JP2511983Y2 - Fluid dynamic vibration absorber - Google Patents

Fluid dynamic vibration absorber

Info

Publication number
JP2511983Y2
JP2511983Y2 JP1988160815U JP16081588U JP2511983Y2 JP 2511983 Y2 JP2511983 Y2 JP 2511983Y2 JP 1988160815 U JP1988160815 U JP 1988160815U JP 16081588 U JP16081588 U JP 16081588U JP 2511983 Y2 JP2511983 Y2 JP 2511983Y2
Authority
JP
Japan
Prior art keywords
pressure
airtight
airtight chamber
dynamic vibration
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988160815U
Other languages
Japanese (ja)
Other versions
JPH0281942U (en
Inventor
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1988160815U priority Critical patent/JP2511983Y2/en
Publication of JPH0281942U publication Critical patent/JPH0281942U/ja
Application granted granted Critical
Publication of JP2511983Y2 publication Critical patent/JP2511983Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Vibration Prevention Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は流体動吸振器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a fluid dynamic vibration reducer.

〔従来の技術〕[Conventional technology]

第2図に従来の流体動吸振器の系統図を示す。この装
置は、図に示す様に左右2個の竪形タンク1a,1bの下部
を連通タンク1により接続し、全体としてU字形のタン
クとしたもので、内部には一般に水3が入れられてい
る。左右の竪形タンクの上部は、独立に気密室2a,2bが
設けられ、この気密室2a,2bには上部に圧縮空気注入用
の注入通気管4a,4bが設けられ、中央部で1本化された
注入管4となつている。注入通気管4a,4bは気密室2a,2b
を連通する通気管を形成している。注入管4は、注入空
気圧を調整する減圧弁5を有し、端部は、圧縮空気を作
るコンプレツサー6に連結している。左右の気密室2a,2
bの上部には、更に気密室空気排出用の排出通気管7a,7b
が設けられ、中央部で1本化された排気管7となつてい
る。排出通気管7a,7bは気密室2a,2bを連通する通気管を
形成している。排気管7は、設定圧力値で作動する圧力
スイツチ8とその後に圧力スイツチ8で弁の開閉を行な
う電磁弁9を備えている。
FIG. 2 shows a system diagram of a conventional fluid dynamic vibration reducer. As shown in the figure, this device is a U-shaped tank in which the lower parts of the two vertical tanks 1a and 1b are connected by a communication tank 1, and generally water 3 is put inside. There is. Airtight chambers 2a and 2b are independently provided at the upper parts of the left and right vertical tanks, and in the airtight chambers 2a and 2b, injection vent pipes 4a and 4b for injecting compressed air are provided at the upper part, and one is provided at the center. It is connected to the injection tube 4 that has been made into a material. Injection ventilation pipes 4a, 4b are airtight chambers 2a, 2b
Forming a ventilation pipe that communicates with each other. The injection pipe 4 has a pressure reducing valve 5 for adjusting the injection air pressure, and its end portion is connected to a compressor 6 for producing compressed air. Left and right airtight chambers 2a, 2
At the upper part of b, exhaust vent pipes 7a, 7b for exhausting air in the airtight chamber are further provided.
Is provided, and the exhaust pipe 7 is integrated in the central portion. The exhaust ventilation pipes 7a, 7b form a ventilation pipe that connects the airtight chambers 2a, 2b. The exhaust pipe 7 is provided with a pressure switch 8 that operates at a set pressure value, and then an electromagnetic valve 9 that opens and closes the valve with the pressure switch 8.

