiency, but also increases thermal stress in the cylinder head, causing cracks, and also makes the exhaust valve hot, reducing its strength.
Sometimes it breaks. Also.

排気ターボ過給の場合、排気タービン、ケーシングなど
に過大な熱負荷を加え信頼性にも悪影響を与えている。
In the case of exhaust turbocharging, an excessive heat load is applied to the exhaust turbine, casing, etc., which also has a negative impact on reliability.

当量比に近い燃料と空気の混合気を吸入するオツトーサ
イクルエンジンにおいて、負荷を低減するためには、絞
り弁によりエンジンの混合気吸入斌を絞ることが行われ
ているが、この絞り弁によるスロットルは部分負荷時の
動力損失を増加させるばかりでなく、圧縮された混合気
の密度の低下、ひいては不完全燃焼または燃焼速度の低
下をもたらし、図示熱効率を低下せしめる。
In an Otto cycle engine that inhales a mixture of fuel and air close to the equivalence ratio, a throttle valve is used to throttle the engine's mixture intake in order to reduce the load. Throttling not only increases power losses at part load, but also causes a reduction in the density of the compressed air-fuel mixture and therefore incomplete combustion or a reduction in the combustion rate, reducing the indicated thermal efficiency.

〈発明が解決しようとする課題〉 圧縮比と膨脹比を同一にする従来公知のオツトーサイク
ルエンジン(以下エンジンと称す)では、前記の如くノ
ッキング現象に制約され、圧縮比の制限、全負荷時の熱
効率の低下、高過ぎる排気温度によるエンジンの信頼性
低下等を生じ、排気ターボ過給の場合には、排気タービ
ンの熱負荷を増大して排気タービン、ケーシングへの高
価な耐熱合金の使用を余儀なくさせている。
<Problems to be Solved by the Invention> Conventionally known Otto cycle engines (hereinafter referred to as engines) in which the compression ratio and expansion ratio are the same are constrained by the knocking phenomenon as described above, and the compression ratio is limited and the In the case of exhaust turbocharging, the heat load on the exhaust turbine increases and the use of expensive heat-resistant alloys for the exhaust turbine and casing becomes necessary. I am forced to do so.

また、エンジンの部分負荷時には、圧縮された混合気の
密度の低下、燃焼不良、熱効率の低下が生ずる。しかし
、このとき更に圧縮比を高めて、圧縮温度を高め、良好
な燃焼を生ぜしめて熱効率の向上を図ることは現状では
不可能である。
Furthermore, when the engine is under partial load, the density of the compressed air-fuel mixture decreases, poor combustion occurs, and thermal efficiency decreases. However, at this time, it is currently impossible to further increase the compression ratio, increase the compression temperature, produce good combustion, and improve thermal efficiency.

本発明は上記に鑑み、エンジンの全負荷時の圧縮比をノ
ッキング発生により制約される最大値とし、圧縮比より
大きな膨脹比を設定することによって熱効率を高め、排
気温度を下げるとともに、部分負荷時においては、その
ときのノッキング発生限界まで更に圧縮比を高め、良好
な燃焼による図示熱効率の向上を目的として案出された
ものである。
In view of the above, the present invention sets the compression ratio at full load of the engine to the maximum value limited by the occurrence of knocking, and sets an expansion ratio larger than the compression ratio to increase thermal efficiency and lower exhaust temperature. This was devised for the purpose of further increasing the compression ratio to the knocking limit at that time and improving the indicated thermal efficiency through good combustion.

く課題を解決するための手段〉 前記目的を達成するための本発明エンジンの構成は、エ
ンジンの膨脹比を全負荷時の圧縮比より高く設定し、該
エンジンの吸気通路に、バルブ開閉時期調整装置を備え
たロータリバルブを介装する一方、ノックセンサを設け
、該ノックセンサによりノッキング発生初期にこれを捉
えて、その信号により前記バルブ開閉時期調整装置を介
して前記ロータリバルブの閉時期を早め、実質的圧縮比
を調節することを特徴とするものである6〈作 用〉 上記構成により、エンジンの全負荷時においては、ロー
タリバルブはエンジンの吸気弁と同一閉弁時期で運転さ
れようとするが、このとき圧縮比が膨脹比と同一となっ
て高すぎ、ノッキングを発生する。
Means for Solving the Problems> The configuration of the engine of the present invention to achieve the above object is such that the expansion ratio of the engine is set higher than the compression ratio at full load, and the intake passage of the engine is provided with valve opening/closing timing adjustment. A rotary valve equipped with a device is installed, and a knock sensor is provided, and the knock sensor detects knocking at an early stage when knocking occurs, and the signal is used to advance the closing timing of the rotary valve via the valve opening/closing timing adjusting device. 6 <Operation> With the above configuration, when the engine is at full load, the rotary valve is operated at the same valve closing timing as the engine intake valve. However, at this time, the compression ratio becomes the same as the expansion ratio, which is too high and causes knocking.

