JPH02119869A - Blood pump device - Google Patents

Blood pump device

Info

Publication number
JPH02119869A
JPH02119869A JP63274221A JP27422188A JPH02119869A JP H02119869 A JPH02119869 A JP H02119869A JP 63274221 A JP63274221 A JP 63274221A JP 27422188 A JP27422188 A JP 27422188A JP H02119869 A JPH02119869 A JP H02119869A
Authority
JP
Japan
Prior art keywords
blood
pressure
chamber
pump chamber
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274221A
Other languages
Japanese (ja)
Inventor
Naritomo Kanai
金井 成等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinsangyo Kaihatsu KK
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Shinsangyo Kaihatsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Shinsangyo Kaihatsu KK filed Critical Aisin Seiki Co Ltd
Priority to JP63274221A priority Critical patent/JPH02119869A/en
Publication of JPH02119869A publication Critical patent/JPH02119869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a pumping amount of blood without particularly increasing a blood suction pressure, applied to an inflow pipe, and/or its diameter by alternately applying a pressure of contracting and spreading the volume of a pump chamber to the first flexible member from the outside of the pump chamber. CONSTITUTION:In a blood reservoir 10, the first cannula 7 is cut halfway, connecting the second diaphragm 9 to a cut part, and an outer vessel 16 coats the outside of this second diaphragm 9, air-tightly sealing the second operating chamber 11 communicating with the second pumping fluid pipe 15. When a negative pressure is applied to the second operating chamber 11, the second diaphragm 9 is spread increasing the volume of the second pump chamber 14, and blood in the first cannula 7 is sucked to the second pump chamber 14. When a negative pressure is applied to the second pump chamber 14 from an artificial heart 1, blood in the second pump chamber 14 is allowed to flow in the artificial heart 1, and the second diaphragm 9 is contracted. By repeating this action, the reservoir sucks the blood from a left atrium 17 of the heart through an inflow pipe, so that a suction amount is increased of the blood.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は血液ポンプに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) BLOOD PUMP FIELD OF THE INVENTION The present invention relates to blood pumps.

(従来の技術) 血液ポンプは、生体の心臓に並列に接続されて、血液ポ
ンピングの補助又は代替を行なう。例えば、特開昭57
−99963号公報には、可変内容積のポンプ室を区画
する可撓部材、前記ポンプ室に流入弁を介して連通ずる
流入管部材、および、前記ポンプ室に流出弁を介して連
通ずる流出管部材を有する血液ポンプが提示されている
。この種の血液ポンプには、エアーボンピング装置が、
前記ポンプ室の外部から前記可撓部材にポンプ室の容積
を縮める正圧力および拡げる負圧力を交互に加える。
BACKGROUND OF THE INVENTION Blood pumps are connected in parallel to a living body's heart to supplement or replace blood pumping. For example, JP-A-57
Publication No. 99963 discloses a flexible member that partitions a pump chamber with a variable internal volume, an inflow pipe member that communicates with the pump chamber via an inflow valve, and an outflow pipe that communicates with the pump chamber via an outflow valve. A blood pump having a member is presented. This type of blood pump has an air pumping device,
A positive pressure that reduces the volume of the pump chamber and a negative pressure that expands the volume of the pump chamber are alternately applied to the flexible member from outside the pump chamber.

流入管が例えば生体心臓の左心房に接続され流出管が大
動脈に接続されていると、エアーポンピング装置が正圧
力を加えたとき可撓部材の外表面に圧縮力が加わるので
可撓部材が収縮しその内空間すなわちポンプ室の容積が
小さくなり、ポンプ室の血液が流出管を経て大動脈に送
出され、エアーボンピング装置が負圧力を加えたとき可
撓部材の外表面に引張力が加わるので可撓部材が拡大し
ポンプ室の容積が大きくなり、左心房の血液が流入管を
通してポンプ室に吸入される。
For example, if the inflow tube is connected to the left atrium of a living heart and the outflow tube is connected to the aorta, when the air pumping device applies positive pressure, compressive force is applied to the outer surface of the flexible member, causing the flexible member to contract. The volume of the internal space, that is, the pump chamber, becomes smaller, and the blood in the pump chamber is sent to the aorta through the outflow tube, and when the air pumping device applies negative pressure, a tensile force is applied to the outer surface of the flexible member. The flexible member expands to increase the volume of the pump chamber, and blood from the left atrium is drawn into the pump chamber through the inflow tube.

この血液ポンプは、1つのポンプ室に、血液を交互に流
入/流出させる原理のため、流出期間は(例えば左心房
から)血液を吸入できない。このため、十分な血液を吸
入するために、吸い込み圧力(可撓部材に加える負圧)
を強くしたり、流入管を太くしたりしているが、負圧を
強くすると、心臓と流入管との接続部から空気を吸い込
む危険性が高くなる。流入管は通常心房内に差し込むた
め、極力小径であるのが好ましいので、大径にすること
は生体に流入管を接続しにくくなり、また空気を吸引し
てしまう危険性が高くなる。
Since this blood pump operates on the principle of alternately inflowing/outflowing blood into one pump chamber, blood cannot be sucked in (for example, from the left atrium) during the outflow period. For this reason, suction pressure (negative pressure applied to the flexible member) is necessary to suction enough blood.
However, increasing the negative pressure increases the risk of inhaling air from the connection between the heart and the inflow tube. Since the inflow tube is usually inserted into the atrium, it is preferable that the diameter be as small as possible; increasing the diameter makes it difficult to connect the inflow tube to the living body and increases the risk of aspirating air.