本流体式動吸振器では、消振したい励振源の振動数に
動吸振器の固有振動数を同調させる。動吸振器の固有振
動数は気密室2a,2bの圧力を調整して行うものであり、
第3図に示すような、事前に検定した動吸振器の固有振
動数と気密室2a,2b圧力の関係から、消振したい振動数
に動吸振器の固有振動数が同調するよう、圧縮空気注入
調整用の減圧弁5と気密室圧力の排出調整用の圧力スイ
ツチ8の2つを手動で調節して、気密室の圧力を一定の
設定圧力値に保つ。もし、気温の変化等で気密室2a,2b
が設定圧より低下した場合、自動的に圧縮空気が減圧弁
5より注入され、逆に気密室圧力が設定圧より上昇した
場合圧力スイツチが動作し、同時に電磁弁9が作動し
て、圧力が排出される。この作動機構により、常時設定
圧力を一定に保持する。
In this fluid dynamic vibration absorber, the natural frequency of the dynamic vibration absorber is tuned to the frequency of the excitation source to be damped. The natural frequency of the dynamic vibration absorber is adjusted by adjusting the pressure in the airtight chambers 2a and 2b.
Based on the relationship between the natural frequency of the dynamic vibration absorber and the pressure of the airtight chambers 2a and 2b, which was verified in advance, as shown in Fig. 3, the compressed air should be tuned so that the natural frequency of the dynamic vibration absorber is tuned to the frequency to be damped. The pressure reducing valve 5 for adjusting the injection and the pressure switch 8 for adjusting the discharge of the airtight chamber pressure are manually adjusted to keep the pressure in the airtight chamber at a constant set pressure value. If the temperature changes, etc., the airtight chambers 2a, 2b
Is lower than the set pressure, compressed air is automatically injected from the pressure reducing valve 5. Conversely, when the airtight chamber pressure is higher than the set pressure, the pressure switch is operated, and at the same time, the solenoid valve 9 is operated to increase the pressure. Is discharged. This operating mechanism keeps the set pressure constant at all times.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

船舶等においては、主機、プロペラ等の励振源の回転
数は刻々と変化し、それに応じて振動数は変動する。し
かるに従来の動吸振器はその固有振動数を一定に保つて
消振するものであるため、励振源の振動数が変動する場
合は消振効果が得られない。
In a ship or the like, the rotation speed of an excitation source such as a main engine and a propeller changes every moment, and the vibration frequency changes accordingly. However, since the conventional dynamic vibration absorber is designed to maintain its natural frequency constant for vibration damping, the vibration damping effect cannot be obtained when the vibration frequency of the excitation source fluctuates.

本考案は励振源の振動数が変動した場合でも消振効果
が得られる動吸振器を提供しようとするものである。
The present invention is intended to provide a dynamic vibration absorber that can obtain a vibration damping effect even when the frequency of the excitation source changes.

〔課題を解決するための手段〕[Means for solving the problem]

本考案は前記課題を解決したものであつて、両端部の
竪形タンクとそれらを底部で連通する連通タンクとから
なり竪形タンク上部の気密室に空気を残して内部に液体
を蓄えたU字形連通管式タンク、上記両気密室を連通す
る注入通気管を介して上記両気密室にコンプレッサによ
って圧縮空気を注入する注入管、上記両気密室を連通す
る排出通気管を介して上記両気密室から空気を排出する
排気管を備えた流体動吸振器において、励振源の振動数
を検知する手段、あらかじめ検定された前記動吸振器の
固有振動数と前記気密室圧力の関係に前記の検知された
振動数を適用して気密室圧力の設定値を算出する手段、
前記の実際の気密室圧力を検知する手段、前記注入管に
設けられた注入用電磁減圧弁、前記排気管に設けられた
排出用電磁弁、および前記の実際の気密室圧力が常に前
記の算出された気密室圧力設定値となるよう前記注入用
電磁減圧弁および前記排出用電磁弁を制御するコントロ
ーラを備えたことを特徴とする流体動吸振器に関するも
のである。
The present invention solves the above-mentioned problems, and comprises a vertical tank at both ends and a communication tank communicating with each other at the bottom, leaving U in the airtight chamber above the vertical tank to store liquid inside. V-shaped communication pipe type tank, an injection pipe for injecting compressed air into the airtight chambers by a compressor through an injection airflow pipe that communicates between the airtight chambers, and an air discharge pipe that communicates between the airtight chambers. In a fluid dynamic vibration absorber having an exhaust pipe for discharging air from a closed chamber, means for detecting the frequency of the excitation source, and the above-mentioned detection in the relationship between the natural frequency of the dynamic vibration absorber and the pressure in the airtight chamber which have been verified in advance. Means for calculating the set value of the airtight chamber pressure by applying the determined frequency,
The means for detecting the actual pressure in the airtight chamber, the electromagnetic pressure reducing valve for injection provided in the injection pipe, the electromagnetic valve for discharge provided in the exhaust pipe, and the actual pressure in the airtight chamber are always calculated as described above. The present invention relates to a fluid dynamic vibration reducer including a controller that controls the injection electromagnetic pressure reducing valve and the discharge electromagnetic valve so that the airtight chamber pressure is set to the set value.