前記ノックセンサはこれを直ちに感知し、アクチュエー
タに命じて前記ロータリバルブの弁閉時期を皐め、これ
を吸気行程途中にて閉じ、吸気行程の長さを短縮するか
ら、実質的な圧縮比が低下し、ノッキングが回避される
。このとき、圧縮比は通常のエンジン程度に低下するが
、膨脹比は通常のエンジンより高く、熱効率は改善され
る。
The knock sensor immediately senses this and instructs the actuator to tighten the valve closing timing of the rotary valve, closing it in the middle of the intake stroke and shortening the length of the intake stroke, so that the actual compression ratio is reduced. knocking is avoided. At this time, the compression ratio is reduced to that of a normal engine, but the expansion ratio is higher than that of a normal engine, and thermal efficiency is improved.

エンジンの部分負荷時には、スロットルバルブを絞るこ
とによって実質圧縮比は低下してノッキングは発生せず
、ロータリバルブの弁閉時期を遅らせて圧縮比を高めら
れるが、ノックセンサのノッキング感知により最適圧縮
比を選択し、ノッキング直前の良好な燃焼状態を維持し
、図示効率を高め、熱効率が改善される。
When the engine is under partial load, the actual compression ratio decreases by throttling the throttle valve and knocking does not occur, and the compression ratio can be increased by delaying the valve closing timing of the rotary valve. By selecting , a good combustion state immediately before knocking is maintained, the indicated efficiency is increased, and thermal efficiency is improved.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

本発明オツトーサイクルエンジンは、基本的には第2図
に示すように、シリンダ1内でピストン2が摺動し、コ
ンロッド3によりクランク軸(図示せず)を回転せしめ
る4サイクルエンジンにおいて、そのシリンダヘッド4
に前記シリンダに臨んで点火栓5を、また吸気口6には
吸気弁7と燃料噴射弁8が、更に排気口9には排気弁1
0とが夫々設置されたもので、前記点火栓5はエンジン
のクランク軸と同期して点火作動を行い、また、吸気弁
7及び排気弁1oも前記クランク軸と同期して周知のバ
ルブ開閉機構により開閉されるもので、その開閉時期は
通常のエンジンと同様に設定しである。
The Otto cycle engine of the present invention is basically a four-stroke engine in which a piston 2 slides within a cylinder 1 and a crankshaft (not shown) is rotated by a connecting rod 3, as shown in FIG. cylinder head 4
An ignition plug 5 is located facing the cylinder, an intake valve 7 and a fuel injection valve 8 are located at the intake port 6, and an exhaust valve 1 is located at the exhaust port 9.
The spark plug 5 performs ignition operation in synchronization with the crankshaft of the engine, and the intake valve 7 and exhaust valve 1o also operate in synchronization with the crankshaft using a well-known valve opening/closing mechanism. The opening and closing timing is set in the same way as a normal engine.

前記吸気口6と連通ずる吸気枝管11の一端には吸気マ
ニホールド12が設けられ、吸気通路が形成されている
An intake manifold 12 is provided at one end of the intake branch pipe 11 communicating with the intake port 6, and an intake passage is formed.

前記吸気枝管11には、制御弁としてのロータリバルブ
13が配設され、前記クランク軸から歯車伝達機構を介
して駆動されるとともに、その上流には絞り弁14が配
設されている。
A rotary valve 13 as a control valve is disposed in the intake branch pipe 11, and is driven from the crankshaft via a gear transmission mechanism, and a throttle valve 14 is disposed upstream thereof.

第3図及び第4図は前記ロータリバルブ13の駆動4i
!構を含む開閉時期調整装置を示し、前記ロータリバル
ブ13は吸気枝管11の途中に形成したバルブ体り1a
内にロータリバルブ13とビン15で固定した駆動軸1
6によって支持されている。
3 and 4 show the drive 4i of the rotary valve 13.
! The rotary valve 13 is a valve body 1a formed in the middle of the intake branch pipe 11.
Drive shaft 1 fixed with rotary valve 13 and bottle 15 inside
6 is supported.

この駆動軸16は前記バルブ体り1a内でロータリバル
ブ13を挟持するように配設された一対のスリーブ17
.18及び単体のスリーブ19を介して複数のベアリン
グ20.21及び22に支承されており、その一端には
左ねじヘリカルスプラインL6aが形成されている。
This drive shaft 16 is connected to a pair of sleeves 17 disposed to sandwich the rotary valve 13 within the valve body 1a.
.. 18 and a single sleeve 19 on a plurality of bearings 20, 21 and 22, and a left-handed helical spline L6a is formed at one end thereof.