特開昭55−138459号公報には、2個の血液ポン
プを並列に接続して、両者の吸入口を共通に接続しかつ
両者の吐出口を共通に接続して、一方のポンプ室を収縮
させるときには他方のポンプ室を拡大させてこれを交互
に行なう。これによれば、上述の1個の血液ポンプを用
いる場合よりも、1個の血液ポンプの流入/流出量を小
さくできるので、負圧を格別に大きくしなくても、また
流入管径を格別に大きくしなくても、比較的に多量の血
液ポンピングが可能と推察される。
Japanese Unexamined Patent Publication No. 55-138459 discloses that two blood pumps are connected in parallel, their inlets are commonly connected, and their discharge ports are commonly connected, and one pump chamber is contracted. When doing so, the other pump chamber is enlarged and this is done alternately. According to this, the inflow/outflow amount of one blood pump can be made smaller than when one blood pump is used as described above, so there is no need to make the negative pressure particularly large, and the diameter of the inflow pipe is not particularly large. It is presumed that a relatively large amount of blood can be pumped without increasing the size.

(発明が解決しようとする課題) しかしながら、上述の2個の血液ポンプを並列に接続す
る場合、各血液ポンプは、流入口部と流出口部にそれぞ
れ逆止弁(流入弁および流出弁)を要し、2個の血液ポ
ンプで総計4個の逆止弁を備えることになる。弁部分で
は血液が乱流になり易く、局所的に血流に澱を生じ血栓
を生じ易い。
(Problem to be Solved by the Invention) However, when the two blood pumps described above are connected in parallel, each blood pump has a check valve (an inflow valve and an outflow valve) at the inlet port and the outflow port, respectively. In short, two blood pumps are equipped with a total of four check valves. Blood tends to flow turbulently in the valve area, causing local stagnation in the blood flow and causing thrombus.

したがって弁部材の材質、形状9表面処理、配置空間形
状などに特に考慮が必要であり、弁部材およびその周り
の構造部分は血液ポンプでは非常に高価となる所である
ので、多くの逆止弁を用いることは、不利益が大きい。
Therefore, special consideration must be given to the material of the valve member, its shape and surface treatment, and the shape of the space in which it is placed.The valve member and its surrounding structural parts are extremely expensive in blood pumps, so many check valves are There are great disadvantages to using .

本発明は、流入管に加える血液吸引圧を格別に強くする
ことなくしかも流入管径を格別に太くすることなくポン
ピング血液量を多くすることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to increase the amount of blood pumped without particularly increasing the blood suction pressure applied to the inflow tube and without increasing the diameter of the inflow tube.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の血液ポンプ装置は、可変内容積のポンプ室を区
画する第1可撓部材;前記ポンプ室に流入弁を介して連
通ずる流入管部材;前記ポンプ室に流出弁を介して連通
ずる流出管部材:前記ポンプ室の外部から第1可撓部材
に該ポンプ室の容積を縮める圧力および拡げる圧力を交
互に加えるポンピング手段;および、第2可撓部材で区
画□された可変容積室を有し、該可変容積室が前記流入
管に連通した血液リザーバ;を備える。
(Means for Solving the Problems) The blood pump device of the present invention includes: a first flexible member that partitions a pump chamber with a variable internal volume; an inflow pipe member that communicates with the pump chamber via an inflow valve; an outflow pipe member that communicates with the pump chamber via an outflow valve; a pumping means that alternately applies pressure to the first flexible member from the outside of the pump chamber to compress and expand the volume of the pump chamber; The blood reservoir has a variable volume chamber divided into squares, and the variable volume chamber communicates with the inflow pipe.

(作用) ポンピング手段が、ポンプ室の外部から第1可撓部材に
ポンプ室の容積を縮める正圧力および拡げる負圧力を交
互に加え、流入管が例えば生体心臓の左心房に接続され
流出管が大動脈に接続されていると、ポンピング手段が
正圧力を加えた(吐出期間の)とき第1可撓部材の外表
面に圧縮力が加わるので可撓部材が収縮しその内空間す
なわちポンプ室の容積が小さくなり、ポンプ室の血液が
流出管を経て大動脈に送出され、ポンピング手段が負圧
力を加えた(吸入期間の)とき第1可撓部材の外表面に
引張力が加わるので第1可撓部材が拡大しポンプ室の容
積が大きくなり、左心房の血液が流入管を通してポンプ
室に吸入される。
(Function) The pumping means alternately applies a positive pressure that reduces the volume of the pump chamber and a negative pressure that expands the volume of the pump chamber from the outside of the pump chamber to the first flexible member, and the inflow tube is connected to, for example, the left atrium of the living heart, and the outflow tube is connected to the first flexible member. When connected to the aorta, when the pumping means applies positive pressure (during the pumping period), a compressive force is applied to the outer surface of the first flexible member, causing the flexible member to contract and increase the volume of its interior space, i.e., the pump chamber. becomes smaller, the blood in the pumping chamber is pumped through the outflow tube to the aorta, and when the pumping means applies a negative pressure (during the suction period), a tensile force is applied to the outer surface of the first flexible member, so that the first flexible member The member expands, increasing the volume of the pump chamber, and blood from the left atrium is drawn into the pump chamber through the inflow tube.

しかして、吸入期間のとき、吸引圧がリザーバの可変容
積室および流入管に加わり、リザーバの可変容積室は第
2可撓部材で区画されているので、リザーバの可変容積
室の血液および流入管の血液がポンプ室に吸引される。
Thus, during the inhalation period, suction pressure is applied to the variable volume chamber of the reservoir and the inflow tube, and since the variable volume chamber of the reservoir is partitioned by the second flexible member, the blood in the variable volume chamber of the reservoir and the inflow tube blood is aspirated into the pump chamber.