〔作用〕[Action]

本考案の流体動吸振器においては、励振源の振動数を
検知し、あらかじめ検定された動吸振器の固有振動数と
気密室圧力の関係に前記の励振源の振動数を適用して、
自動的に気密室圧力の設定値を算出し、コントローラに
よつて注入用電磁減圧弁と排出用電磁弁を制御して、常
に気密室圧力を前記の算出した気密室圧力設定値に一致
させる。これによつて、励振源の振動数が変動する場合
でも消振効果が得られる。
In the fluid dynamic vibration absorber of the present invention, the vibration frequency of the excitation source is detected, and the vibration frequency of the excitation source is applied to the relationship between the natural frequency of the dynamic vibration absorber and the airtight chamber pressure that has been previously tested,
The set value of the pressure in the hermetic chamber is automatically calculated, and the electromagnetic pressure reducing valve for injection and the electromagnetic valve for discharge are controlled by the controller so that the pressure in the hermetic chamber is always matched with the calculated value for the pressure in the hermetic chamber. As a result, the vibration damping effect can be obtained even when the frequency of the excitation source fluctuates.

〔実施例〕〔Example〕

第1図に本考案の流体動吸振器の一実施例の系統図を
示す。図に示す様に左右2個の竪形タンク1a,1bの下部
を連通タンク1により接続し、全体としてU字形のタン
クとし、左右竪形タンク1a,1bの上部に気密室2a,2bを設
けている点と、左右竪形タンクの上部からそれぞれ圧縮
空気注入用の注入管4、注入通気管4a,4bと排出用の排
気管7、排出通気管7a,7bを設け、注入通気管4a,4bおよ
び排出通気管7a,7bのそれぞれの管を連ねて両側の気密
室の空気を連通させている点は、従来の装置と同一であ
る。本考案では変化する励振源の振動数に流体動吸振器
の固有振動数を追従チユーニングさせるため、励振源例
えば船のプロペラ軸19の回転数を回転検出器10で検出
し、カウントするカウンター回路11を持ち、このカウン
ト値より励振力の振動数を演算し、あらかじめ検定され
た動吸振器の固有振動数と気密室圧力の関係から気密室
圧力の設定値を算出する。同時に、圧力検出器12と圧力
検出器用増幅器13によつて実際の気密室圧力を検出す
る。このようにして検出された気密室圧力を前記の励振
源の振動数より算出した気密室圧力設定値に一致させる
ため、コントローラ18から注入電磁弁用作動増幅器17、
排気電磁弁用作動増幅器15のいずれかにON,OFFの指令を
送り、注入用電磁減圧弁16か排気用電磁弁14を作動さ
せ、これによつて変動する励振源の振動数にタンク固有
振動数を自動チユーニングさせる。以上述べた装置によ
つて回転数が刻々変化する船舶のプロペラ軸から発生す
る振動を消すことができる。
FIG. 1 shows a system diagram of an embodiment of the fluid dynamic vibration reducer of the present invention. As shown in the figure, the lower parts of the two vertical tanks 1a, 1b on the left and right are connected by the communication tank 1 to form a U-shaped tank as a whole, and the airtight chambers 2a, 2b are provided on the upper parts of the left and right vertical tanks 1a, 1b. In addition, an injection pipe 4 for injecting compressed air, an injection ventilation pipe 4a, 4b and an exhaust exhaust pipe 7, and an exhaust ventilation pipe 7a, 7b are provided from the upper part of the right and left vertical tanks respectively. This is the same as the conventional device in that the air in the airtight chambers on both sides is connected by connecting the respective tubes of 4b and the exhaust ventilation pipes 7a, 7b. In the present invention, in order to tune the natural frequency of the fluid dynamic vibration absorber to the changing vibration frequency of the excitation source, a counter circuit 11 for detecting and counting the rotation number of the excitation source, for example, the propeller shaft 19 of the ship, by the rotation detector 10. The frequency of the exciting force is calculated from this count value, and the set value of the airtight chamber pressure is calculated from the relationship between the natural frequency of the dynamic vibration absorber and the airtight chamber pressure that has been verified in advance. At the same time, the pressure detector 12 and the pressure detector amplifier 13 detect the actual pressure in the hermetic chamber. In order to match the airtight chamber pressure detected in this manner with the airtight chamber pressure set value calculated from the frequency of the excitation source, the injection solenoid valve operating amplifier 17 from the controller 18 is supplied.
An ON / OFF command is sent to one of the exhaust solenoid valve operational amplifiers 15 to activate the injection electromagnetic pressure reducing valve 16 or the exhaust electromagnetic valve 14, which causes the tank's natural vibration to fluctuate with the vibration frequency of the excitation source. Automatic tuning of numbers. With the above-described device, it is possible to eliminate the vibration generated from the propeller shaft of a ship whose number of revolutions changes every moment.