23はクランク軸(図示せず)と歯車機構を介して伝導
連結されたタイミングギヤで、該ギヤ23と一体の回転
軸24はベアリング25.26を介してエンジンに取り
付けたブラケット27に支持されるとともに、端部には
右ねじヘリカルスプライン24aを形成し、前記左ねじ
ヘリカルスプライン16aとの間を、内側に°上記面ス
プラインと噛み合う突起28a、28bを形成した調整
駒28により連結している。
Reference numeral 23 denotes a timing gear that is conductively connected to a crankshaft (not shown) via a gear mechanism, and a rotating shaft 24 integrated with the gear 23 is supported by a bracket 27 attached to the engine via bearings 25 and 26. At the same time, a right-handed helical spline 24a is formed at the end, and is connected to the left-handed helical spline 16a by an adjustment piece 28 that has protrusions 28a, 28b formed inside to engage with the plane spline.

29は調整レバーで、軸30により支持され、一端は前
記調整駒28の凹部28cに嵌入されている。これによ
って、例えば第3,4図の場合調整レバー29により調
整駒28を左方に移動すれば駆動軸16は回転軸24に
対して所定の方向に角変位し、調整駒28を右方に移動
することによって前記と逆方向に角変位させることがで
きる。
An adjustment lever 29 is supported by a shaft 30, and one end thereof is fitted into the recess 28c of the adjustment piece 28. As a result, in the case of FIGS. 3 and 4, for example, if the adjustment piece 28 is moved to the left by the adjustment lever 29, the drive shaft 16 is angularly displaced in a predetermined direction with respect to the rotating shaft 24, and the adjustment piece 28 is moved to the right. By moving it, it is possible to cause an angular displacement in the opposite direction.

このように調整駒28の軸方向の移動によって駆動軸1
6の回転タイミングを変え、ロータリバルブ13の開閉
時期が調整される。
In this way, by moving the adjustment piece 28 in the axial direction, the drive shaft 1
By changing the rotation timing of the rotary valve 13, the opening and closing timing of the rotary valve 13 is adjusted.

なお、ロータリバルブ13は第2図に示されるように弁
開閉時期を約90°づつ設定してあり、且つ前記タイミ
ングギヤ23によってクランク軸回転の1/2の回転速
度で駆動されるようになっている。
As shown in FIG. 2, the rotary valve 13 has opening and closing timing set at approximately 90° intervals, and is driven by the timing gear 23 at a rotation speed of 1/2 of the crankshaft rotation. ing.

一方、エンジンの吸気行程期間はクランク軸回転角度で
約180°であり、従ってロータリバルブ13は吸気弁
7と同様にクランク軸の回転角度では約180”の開弁
期間を有する。
On the other hand, the intake stroke period of the engine is approximately 180 degrees in terms of crankshaft rotation angle, and therefore, like the intake valve 7, the rotary valve 13 has an open period of approximately 180'' in terms of crankshaft rotation angle.

第1図は上記開閉時期調整装置をもつロータリバルブを
備えた本発明4サイクルオツトーサイクルエンジンを示
すもので、エンジンEの外壁にはノックセンサ31が取
付けである。該ノックセンサ31は、ノッキングによる
エンジンの振動に感応して信号を発するもので、この信
号は配線32.33を介して、電源34よりの電気エネ
ルギの供給を受けるアクチュエータ35に伝達される。
FIG. 1 shows a four-stroke automatic cycle engine according to the present invention, which is equipped with a rotary valve having the above-mentioned opening/closing timing adjustment device.A knock sensor 31 is attached to the outer wall of the engine E. FIG. The knock sensor 31 emits a signal in response to engine vibration caused by knocking, and this signal is transmitted via wiring 32, 33 to an actuator 35 that receives electrical energy from a power source 34.

上記ノッキング信号を受けたアクチュエータ35は、ピ
ン37を固定したロッド36を左方に押し出し、レバー
29を軸:30を中心に時計方向に回転させ、調整駒2
8を右方に押して、前述のようにロータリバルブ13の
閉弁時期をVめ、エンジンの実質的圧縮比を低下させる
のである。図中、39はクランク軸の前端38に固定さ
れたクランク歯車で、前記タイミングギヤ23を駆動す
るものであり、40はI[気管である。
Upon receiving the knocking signal, the actuator 35 pushes out the rod 36 to which the pin 37 is fixed to the left, rotates the lever 29 clockwise around the shaft 30, and moves the adjustment piece 2
8 to the right, the closing timing of the rotary valve 13 is shifted to V as described above, and the effective compression ratio of the engine is lowered. In the figure, 39 is a crank gear fixed to the front end 38 of the crankshaft, which drives the timing gear 23, and 40 is I [trachea.