このときの吸引圧によりリザーバの可変容積室が収縮す
る。すなわちリザーバの第2可撓部材が収縮する。吐出
期間のときには、流入管およびリザーバの可変容積室に
は、ポンプ室の圧力が加わらない。そこでリザーバの第
2可撓部材がその復元力により、ならびに流入管の血流
の慣性により、拡大して流入管の血液を吸引し、血液が
可変容積室に貯留される。次にポンプ室の吸引期間にな
ると、ポンプ室の負圧が流入管およびリザーバの可変容
積室に加わり、流入管およびリザーバの可変容積室の血
液がポンプ室に吸入され、リザーバの可変容積室が収縮
し第2可撓部材が収縮する。以下同様にして、ポンプ室
が正圧のときにはリザーバの可変容積室に流入管の血液
が吸入され第2可撓部材が拡大し、ポンプ室が負圧のと
きには流入管およびリザーバの可変容積室の血液がポン
プ室に吸入され第2可撓部材が収縮し、ポンプ室の正圧
/負圧の交互切換わりに伴って、リザーバの可変容積室
が拡大(第2可撓部材が拡大)/収縮(第2可撓部材が
収縮)の交互切換わりを生じ、ポンプ室の正圧期間にも
、流入管を介して左心房の血液がリザーバの可変容積室
に吸引される。
The suction pressure at this time causes the variable volume chamber of the reservoir to contract. That is, the second flexible member of the reservoir contracts. During the discharge period, the pressure of the pump chamber is not applied to the inflow tube and the variable volume chamber of the reservoir. Thereupon, the second flexible member of the reservoir expands due to its restoring force and the inertia of the blood flow in the inflow tube to suck blood from the inflow tube, and the blood is stored in the variable volume chamber. Next, during the suction period of the pump chamber, the negative pressure of the pump chamber is applied to the inflow tube and the variable volume chamber of the reservoir, and the blood in the inflow tube and the variable volume chamber of the reservoir is sucked into the pump chamber, and the variable volume chamber of the reservoir is The second flexible member contracts. Similarly, when the pump chamber has positive pressure, the blood in the inflow tube is sucked into the variable volume chamber of the reservoir and the second flexible member expands, and when the pump chamber has negative pressure, the blood in the inflow tube and the variable volume chamber of the reservoir expands. Blood is sucked into the pump chamber, the second flexible member contracts, and as the pump chamber alternates between positive and negative pressure, the variable volume chamber of the reservoir expands (the second flexible member expands)/contracts ( The second flexible member alternately contracts (contracting), and blood from the left atrium is aspirated into the variable volume chamber of the reservoir via the inflow tube, even during periods of positive pressure in the pump chamber.

このようにポンプ室の正圧期間(吐出期間)にもリザー
バが流入管を介して左心房より血液を吸引するので、血
液吸引量が多くなり、ポンプ室の負圧を格別に強くする
ことなく、また流入管を格別に太くすることなく、吸引
血液量が増加する。
In this way, even during the positive pressure period (discharge period) in the pump chamber, the reservoir sucks blood from the left atrium via the inflow tube, so the amount of blood suction increases and the negative pressure in the pump chamber does not become particularly strong. Moreover, the amount of blood to be aspirated can be increased without making the inflow pipe particularly thick.

リザーバは、可変容積室を区画する第2可撓部材を有す
るものであり、格別に逆止弁を要しないので、血液に乱
流を生じにくく、したがって血栓を生じない。
The reservoir has a second flexible member that defines a variable volume chamber, and does not require a special check valve, so turbulence is less likely to occur in the blood and therefore no thrombus is generated.

リザーバの上述の利点を更に高めるため、本願のもう1
つの発明では、前記ポンピング手段が吐出期間のときに
リザーバの第2可撓部材にその外部から拡げる圧力を加
える引圧印加手段と、前記ポンピング手段が吸入期間の
ときにリザーバの第2可撓部材にその外部から縮める圧
力を加える押圧印加手段と、を更に備える。
In order to further enhance the above-mentioned advantages of the reservoir, another aspect of the present application is proposed.
In one invention, when the pumping means is in the ejection period, a suction pressure applying means applies a pressure to expand the second flexible member of the reservoir from the outside, and when the pumping means is in the inhalation period, the second flexible member of the reservoir is expanded. It further includes a pressure applying means for applying shrinking pressure from the outside.

これによれば、ポンプ室の正圧/負圧の交互切換わりに
伴った、リザーバの可変容積室の拡大/収縮の幅が大き
くなり、リザーバの前述の利点が更・に大きくなる。
According to this, the range of expansion/contraction of the variable volume chamber of the reservoir is increased as the positive pressure/negative pressure of the pump chamber is alternately switched, and the above-mentioned advantages of the reservoir are further enhanced.

本発明の他の目的および特徴は、図面を参照した以下の
実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

(実施例) 第1図に、本発明の一実施例を示す。人工心臓1は、外
容器内の第1作動室3に第1ダイアフラム2を収納し、
第1ダイアフラム2の内空間(第1ポンプ室)4に吸引
用逆止弁5を介して第1カニューレフを連通とし、かつ
吐出用逆止弁6を介して第2カニユーレ8を連通とした
公知の構造のものであり、図示状態では、第1カニユー
レ7を生体の心臓の左心房17に接続し、第2カニユー
レ8を大動脈18に接続している。
(Example) FIG. 1 shows an example of the present invention. The artificial heart 1 houses a first diaphragm 2 in a first working chamber 3 in an outer container,
A known technique in which a first cannula is communicated with the inner space (first pump chamber) 4 of the first diaphragm 2 via a suction check valve 5, and a second cannula 8 is communicated via a discharge check valve 6. In the illustrated state, the first cannula 7 is connected to the left atrium 17 of the heart of the living body, and the second cannula 8 is connected to the aorta 18.

第1カニユーレアには血液リザーバ10が介挿されてお
り、人工心臓1がポンピング駆動されると、生体血液が
、左心房17から吸引されて第1カニユーレ7、血液リ
ザーバ109人工心illおよび第2カニユーレ8を通
って、大動脈18に送られる。
A blood reservoir 10 is inserted into the first cannula, and when the artificial heart 1 is pumped, living body blood is sucked from the left atrium 17 to the first cannula 7, the blood reservoir 109, the artificial heart ill, and the second cannula. It passes through the cannula 8 and into the aorta 18.