なお上記実施例においては、船舶のプロペラ軸から発
生する励振力を例として述べたが、本考案は船舶のプロ
ペラ軸に限らず、また、船舶のみでなく、陸上の構造物
の消振にも適用できる。また、加速度計等の振動計の出
力から励振源の振動数を演算して用いてもよい。
In the above embodiment, the excitation force generated from the propeller shaft of the ship was described as an example, but the present invention is not limited to the propeller shaft of the ship, and can be applied not only to the ship, but also to the vibration damping of land structures. Applicable. Further, the frequency of the excitation source may be calculated and used from the output of a vibrometer such as an accelerometer.

〔考案の効果〕[Effect of device]

本考案においては、構造物の励振源の振動数を検出
し、この振動数に流体動吸振器の固有振動数を常時一致
させるよう気密室圧力を自動制御するようにしたので、
励振源の振動数が変化してもこの励振源によつて発生す
る構造物の振動を消振出来る。
In the present invention, the frequency of the excitation source of the structure is detected, and the airtight chamber pressure is automatically controlled so that the natural frequency of the fluid dynamic vibration absorber is always matched with this frequency.
Even if the frequency of the excitation source changes, the vibration of the structure generated by this excitation source can be damped.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の系統図、第2図は従来技術
の系統図、第3図は上記従来技術において用いられる動
吸振器の固有振動数と気密室圧力の関係図である。 1……連通タンク、1a,1b……竪形タンク、2a,2b……気
密室、3……タンク内液体(例えば水)、4a,4b……注
入通気管、4……注入管、5……減圧弁、6……圧力空
気源(コンプレツサー)7a,7b……排出通気管、7……
排気管、8……圧力スイツチ、9……電磁弁、10……回
転検出器、11……回転数カウンター回路、12……圧力検
出器、13……圧力検出器用増幅器、14……排出用電磁
弁、15……排出用電磁弁作動増幅器、16……注入用電磁
減圧弁、17……注入用電磁減圧弁作動増幅器、18……コ
ントローラ、19……回転体軸(プロペラ軸)。
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram of a conventional technique, and FIG. 3 is a relationship diagram between the natural frequency of a dynamic vibration absorber used in the above-mentioned conventional technique and the pressure in an airtight chamber. . 1 ... Communication tank, 1a, 1b ... Vertical tank, 2a, 2b ... Airtight chamber, 3 ... Liquid in tank (for example, water), 4a, 4b ... Injection vent pipe, 4 ... Injection pipe, 5 ...... Reducing valve, 6 ...... Pressure air source (compressor) 7a, 7b ...... Exhaust vent pipe, 7 ......
Exhaust pipe, 8 ... Pressure switch, 9 ... Solenoid valve, 10 ... Rotation detector, 11 ... Rotation counter circuit, 12 ... Pressure detector, 13 ... Pressure detector amplifier, 14 ... Discharge Solenoid valve, 15 …… Discharge solenoid valve actuation amplifier, 16 …… Injection solenoid pressure reducing valve, 17 …… Injection solenoid pressure reducing valve actuation amplifier, 18 …… Controller, 19 …… Rotator shaft (propeller shaft).