次に上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

本発明の4サイクルオツトーサイクルエンジンでは、膨
脹比を例えば「11乃至16」と通常のオツトーサイク
ルエンジンの「10」よりも遥かに大きく設定してあり
、全負荷時において、ロータリバルブ13の閉時期はア
クチュエータ35によって吸気弁開閉時期と同時期に閉
じられようとするが、圧縮比は膨脹比と同じになり、こ
のままでは圧縮比が高すぎ、エンジン運転開始によって
当然にノッキングを発生する。しかし、このノッキング
の発生は直ちにノックセンサ31に感知され、その信号
がアクチュエータ35に伝えられる。
In the four-stroke Otto cycle engine of the present invention, the expansion ratio is set to, for example, "11 to 16", which is much larger than "10" of a normal Otto cycle engine, and the rotary valve 13 is The actuator 35 tries to close the closing timing at the same time as the opening/closing timing of the intake valve, but the compression ratio becomes the same as the expansion ratio, and if left as it is, the compression ratio will be too high, and knocking will naturally occur when the engine starts operating. However, the occurrence of knocking is immediately sensed by the knock sensor 31, and the signal is transmitted to the actuator 35.

これによって、アクチュエータ35はロッド36を動か
し、前記の如くロータリバルブ13の閉時期を早め、吸
気行程途中にて閉じることになる。
As a result, the actuator 35 moves the rod 36 to advance the closing timing of the rotary valve 13 as described above, so that the rotary valve 13 closes in the middle of the intake stroke.

上記経過を第5図のp−v線図により説明すれば、吸気
行程の上死点の点1より吸気を始め、下死点の点7で吸
気を終了し、点7より圧縮行程を開始する。このまシ圧
縮すれば点線のように移行し、圧縮上死点においては混
合気は断熱圧縮され、圧縮圧力は点8となり、高すぎる
圧力とそれに伴う高温はノッキングを発生する。このノ
ッキングの発生は直ちにノックセンサ31により感知さ
れ、その信号に応じてアクチュエータ35はロータリバ
ルブ13の閉時期を早めるよう作動するから。
To explain the above process using the p-v diagram in Figure 5, intake begins at point 1 at the top dead center of the intake stroke, ends at point 7 at the bottom dead center, and starts the compression stroke at point 7. do. If this compression is continued, the transition will be as shown by the dotted line, and at compression top dead center, the air-fuel mixture will be adiabatically compressed, and the compression pressure will be at point 8, and excessively high pressure and accompanying high temperature will cause knocking. The occurrence of this knocking is immediately sensed by the knock sensor 31, and the actuator 35 operates to advance the closing timing of the rotary valve 13 in response to the signal.

ノッキング感知後の吸気行程途中の点2で吸気通路を閉
じる。従って吸気行程下死点での圧力は点7から徐々に
下がり1点2以降の吸気行程においてはシリンダ内の混
合気は断熱膨脹しつつ体積を増大し、吸気行程下死点に
おいては点3と大気圧以下に圧力が下がる。(なおこの
とき温度も低下する。) 圧縮行程は点3より開始され、点2で圧力が大気圧とな
り、温度もそれに応じて上昇するが、実質的な圧縮行程
は点2より開始され、点4の圧縮」二死点で終了するか
ら、実質的圧縮比は低下し、圧縮圧力は点4と点8より
も低下し、同時に圧縮温度も低下してノッキングが回避
されるのである。
The intake passage is closed at point 2 in the middle of the intake stroke after knocking is detected. Therefore, the pressure at the bottom dead center of the intake stroke gradually decreases from point 7, and in the intake stroke from point 1 to point 2, the air-fuel mixture in the cylinder expands adiabatically and increases in volume, and at the bottom dead center of the intake stroke, it reaches point 3. The pressure drops below atmospheric pressure. (At this time, the temperature also decreases.) The compression stroke starts from point 3, the pressure becomes atmospheric pressure at point 2, and the temperature rises accordingly, but the actual compression stroke starts from point 2, and the pressure reaches atmospheric pressure at point 2. 4, the compression ends at the second dead center, so the actual compression ratio is lowered, the compression pressure is lower than at points 4 and 8, and at the same time the compression temperature is lowered to avoid knocking.

ノンキング限界に例えば圧縮比「10」を設定した従来
公知のエンジンでは、前記の如く膨脹比も10となり、
シリンダ内で発生する図示仕事量は第5図点2−4−5
−9−2で囲まれる面積となるが、本発明のエンジンの
場合は、膨脹比が大きいから、図示仕事量は第5図点2
−4−5−6−7−2で囲まれた面積となる。ここで点
2−7−3−2で囲まれる面積、即ち吸気通路の早期閉
鎖によって失われる仕事量は無視できる程度に小さいか
ら、結局、点2−9−6−7−2で囲まれる面積分(影
線部)だけ通常のエンジンより面積、即ち図示仕事量が
大きく、点1−2間で供給された混合気の量、燃料使用
量は同一でありながら熱効率は高まるのである。
In a conventionally known engine in which a compression ratio of "10" is set as the non-king limit, the expansion ratio is also 10 as described above.
The indicated amount of work generated in the cylinder is point 2-4-5 in the 5th figure.
-9-2, but in the case of the engine of the present invention, the expansion ratio is large, so the indicated work is the area surrounded by point 2 in Figure 5.
The area is surrounded by -4-5-6-7-2. Here, the area surrounded by points 2-7-3-2, that is, the amount of work lost due to early closure of the intake passage, is so small that it can be ignored, so the area surrounded by points 2-9-6-7-2 ends up being The area, that is, the indicated work is larger than that of a normal engine by the amount indicated by the shaded line, and the thermal efficiency is increased even though the amount of air-fuel mixture supplied between points 1 and 2 and the amount of fuel used are the same.