ここで人工心1111をポンピング駆動するポンピング
装置12の構成を説明する。モータ29で回転駆動され
るエアーポンプ30が、圧縮空気をアキュムレータ20
内の正圧調整用の電磁弁(開閉弁)22に与え、電磁弁
22が開のときアキュムレータ20の正圧室21に該圧
縮空気が供給される。アキュムレータ20の負圧室25
の空気は、負圧調整用の電磁弁(開閉弁)26を通して
、モータ31で回転駆動されるエアーポンプ32で吸引
される。正圧室21の圧縮空気は、正圧開閉用の電磁弁
(開閉弁)23を通して、人工心臓1の第1作動室3に
連通した第1ボンピング流体管13に供給され、負圧室
25の負圧は、負圧開閉用の電磁弁(開閉弁)27を通
して第1ボンピング流体管13に供給される。
Here, the configuration of the pumping device 12 that pumps and drives the artificial heart 1111 will be explained. An air pump 30 rotationally driven by a motor 29 supplies compressed air to the accumulator 20.
When the solenoid valve 22 is open, the compressed air is supplied to the positive pressure chamber 21 of the accumulator 20. Negative pressure chamber 25 of accumulator 20
The air is sucked by an air pump 32 rotationally driven by a motor 31 through a solenoid valve (on-off valve) 26 for adjusting negative pressure. The compressed air in the positive pressure chamber 21 is supplied to the first pumping fluid pipe 13 communicating with the first working chamber 3 of the artificial heart 1 through a positive pressure opening/closing electromagnetic valve (opening/closing valve) 23 , and is supplied to the first pumping fluid pipe 13 communicating with the first working chamber 3 of the artificial heart 1 . Negative pressure is supplied to the first pumping fluid pipe 13 through a solenoid valve (on-off valve) 27 for opening and closing negative pressure.

アキュムレータ20の正圧室21の圧力を圧力センサ3
3が検出し、負圧室34の圧力を圧力センサ34が検出
し、第1ボンピング流体管13の圧力すなわち人工心臓
1の第1作動室3の内圧、を圧力センサ35が検出する
The pressure in the positive pressure chamber 21 of the accumulator 20 is detected by the pressure sensor 3.
3, the pressure sensor 34 detects the pressure in the negative pressure chamber 34, and the pressure sensor 35 detects the pressure in the first pumping fluid pipe 13, that is, the internal pressure in the first working chamber 3 of the artificial heart 1.

上述の電磁弁22.’ 23,26.27および圧カヤ
ンサ33,34.35は、第3図に示すようにCPU 
(マイクロプロセッサ)60を主体とするコントローラ
に接続されており、このコントローラが、外部同期信号
又は内部生成のタイミングに基づいて電磁弁23.27
を交互に開閉しかつ圧力センサ33〜35の検出圧力に
基づいて電磁弁22.26を開閉して、人工心臓1の作
動室3の内圧を、第5図に示すDPDのように、正圧と
負圧に脈動させる。この圧力変動DPDにより、人工心
臓1の第1ダイアフラム2が収縮/拡大駆動されて、第
1カニユーレ7および第2カニユーレ8に負圧および正
圧が間欠的に加わる。これにより生体血液がボンピング
される。
The above-mentioned solenoid valve 22. ' 23, 26.27 and pressure cancelers 33, 34.35 are connected to the CPU as shown in FIG.
(microprocessor) 60, and this controller controls the solenoid valves 23, 27 based on an external synchronization signal or internally generated timing.
are alternately opened and closed, and the electromagnetic valves 22 and 26 are opened and closed based on the pressure detected by the pressure sensors 33 to 35, and the internal pressure of the working chamber 3 of the artificial heart 1 is adjusted to a positive pressure as shown in the DPD shown in FIG. and pulsate to negative pressure. Due to this pressure fluctuation DPD, the first diaphragm 2 of the artificial heart 1 is driven to contract/expand, and negative pressure and positive pressure are intermittently applied to the first cannula 7 and the second cannula 8. This causes biological blood to be pumped.

ポンピング装置12の、以上に説明した構成部分および
動作は、本出願人が先に出願した特願昭63−6293
4号に提示したものである。
The above-described components and operation of the pumping device 12 are described in Japanese Patent Application No. 63-6293 filed earlier by the present applicant.
This is what was presented in No. 4.

次に、本発明の実施部分について説明すると、血液リザ
ーバ10は、第2図に示すように、第1カニユーレ7を
途中で切断して切断部に第2ダイアフラム9を接続し、
かつ第2ダイアフラム9の外側を第2作動室11を置い
て外容器16で覆って第2作動室11を気密に封止し、
第2作動室11を第2ポンピング−流体管15に連通と
したものである。第2作動室11に負圧が加わると第2
ダイアフラム9が拡大してその内空間すなわち第2ポン
プ室14の容積が増大し、第1カニユーレアの血液が第
2ポンプ室14に吸引される。第2ポンプ室14に人工
心臓1より負圧が加わると、第2ポンプ室14の血液が
人工心臓1に流れ、第2ダイアフラム9が収縮する。
Next, the implementation part of the present invention will be described. As shown in FIG. 2, the blood reservoir 10 is constructed by cutting the first cannula 7 in the middle and connecting the second diaphragm 9 to the cut part.
and a second working chamber 11 is placed on the outside of the second diaphragm 9 and covered with an outer container 16 to airtightly seal the second working chamber 11,
The second working chamber 11 is communicated with a second pumping fluid pipe 15. When negative pressure is applied to the second working chamber 11, the second
The diaphragm 9 expands to increase the volume of its internal space, that is, the second pump chamber 14, and blood from the first cannula is sucked into the second pump chamber 14. When negative pressure is applied to the second pump chamber 14 from the artificial heart 1, blood in the second pump chamber 14 flows to the artificial heart 1, and the second diaphragm 9 contracts.