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】両端部の竪形タンクとそれらを底部で連通
する連通タンクとからなり竪形タンク上部の気密室に空
気を残して内部に液体を蓄えたU字形連通管式タンク、
上記両気密室を連通する注入通気管を介して上記両気密
室にコンプレッサによって圧縮空気を注入する注入管、
上記両気密室を連通する排出通気管を介して上記両気密
室から空気を排出する排気管を備えた流体動吸振器にお
いて、励振源の振動数を検知する手段、あらかじめ検定
された前記動吸振器の固有振動数と前記気密室圧力の関
係に前記の検知された振動数を適用して気密室圧力の設
定値を算出する手段、前記の実際の気密室圧力を検知す
る手段、前記注入管に設けられた注入用電磁減圧弁、前
記排気管に設けられた排出用電磁弁、および前記の実際
の気密室圧力が常に前記の算出された気密室圧力設定値
となるよう前記注入用電磁減圧弁および前記排出用電磁
弁を制御するコントローラを備えたことを特徴とする流
体動吸振器。
Claim: What is claimed is: 1. A U-shaped communicating tube type tank comprising a vertical tank at both ends and a communicating tank communicating with each other at the bottom, and leaving liquid in the airtight chamber at the upper part of the vertical tank to store a liquid therein.
An injection pipe for injecting compressed air into the both airtight chambers by a compressor through an injection ventilation pipe that connects the both airtight chambers,
In a fluid dynamic vibration absorber having an exhaust pipe for exhausting air from the airtight chambers through an exhaust ventilation pipe that communicates the airtight chambers, a means for detecting the frequency of an excitation source, the previously tested dynamic vibration absorber Means for calculating the set value of the airtight chamber pressure by applying the detected frequency to the relationship between the natural frequency of the container and the airtight chamber pressure, the means for detecting the actual airtight chamber pressure, the injection pipe Electromagnetic pressure reducing valve provided on the exhaust pipe, the electromagnetic discharge valve provided on the exhaust pipe, and the electromagnetic reducing pressure for injection so that the actual airtight chamber pressure is always the calculated airtight chamber pressure set value. A fluid dynamic vibration reducer comprising a valve and a controller for controlling the discharge solenoid valve.
JP1988160815U 1988-12-13 1988-12-13 Fluid dynamic vibration absorber Expired - Lifetime JP2511983Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988160815U JP2511983Y2 (en) 1988-12-13 1988-12-13 Fluid dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988160815U JP2511983Y2 (en) 1988-12-13 1988-12-13 Fluid dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPH0281942U JPH0281942U (en) 1990-06-25
JP2511983Y2 true JP2511983Y2 (en) 1996-09-25

Family

ID=31443211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988160815U Expired - Lifetime JP2511983Y2 (en) 1988-12-13 1988-12-13 Fluid dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP2511983Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035948A1 (en) * 2010-09-15 2012-03-22 三菱重工業株式会社 Azimuth propeller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588490A (en) * 1981-07-02 1983-01-18 Furuno Electric Co Ltd Roll reducing device
JPS63243544A (en) * 1987-03-27 1988-10-11 Nkk Corp Control device for dynamic vibration reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035948A1 (en) * 2010-09-15 2012-03-22 三菱重工業株式会社 Azimuth propeller

Also Published As

Publication number Publication date
JPH0281942U (en) 1990-06-25

Similar Documents

Publication Publication Date Title
YU45197B (en) Active gass damper for vibrations
JPS6480776A (en) Volume-variable compressor
JP2511983Y2 (en) Fluid dynamic vibration absorber
JPS60249694A (en) Starting unloader device for compressor
JP4353758B2 (en) Container airtightness inspection method and apparatus
JPS61501624A (en) Method and equipment for packaging goods
EP1036952B1 (en) Hydraulic vibration isolator
JP3107443B2 (en) Anti-vibration device
JPH051444Y2 (en)
US7252178B2 (en) Acoustic fluid machine
US4256438A (en) Method and apparatus for simultaneous noise damping on intake and pressure sides of fluid pumps
JPH09144705A (en) Negative pneumatic pressure servo unit
JPH0337445A (en) Vibration isolating tank with control device
JPS5815793A (en) No-load operation control device of compressor
JPH0650838A (en) Liquid type vibration generator
JPH01239751A (en) Exhaust system in vacuum device
Soliman et al. Active isolation systems using a nozzle-flapper valve
JPS55128684A (en) Bellow type fluid pump
SU776960A1 (en) Vibration feeder pneumatic drive
JPH0240310Y2 (en)
GB2095838A (en) Engine acceleration detector
JPH09212173A (en) Silencer
SU488762A1 (en) Push-down conveyor of returnable action
JPS61265399A (en) Liquid pumping-up apparatus using vibration column
JPH02119869A (en) Blood pump device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term