上記のように同一燃料量で仕事量が大きいということは
、別の言葉で言えば、点9より更に点6まで膨張すれば
、排気温度は低下し、エンジン各部の熱負荷を低減し得
ると言うことになる。
In other words, the fact that the amount of work done with the same amount of fuel is large as described above means that if the fuel expands further from point 9 to point 6, the exhaust temperature will decrease and the heat load on each part of the engine can be reduced. I will say it.

更に、圧縮比を高めうる大気状態やエンジンの作動状態
、例えば、エンジンの軽負荷運転時のように燃焼室壁温
度が低い場合には、ロータリバルブ13の閉じ時期を遅
らせ、圧縮比を高めることにより、エンジンEの吸気量
を増大させ、出力を増加させる機能を本発明のエンジン
は有している。
Furthermore, under atmospheric conditions or engine operating conditions that can increase the compression ratio, for example, when the combustion chamber wall temperature is low such as during light load operation of the engine, the closing timing of the rotary valve 13 may be delayed to increase the compression ratio. Accordingly, the engine of the present invention has a function of increasing the intake air amount of the engine E and increasing the output.

このことは、例えば自動車の停車からの加速において、
連続高負荷走行時より一時的に高出力を発生し、加速能
力を高めることができることを示している。
This means, for example, when accelerating a car from a stop,
This shows that it is possible to temporarily generate higher output than during continuous high-load driving and increase acceleration ability.

次に部分負荷時においては、これを第6図のp−v線図
(理解し易いように負圧は正圧の5倍のスケールで記入
した)により説明すると、従来公知のエンジンではスロ
ットルバルブにより吸気を絞り、吸気行程において吸気
圧力は点10まで低下し1点12で吸気行程を終了する
。このときの吸気温度は点1より点10までの断熱膨脹
によって低下するが1点1−1o−12−13−1で囲
まれた仕事量によって、換言すれば点1と点10の圧力
差によって加速された空気の流れは減速されるとき熱に
変換されて再び大気の温度に回復し、点12の温度は略
大気温度となり1点12より圧縮行程となり、点13で
大気圧となり、点1−13が大気圧換算で吸入した混合
気の量となる。点14の圧縮」二死点では、全負荷時と
同じ圧縮比、同じ圧縮温度となるが、全負荷時に比し密
度は低く、燃焼速度は遅くなり、p−V線図は第6図の
1点鎖線の点14−23となり、斜線で示した点14−
15−23−14で囲まれる面積分(影線部)だけ仕事
量は失われ、このときの図示仕事量は点13−14−2
3−18−19−13で囲まれた面積となり、熱効率は
低下しているのが現状である。
Next, during partial load, this can be explained using the p-v diagram in Figure 6 (for ease of understanding, negative pressure is drawn on a scale of five times the positive pressure).In conventionally known engines, the throttle valve The intake air is throttled, and the intake pressure drops to point 10 during the intake stroke, and the intake stroke ends at point 12. At this time, the intake air temperature decreases due to adiabatic expansion from point 1 to point 10, but due to the amount of work surrounded by 1 point 1-1o-12-13-1, in other words, due to the pressure difference between point 1 and point 10. When the accelerated air flow is decelerated, it is converted into heat and returns to the atmospheric temperature again, and the temperature at point 12 becomes approximately atmospheric temperature, and the compression stroke starts from point 12, and at point 13 it becomes atmospheric pressure, and the temperature at point 1 -13 is the amount of air-fuel mixture inhaled in terms of atmospheric pressure. At the second dead center of compression at point 14, the compression ratio and compression temperature are the same as at full load, but the density is lower and the combustion speed is slower than at full load, and the p-V diagram is 1 in Figure 6. The dotted chain line points 14-23, and the diagonally shaded point 14-
Work is lost by the area surrounded by 15-23-14 (shaded line), and the indicated work at this time is point 13-14-2.
Currently, the area is surrounded by 3-18-19-13, and the thermal efficiency is decreasing.