第2作動室11に連通した第2ポンピング流体管15は
、アキュムレータ20の正圧室21内の電磁弁(開閉弁
)24が開のとき正圧室21と連通し、負圧室25内の
電磁弁(開閉弁)27が開のときには負圧室25と連通
する。第2ポンピング流体管15の内圧、すなわち第2
作動室11の圧力は、圧力センサ36で検出される。
The second pumping fluid pipe 15 that communicates with the second working chamber 11 communicates with the positive pressure chamber 21 when the electromagnetic valve (on-off valve) 24 in the positive pressure chamber 21 of the accumulator 20 is open, and When the electromagnetic valve (on-off valve) 27 is open, it communicates with the negative pressure chamber 25 . The internal pressure of the second pumping fluid pipe 15, i.e. the second
The pressure in the working chamber 11 is detected by a pressure sensor 36.

第3図に、第2図に示す電磁弁22〜24゜26〜28
の開閉を制御するコントローラの構成を示す。なお、第
1図に示す生体にはもう1個の人工心臓101が接続さ
れており、この人工心臓101にも血液リザーバ110
が結合され、これらの人工心臓101および血液リザー
バ110がもう1組のボンピング族W112に接続され
ている。このポンピング装置112は、第3図に示す構
成のコントローラと同様な構成のコントローラ(図示せ
ず)により、ボンピング装置12と同様に制御される。
Figure 3 shows the solenoid valves 22~24°26~28 shown in Figure 2.
The configuration of the controller that controls the opening and closing of the is shown. Note that another artificial heart 101 is connected to the living body shown in FIG. 1, and this artificial heart 101 also has a blood reservoir 110.
These artificial heart 101 and blood reservoir 110 are connected to another set of pumping groups W112. This pumping device 112 is controlled in the same manner as the pumping device 12 by a controller (not shown) having a configuration similar to that shown in FIG.

以下においては、人工心臓1.血液リザーバ10、ボン
ピング装置12および第3図に示すコントローラの動作
を説明する。
In the following, artificial heart 1. The operation of the blood reservoir 10, the pumping device 12, and the controller shown in FIG. 3 will be described.

第3図を参照すると、このコントローラの主体はCPU
60であり、その入出力ポートには、A/D変換器50
.操作ボード40及びドライバ70が接続されている。
Referring to Figure 3, the main body of this controller is the CPU.
60, and an A/D converter 50 is installed at its input/output port.
.. An operation board 40 and a driver 70 are connected.

圧力センサ33〜36は、検出圧力に対応したレベルの
電気信号を出力する。
The pressure sensors 33 to 36 output electrical signals at a level corresponding to the detected pressure.

これらの電気信号のレベル(検出圧力)は、A/D変換
器50によってサンプリングされデジタルデータに変換
されてCPU60で読取られる。
The levels of these electrical signals (detected pressure) are sampled by the A/D converter 50, converted into digital data, and read by the CPU 60.

操作ボード40には、図示しないが、各種駆動パラメー
タの調整を指示する多数のキースイッチと、その時の各
パラメータの値を表示する様々な表示器が備わっている
。調整可能なパラメータとしては、人工心臓1に印加す
る駆動流体(空気)の正圧、負圧、正圧を印加する期間
、負圧を印加する期間及び拍動周期が含まれ、かつ、血
液リザーバ10に印加する正圧および負圧が含まれてい
る。また、この例では、人工心臓1に正圧を印加するタ
イミングと負圧を印加するタイミングとをCPU60の
内部で生成するか、又は外部から印加される同期信号(
第3図の「外部同期」)に同期するかを切換え可能にな
っている。
Although not shown, the operation board 40 is equipped with a large number of key switches for instructing adjustment of various drive parameters, and various indicators for displaying the values of each parameter at that time. Adjustable parameters include the positive pressure, negative pressure, period of applying positive pressure, period of applying negative pressure, and pulsation cycle of the driving fluid (air) applied to the artificial heart 1, and the period of applying the negative pressure. Includes positive and negative pressure applied to 10. Further, in this example, the timing for applying positive pressure and the timing for applying negative pressure to the artificial heart 1 are generated within the CPU 60, or a synchronization signal (
It is possible to switch between synchronization with "external synchronization" (see FIG. 3).

CPU60の6個の出力ポートのそれぞれには、電磁弁
22〜24.26〜28のそれぞれの開(通電ニオン)
/閉(非通電:オフ)を指示する信号(H/L)が出力
され、これらの信号がドライバ70に与えられて、ドラ
イバ70が各信号のレベルに対応して電磁弁22〜24
.26〜28をオン/オフし、これにより電磁弁22〜
24.26〜28が開〆閉する。
Each of the six output ports of the CPU 60 has an open (energized onion)
/close (de-energized: off) signals (H/L) are output, these signals are given to the driver 70, and the driver 70 operates the solenoid valves 22 to 24 in accordance with the level of each signal.
.. 26 to 28 are turned on/off, thereby turning on and off the solenoid valves 22 to 28.
24. 26-28 open and close.

・第4a図および第4b図に、第3図のCPU60の制
御動作の概要を示す。
- Figures 4a and 4b outline the control operation of the CPU 60 in Figure 3.

まず第4a図を参照する。電源が投入されると、C,P
U60はまず初期化を行なう(ステップ1;以下カッコ
内では、ステップという語を省略する)。即ち、内部メ
モリの内容をクリアし、出力ホトには待機時の出力信号
レベルを出力し、内部メモリの各種パラメータ値を書込
む領域(レジスタ)に予め定めている初期値(標準値)
を設定(書込み)する(2.71)。人工心臓Iの第1
作動室3に加える正圧の基準値を格納する正圧基準値レ
ジスタPsp1および目標値を格納する正圧目標値レジ
スタPsp2に、共に標準値Psplを書込み、第1作
動室3に加える負圧の基準値を格納する負圧基準値レジ
スタPSN1および目標値を格納する負圧目標値レジス
タPSN2には、共に標準値PSNjを書込み(2)、
血液リザーバ10の第2作動室11に加える正圧の目標
値を格納する正圧目標値レジスタPsp4には標準値P
sp3を、第2作動室11に加える負圧の目標値を格納
する負圧目標値レジスタPsN4には標準値PSN3を
、書込む(71)。
Reference is first made to FIG. 4a. When the power is turned on, C, P
U60 first performs initialization (step 1; hereinafter, the word step will be omitted in parentheses). In other words, the contents of the internal memory are cleared, the output signal level during standby is output to the output port, and the initial value (standard value) predetermined in the area (register) in which various parameter values of the internal memory are written.
Set (write) (2.71). Artificial heart I first
The standard value Pspl is written in both the positive pressure reference value register Psp1 that stores the reference value of the positive pressure applied to the working chamber 3 and the positive pressure target value register Psp2 that stores the target value, and the negative pressure applied to the first working chamber 3 is written. A standard value PSNj is written to both the negative pressure reference value register PSN1 that stores the reference value and the negative pressure target value register PSN2 that stores the target value (2),
A standard value P is stored in a positive pressure target value register Psp4 that stores a target value of positive pressure to be applied to the second working chamber 11 of the blood reservoir 10.
A standard value PSN3 is written in a negative pressure target value register PsN4 that stores a target value of negative pressure to be applied to the second working chamber 11 (71).

初期化(1)および標準値等の設定(2,71)を終了
すると、CPU60は、操作ボード4oに備わった各種
キースイッチの入力操作の読取り、および、その時の各
種パラメータの設定値及び検出圧力の、操作ボード40
上への表示出力処理を行なう (3)。
After completing the initialization (1) and setting of standard values, etc. (2, 71), the CPU 60 reads the input operations of the various key switches provided on the operation board 4o, and reads the set values and detected pressure of various parameters at that time. , operation board 40
Perform upward display output processing (3).

すなわち、操作ボード40の正圧又は負圧の設定値更新
(アップ又はダウン)を指示するスイッチが操作された
時には1人工心臓1と血液リザーバ10の一方を選択す
る指定スイッチならびに正圧か負圧かの一方を選択する
指定スイッチの指定状態を参照して、人工心臓1が指定
されその正圧が指定されているときには、正圧基準値レ
ジスタPsp1の内容Psp1を更新(アップ又はダウ
ン)しく4.5)+負圧が指定されているときには、負
圧基準値レジスタPSNIの内容PSN1を更新(アッ
プ又はダウン)する(6,7)。血液リザーバ10が指
定されその正圧が指定されているときには、正圧目標値
レジスタP5P4の内容Psp4を更新(アップ又はダ
ウン)L (72,73) 、負圧が指定されていると
きには、負圧目標値レジスタPSN4の内容pHN4を
更新(アップ又はダウン)する(74.75)。
That is, when the switch on the operation board 40 that instructs to update the set value of positive pressure or negative pressure (up or down) is operated, the designated switch for selecting either the artificial heart 1 or the blood reservoir 10 and the positive pressure or negative pressure are activated. When the artificial heart 1 is designated and its positive pressure is designated, the content Psp1 of the positive pressure reference value register Psp1 is updated (up or down) by referring to the designated state of the designated switch that selects one of the two. .5) When +negative pressure is specified, the content PSN1 of the negative pressure reference value register PSNI is updated (up or down) (6, 7). When the blood reservoir 10 is specified and its positive pressure is specified, the content Psp4 of the positive pressure target value register P5P4 is updated (up or down) L (72, 73), and when negative pressure is specified, the negative pressure is The content pHN4 of the target value register PSN4 is updated (up or down) (74.75).

外部同期信号を利用しないときには、ステップ8から9
に進む。操作ボード40の、正圧印加期間、負圧印加期
間9拍動周期等のパラメータの更新を指示するスイッチ
が操作された場合には、ステップ10および11を実行
する。すなわち、指示に応じてパラメータの更新を行な
い、人工心臓1の拍動タイミング(正圧/負圧を切換え
るタイミング)を決定する内部タイマの値を設定する。
If you do not use an external synchronization signal, follow steps 8 to 9.
Proceed to. When a switch on the operation board 40 that instructs to update parameters such as the positive pressure application period, the negative pressure application period, and 9 pulsation cycles is operated, steps 10 and 11 are executed. That is, the parameters are updated in accordance with the instructions, and the value of the internal timer that determines the beat timing of the artificial heart 1 (timing for switching between positive pressure and negative pressure) is set.

次に第4b図を参照する。CPU60は次に、内部タイ
マもしくは外部同期信号を参照して、人工心臓1の第1
作動室3に印加する駆動圧力の負圧から正圧への切換え
タイミングになったかをチエツクしく21)、該タイミ
ングになっているとフラグレジスタFIIに1 (正圧
期間であることを示す)を書込み(76)、電磁弁23
を閉から開に電磁弁27を開から閉に切換えて、この切
換えによる第1ボンピング流体管13の内部圧力の立上
り速度(切換えてから第5図に示すΔtuの時間経過後
の圧力センサ35の検出圧P mp)を検出して、この
立上り速度に対応して立上り速度が高いと低値に、立上
り速度が低いと高値に正圧目標値レジスタPsp2の内
容Psp2を補正する(22〜31:この内容詳細は、
前述の特願昭63−62934号に開示されているので
、ここでの詳細説明は省略する)。
Reference is now made to Figure 4b. Next, the CPU 60 refers to the internal timer or the external synchronization signal to set the first
Check whether it is the timing to switch the drive pressure applied to the working chamber 3 from negative pressure to positive pressure21).If the timing is reached, set 1 (indicating that it is a positive pressure period) in the flag register FII. Writing (76), solenoid valve 23
The solenoid valve 27 is switched from open to closed, and the rise rate of the internal pressure of the first pumping fluid pipe 13 due to this switching (the rate of rise of the internal pressure of the first pumping fluid pipe 13 (the rise rate of the pressure sensor 35 after the time Δtu shown in FIG. 5 after switching) is The detected pressure Psp2 is corrected to a low value when the rising speed is high, and to a high value when the rising speed is low, in accordance with the rising speed (22 to 31: For details of this content,
(Since it is disclosed in the above-mentioned Japanese Patent Application No. 63-62934, detailed explanation here will be omitted.)