本発明のエンジンの吸気行程においては、スロットルバ
ルブ14によって点20まで吸気圧力を下げ、吸気行程
途中の点21においてロータリバルブ13を閉じるが、
ピストン2は更に下降し、混合気は断熱膨脹しつつ圧力
と温度を下げ、点22で吸気行程下死点となり、圧縮行
程に変り、点21で再び吸気状態の圧力及び温度となる
In the intake stroke of the engine of the present invention, the intake pressure is lowered to point 20 by the throttle valve 14, and the rotary valve 13 is closed at point 21 in the middle of the intake stroke.
The piston 2 further descends, the air-fuel mixture expands adiabatically and lowers its pressure and temperature, reaches the bottom dead center of the intake stroke at point 22, changes to the compression stroke, and returns to the intake state pressure and temperature at point 21.

前述の理由により、点21の混合気の温度は点12、即
ち大気温度と略同じで、点21から実質的な圧縮行程が
始まり、点14で圧縮行程が終る。
For the aforementioned reasons, the temperature of the air-fuel mixture at point 21 is approximately the same as point 12, ie, the atmospheric temperature, and the substantial compression stroke begins at point 21 and ends at point 14.

従来公知のエンジンの圧縮行程である点12−14に比
し本発明のエンジンの圧縮行程は点21−14と長く、
双方のエンジンの燃焼室容積は同一と言う前提からすれ
ば、圧縮比は高く、点14、即ち圧縮上死点の混合気温
度を高くすることが可能である。このときノックセンサ
31がノッキングを感知しなければ、アクチュエータ3
5は自動的に更にロータリーバルブ13の閉弁を遅らせ
ることによって実質的圧縮行程を更に長く、即ち圧縮比
を更に高め、ノックセンサがノッキングを感知して始め
て圧縮比を下げることによって、本発明のエンジンは許
容される最高の燃焼速度で燃焼し、p−v線図で表わせ
ば、点14−15−23となり、更に膨張行程も長く、
点16まで膨張し、点17より排気行程に入り、図示仕
事量は点13−14−15−16−17−13で囲まれ
た面積から絞り損失の仕事量である点1−20−21−
13−1の面積を差し引いた面積となる前述したように
、絞り損失の面積は5倍に誇張してあり、絞り損失が本
質的にオツトーサイクルエンジンの部分負荷の熱効率を
下げているのではなく、本発明のエンジンでは部分負荷
においても高い熱効率が得られるのである″。同様に、
始動時においては本発明のエンジンは圧縮比を膨張比ま
で、ロータリバルブ13の閉弁時期を遅らせることによ
って、高めることが可能で、圧縮温度を高め、低温始動
が容易になるのである。
The compression stroke of the engine of the present invention is longer at point 21-14 compared to point 12-14, which is the compression stroke of a conventionally known engine.
Based on the premise that the combustion chamber volumes of both engines are the same, the compression ratio is high and it is possible to increase the air-fuel mixture temperature at point 14, that is, compression top dead center. If the knock sensor 31 does not detect knocking at this time, the actuator 3
5 automatically further delays the closing of the rotary valve 13 to further lengthen the effective compression stroke, that is, further increase the compression ratio, and lower the compression ratio only after the knock sensor detects knocking, thereby achieving the present invention. The engine burns at the maximum allowable combustion speed, and if expressed on a p-v diagram, points 14-15-23 appear, and the expansion stroke is also long.
It expands to point 16, enters the exhaust stroke from point 17, and the indicated work is the work of the aperture loss from the area surrounded by points 13-14-15-16-17-13, which is point 1-20-21-.
The area is obtained by subtracting the area of 13-1.As mentioned above, the area of the throttling loss is exaggerated by a factor of five, and the throttling loss essentially reduces the partial load thermal efficiency of the Otto cycle engine. In the engine of the present invention, high thermal efficiency can be obtained even under partial load.'' Similarly,
At the time of starting, the engine of the present invention can increase the compression ratio to the expansion ratio by delaying the closing timing of the rotary valve 13, increasing the compression temperature and facilitating low-temperature starting.

〈発明の効果〉 本発明は上述の如く、エンジンの膨張比を全負荷時の圧
縮比より高く設定し、該エンジンの吸気通路に、バルブ
開閉時期調整装置を備えたロータリバルブを介装する一
方、ノックセンサを設け、該ノックセンサによりノッキ
ング発生初期にこれを捉えて、その信号により前記バル
ブ開閉時期調整装置を介して前記ロータリバルブの閉時
期を?め、実質的圧縮比を調節するように構成したので
、エンジンの圧縮比はノッキング限界近くに維持され、
高い膨張比によって熱効率を向上させることができる。
<Effects of the Invention> As described above, the present invention sets the expansion ratio of the engine higher than the compression ratio at full load, and interposes a rotary valve equipped with a valve timing adjustment device in the intake passage of the engine. A knock sensor is provided, and the knock sensor detects knocking at the initial stage of occurrence, and the signal is used to adjust the closing timing of the rotary valve via the valve opening/closing timing adjustment device. Therefore, the engine compression ratio is maintained close to the knocking limit, and the actual compression ratio is adjusted.
A high expansion ratio can improve thermal efficiency.

また、エンジンの部分負荷では、ノッキングが発生しに
くく、ノックセンサとアクチュエータによりロータリバ
ルブの閉弁時期は遅らされ、ノッキング限界近くにまで
圧縮比を高め、これによって燃焼速度を高め、大きな膨
張比であいまって熱効率を高めることができる。
In addition, under partial load of the engine, knocking is less likely to occur, and the knock sensor and actuator delay the closing timing of the rotary valve, increasing the compression ratio to near the knocking limit, thereby increasing the combustion rate and increasing the expansion ratio. Together, the thermal efficiency can be increased.

また1本発明のエンジンの膨張比をディーゼルエンジン
と同程度とすれば、オツトーサイクルの方がディーゼル
サイクルより図示効率が高く、燃焼圧力の低いオツトー
サイクルエンジンの摩擦損失が少ないばかりか、軽いピ
ストン、コンロッド等は更に摩擦損失を軽減し、燃料消
費率をディーゼルエンジンより低下させることができる
Furthermore, if the expansion ratio of the engine of the present invention is the same as that of a diesel engine, the Otto cycle engine has higher indicated efficiency than the diesel cycle, and the Otto cycle engine with lower combustion pressure not only has less friction loss but is also lighter. Pistons, connecting rods, etc. can further reduce friction loss and lower fuel consumption than diesel engines.

ディーゼルエンジンはNOx、HC,Goなどの排気量
が三元触媒を使うオツトーサイクルエンジンより多く、
パティキュレートに到っては解決の目途さえついていな
い今日、本発明によるエンジンは熱効率もディーゼルエ
ンジンより高まるばかりか、排出物規制問題をも解決す
ることができるという大きなメリットがある。
Diesel engines emit more NOx, HC, Go, etc. than otto cycle engines that use three-way catalysts.
Nowadays, there is no prospect of a solution to the problem of particulate matter, but the engine according to the present invention not only has higher thermal efficiency than a diesel engine, but also has the great advantage of being able to solve the problem of emission control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明オツトーサイクルエンジンの全体構成図
、第2図は要部断面図、第3図、第4図はバルブ開閉時
期調整装置の断面図、第5図、第6図は本発明エンジン
の性能曲線図である。 1;シリンダ、2;ピストン、 4;シリンダヘッド、6;吸気口、7;吸気弁、9;排
気口、10;排気弁、11;吸気枝管、12;吸気マニ
ホールド、13;ロータリバルブ、14;絞り弁、16
;駆動軸、 17.18.19;スリーブ、 20.21.22.25.26:ベアリング、23;タ
イミングギヤ、24;回転軸、28;調整駒、29;調
整レバー 31;ノックセンサ、35;アクチュエータ、36;ロ
ッド。 第3図 27 4a 第4図
Fig. 1 is an overall configuration diagram of the automatic cycle engine of the present invention, Fig. 2 is a sectional view of the main parts, Figs. 3 and 4 are sectional views of the valve timing adjustment device, and Figs. FIG. 3 is a performance curve diagram of the invention engine. 1; cylinder, 2; piston, 4; cylinder head, 6; intake port, 7; intake valve, 9; exhaust port, 10; exhaust valve, 11; intake branch pipe, 12; intake manifold, 13; rotary valve, 14 ;throttle valve, 16
; Drive shaft, 17.18.19; Sleeve, 20.21.22.25.26: Bearing, 23; Timing gear, 24; Rotating shaft, 28; Adjustment piece, 29; Adjustment lever 31; Knock sensor, 35; Actuator, 36; rod. Figure 3 27 4a Figure 4

Claims (1)

【特許請求の範囲】[Claims] エンジンの膨脹比を全負荷時の圧縮比より高く設定し、
該エンジンの吸気通路に、バルブ開閉時期調整装置を備
えたロータリバルブを介装する一方、ノックセンサを設
け、該ノックセンサによりノッキング発生初期にこれを
捉えて、その信号により前記バルブ開閉時期調整装置を
介して前記ロータリバルブの閉時期を早め、実質的圧縮
比を調節することを特徴とするオットーサイクルエンジ
ン。
The engine expansion ratio is set higher than the compression ratio at full load,
A rotary valve equipped with a valve timing adjustment device is installed in the intake passage of the engine, and a knock sensor is installed, and the knock sensor detects knocking at an early stage when knocking occurs, and uses the signal to adjust the valve timing adjustment device. The Otto cycle engine is characterized in that the closing timing of the rotary valve is advanced through the method to adjust the substantial compression ratio.
JP1326133A 1989-12-18 1989-12-18 Otto-cycle engine Expired - Lifetime JP2519110B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1326133A JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine
FR9016195A FR2656036A1 (en) 1989-12-18 1990-12-18 INTERNAL COMBUSTION ENGINE WITH OTTO CYCLE.
GB9027412A GB2239901A (en) 1989-12-18 1990-12-18 Engine charge intake control
DE4040415A DE4040415C2 (en) 1989-12-18 1990-12-18 Four-stroke engine
US07/969,512 US5230315A (en) 1989-12-18 1992-10-30 Otto-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326133A JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine

Publications (2)

Publication Number Publication Date
JPH03189322A true JPH03189322A (en) 1991-08-19
JP2519110B2 JP2519110B2 (en) 1996-07-31

Family

ID=18184432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326133A Expired - Lifetime JP2519110B2 (en) 1989-12-18 1989-12-18 Otto-cycle engine

Country Status (4)

Country Link
JP (1) JP2519110B2 (en)
DE (1) DE4040415C2 (en)
FR (1) FR2656036A1 (en)
GB (1) GB2239901A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972924A1 (en) * 1998-07-14 2000-01-19 Konotech s.r.o. Method for operating a piston engine
AUPR531501A0 (en) * 2001-05-30 2001-06-21 Bishop Innovation Limited Variable valve timing mechanism for a rotary valve
GB2446809A (en) 2007-02-09 2008-08-27 Michael John Gill Controlling flow into the combustion chamber of an Otto-cycle internal combustion engine
WO2008150922A1 (en) * 2007-05-29 2008-12-11 Ab Engine Incorporated High efficiency internal combustion engine
DE102013215764A1 (en) * 2013-08-09 2015-02-12 Volkswagen Aktiengesellschaft Reciprocating internal combustion engine and method for controlling the inlet side of a reciprocating internal combustion engine
DE102017205540A1 (en) * 2017-03-31 2018-10-04 Mahle International Gmbh Valve train for an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421223U (en) * 1987-07-30 1989-02-02

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148932A (en) * 1979-05-07 1980-11-19 Kanesaka Gijutsu Kenkyusho:Kk Engine
JPS5855329B2 (en) * 1980-09-26 1983-12-09 株式会社 兼坂技術研究所 gasoline engine
JPS5896017U (en) * 1981-12-22 1983-06-29 マツダ株式会社 Control device for supercharged engine
JPS61164036A (en) * 1985-01-11 1986-07-24 Mazda Motor Corp Intake control device of engine
JPS6258016A (en) * 1985-09-06 1987-03-13 Kanesaka Gijutsu Kenkyusho:Kk Intake device for engine
KR910002898B1 (en) * 1986-11-27 1991-05-09 마쯔다 가부시기가이샤 Supercharged engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421223U (en) * 1987-07-30 1989-02-02

Also Published As

Publication number Publication date
FR2656036B1 (en) 1995-05-19
FR2656036A1 (en) 1991-06-21
JP2519110B2 (en) 1996-07-31
GB9027412D0 (en) 1991-02-06
GB2239901A (en) 1991-07-17
DE4040415A1 (en) 1991-07-18
DE4040415C2 (en) 1995-11-30

Similar Documents

Publication Publication Date Title
US4995354A (en) Two-cycle engine
US6499458B1 (en) Method for operating a four-stroke reciprocating internal combustion engine
US6105550A (en) Method for operation of a four-stroke reciprocating internal combustion engine
US4426985A (en) Supercharged internal combustion engine
KR100321329B1 (en) Control device for an internal combustion engine
US6234123B1 (en) Four-cycle internal combustion engine and valve timing control method thereof
US5050378A (en) Exhaust recharging of a four cycle internal combustion engine
US5123388A (en) Otto-cycle engine
JP2004218522A (en) Control device for internal combustion engine equipped with variable compression ratio mechanism
US20120283932A1 (en) Two-stroke internal combustion engine with variable compression ratio and an exhaust port shutter and a method of operating such an engine
JPS6364617B2 (en)
US6651616B1 (en) Method for operating a four-stroke reciprocating internal combustion engine with alternating compression ignition and externally supplied ignition
EP0395406B1 (en) Heat-insulated four-stroke engine with prechamber
KR101638759B1 (en) Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine
Parvate-Patil et al. Analysis of variable valve timing events and their effects on single cylinder diesel engine
JPH03189322A (en) Otto cycle engine
US5230315A (en) Otto-cycle engine
JP2004060551A (en) Control device of internal combustion engine
JPH0324838Y2 (en)
JP3039147B2 (en) 2-4 stroke switching engine
JP3077398B2 (en) 2-4 stroke switching engine
EP1585892A1 (en) Method of modifying exhaust valve timing to improve engine performance
US10393011B1 (en) Method of operating an internal combustion engine utilizing heat in engine cycles
JPH03151532A (en) Two-cycle engine
JPH0134665Y2 (en)