負圧から正圧への切換えタイミングになっていないと、
正圧から負圧への切換えタイミングになったかをチエツ
クしく32)、該タイミングになっているとフラグレジ
スタFIIに0(負圧期間であることを示す)を書込み
(77)、電磁弁23を開から閉に、電磁弁27を閉か
ら開に切換えて、この切換えによる第1ポンピング流体
管13の内部圧力の立下り速度(切換えてから第5図に
示すΔtuの時間経過後の圧力センサ35の検出圧P 
mn)を検出して、この立下り速度に対応して立下り速
度が高いと高値に、立下り速度が低いと低値に負圧目標
値レジスタP 5 N 2の内容PSN2を補正する(
33〜42:この内容詳細も、前述の特願昭63−62
934号に開示されているので、ここでの詳細説明は省
略する)。
If the timing is not right to switch from negative pressure to positive pressure,
Check whether it is the timing to switch from positive pressure to negative pressure (32), and if it is, write 0 (indicating that it is a negative pressure period) to the flag register FII (77), and turn on the solenoid valve 23. The solenoid valve 27 is switched from open to closed, and the solenoid valve 27 is switched from closed to open. Detection pressure P
mn) and corrects the contents PSN2 of the negative pressure target value register P5N2 to a high value when the falling speed is high and to a low value when the falling speed is low in accordance with this falling speed (
33-42: The details of this content are also in the above-mentioned patent application 1983-1986.
934, detailed explanation here will be omitted).

このように、負圧期間から正圧期間へ、又はその逆への
切換えタイミングになったときの処理を終了すると、あ
るいは、いずれの切換えタイミングにもなっていないと
、CPU60は、次に人工心臓1へ加える正圧力を調整
する正圧制御を実行しく51〜57)、また人工心ll
lへ加える負圧力を調整する負圧制御を実行する(58
〜64)。
In this way, when the process for switching from the negative pressure period to the positive pressure period or vice versa is completed, or when neither switching timing has been reached, the CPU 60 next controls the artificial heart 51 to 57) to adjust the positive pressure applied to the artificial heart 1.
Execute negative pressure control to adjust the negative pressure applied to l (58
~64).

これらの内容は、前述の特願昭63−62934号に詳
細に開示されている。概要を説明すると、正圧期間(F
II=1)のときには、圧力センサ35が検出する圧力
(第5図のDPD)が基準値レジスタPsp1の内容と
なるように電磁弁22を開閉制御し、すなわち検出圧D
PDが基準値Psp1以下であると電磁弁22を開に、
検出圧DPDが基準値pspxを越すと電磁弁22を閉
にする。一方、圧力センサ34の検出圧DPNが標準値
レジスタPSN2になるように電磁弁26を開閉制御し
、すなわち検出圧DPNが標準値PsH2を越えている
と電磁弁26を開に、検出圧DPNが標準値以下になる
と電磁弁26を閉にする。
These contents are disclosed in detail in the aforementioned Japanese Patent Application No. 63-62934. To give an overview, the positive pressure period (F
II=1), the solenoid valve 22 is controlled to open and close so that the pressure detected by the pressure sensor 35 (DPD in FIG. 5) becomes the content of the reference value register Psp1, that is, the detected pressure D
When PD is below the reference value Psp1, the solenoid valve 22 is opened.
When the detected pressure DPD exceeds the reference value pspx, the solenoid valve 22 is closed. On the other hand, the solenoid valve 26 is controlled to open and close so that the detected pressure DPN of the pressure sensor 34 becomes the standard value register PSN2. In other words, when the detected pressure DPN exceeds the standard value PsH2, the solenoid valve 26 is opened and the detected pressure DPN is When the temperature falls below the standard value, the solenoid valve 26 is closed.

負圧期間(FII=O)のときには、圧力センサ35が
検出する圧力(第5図のDPD)が基準値レジスタPs
Nlの内容となるように電磁弁26を開閉制御し、すな
わち検出圧DPDが基準値P8N1以上であると電磁弁
26を開に、検出圧DPDが基準値P5N1より低くな
ると電磁弁26を閉にする。一方、圧力センサ33の検
出圧DPPが標準値レジスタPsp2になるように電磁
弁22を開閉制御し、すなわち検出圧DPDが標準値P
sp2以下であると電磁弁22を開に、検出圧DPDが
標準値Psp2を越えると電磁弁22を閉にする。
During the negative pressure period (FII=O), the pressure detected by the pressure sensor 35 (DPD in FIG. 5) is stored in the reference value register Ps.
The solenoid valve 26 is controlled to open and close so that the content of Nl is reached, that is, the solenoid valve 26 is opened when the detected pressure DPD is equal to or higher than the reference value P8N1, and the solenoid valve 26 is closed when the detected pressure DPD is lower than the reference value P5N1. do. On the other hand, the solenoid valve 22 is controlled to open and close so that the detected pressure DPP of the pressure sensor 33 becomes the standard value register Psp2, that is, the detected pressure DPD becomes the standard value Psp2.
When the detected pressure DPD is below the standard value Psp2, the solenoid valve 22 is opened, and when the detected pressure DPD exceeds the standard value Psp2, the solenoid valve 22 is closed.

人工心臓1についての圧力制御(51〜63)のサブル
ーチンを抜けるとCPU60は、フラグレジスタFII
の内容を参照して、それが0(ポジピング装置12の出
力圧の負圧期間)であると血液リザーバ10に関するf
正圧制御」のサブルーチン(79)を実行し、レジスタ
FIIの内容が1 (ポンピング装置12の出力圧の正
圧期間)であると血液リザーバ10に関する「負圧制御
」のサブルーチン(80)を実行し、このサブルーチン
を抜けると、ステップ3に戻り、ステップ3以降を実行
する。このようにして、CPU60は、ステップ3〜6
4.78〜79又は80、を繰り返し実行する。
Upon exiting the subroutine for pressure control (51 to 63) for the artificial heart 1, the CPU 60 registers the flag register FII.
If it is 0 (negative pressure period of the output pressure of the positive pumping device 12), then
If the content of the register FII is 1 (positive pressure period of the output pressure of the pumping device 12), the subroutine (80) for "negative pressure control" regarding the blood reservoir 10 is executed. After exiting this subroutine, the process returns to step 3 and executes step 3 and subsequent steps. In this way, the CPU 60 performs steps 3 to 6.
4. Repeat steps 78 to 79 or 80.

第4c図に、血液リザーバ10に関する「正圧制御」の
サブルーチン(79)の内容を示す。このサブルーチン
に進むとCP U 6.0は、電磁弁28を閉(負圧出
力遮断)、としく81)、圧力センサ36の検出圧DP
Aを読んで、検出圧DPAが、目標値レジスタPsp4
の内容Psp4以上であるかをチエツクする(82)。
FIG. 4c shows the contents of the "positive pressure control" subroutine (79) regarding the blood reservoir 10. When proceeding to this subroutine, the CPU 6.0 closes the solenoid valve 28 (cutting off the negative pressure output) (81), and closes the detected pressure DP of the pressure sensor 36.
A is read and the detected pressure DPA is set in the target value register Psp4.
It is checked whether the content of Psp is equal to or higher than 4 (82).

DPAがPsp4以上であると電磁弁24を閉(正圧出
力遮断)としく84)、DPAがPsp4未満であると
電磁弁24を開(正圧出力)として(83)、ステップ
3に戻る(リターン)。
When DPA is Psp4 or more, the solenoid valve 24 is closed (positive pressure output cutoff) (84), and when DPA is less than Psp4, the solenoid valve 24 is opened (positive pressure output) (83), and the process returns to step 3 ( return).

第4d図に、血液リザーバ10に関する「負圧制御」の
サブルーチン(80)の内容を示す。このサブルーチン
に進むとCPU60は、電磁弁24を閉(正圧出力遮断
)としく85)、圧力センサ36の検出圧DPAを読ん
で、検出圧DPAが、目標値レジスタPsN4の内容P
SN4以下であるかをチエツクする(86)、DPAが
P sp4以下であると電磁弁28を閉(負圧出力遮断
)としく88)、DPAがP sp4を越えていると電
磁弁28を開(負圧出力)として(87)、ステップ3
に戻る(リターン)。
FIG. 4d shows the contents of the "negative pressure control" subroutine (80) regarding the blood reservoir 10. When the process proceeds to this subroutine, the CPU 60 closes the solenoid valve 24 (cutting off positive pressure output) (85), reads the detected pressure DPA of the pressure sensor 36, and determines whether the detected pressure DPA is the content P of the target value register PsN4.
Checks whether it is SN4 or less (86). If DPA is Psp4 or less, the solenoid valve 28 is closed (negative pressure output cutoff) (88), and if DPA exceeds Psp4, the solenoid valve 28 is opened. (Negative pressure output) (87), step 3
Return to (return).

以上に説明したCPU60の制御動作により、人工心臓
1の第1作動室3には、第5図に示す駆動圧力DPDが
与えられ、血液リザーバ1oの第2作動室11には、第
5図に示す駆動圧力DPAが与えられ、電磁弁23,2
4,27.28が第5図に示すように開閉され、血液リ
ザーバ1oの第2作動室11には、人工心臓1の第1作
動室3に加えられる圧力とは逆位相であって低い圧力(
絶対圧)の脈動圧が加えられる。
By the control operation of the CPU 60 explained above, the driving pressure DPD shown in FIG. 5 is applied to the first working chamber 3 of the artificial heart 1, and the driving pressure DPD shown in FIG. The driving pressure DPA shown is given, and the solenoid valves 23, 2
4, 27, and 28 are opened and closed as shown in FIG. (
A pulsating pressure (absolute pressure) is applied.

これにより、第1図および第2図を再度参照すると、人
工心臓1が第1カニユーレ7に負圧を加える(血液吸引
)ときに血液リザーバ1oの第2作動室11に正圧が加
わって第2ダイアフラム9が収縮し、第1カニユーレ7
で左心房17がら吸引される血液と血液リザーバ10の
貯留血液が人工心臓1に吸引される。人工心臓1が第2
カ二二し8に正圧を加える(血液吐出)ときには、血液
リザーバ10の第2作動室11に負圧が加わって第2ダ
イアフラム9が拡張し、第2ポンプ室14が負圧となり
、これが左心房17より血液を吸引する。これにより血
液が第2ポンプ室13に貯留する。そして、この貯留血
液は、人工心臓1の次の吸引期間に、カニユーレ7で左
心房17から吸引される血液と共に人工心臓1に吸引さ
れる。
Accordingly, referring again to FIGS. 1 and 2, when the artificial heart 1 applies negative pressure to the first cannula 7 (blood suction), positive pressure is applied to the second working chamber 11 of the blood reservoir 1o, and the The second diaphragm 9 contracts, and the first cannula 7
The blood drawn from the left atrium 17 and the blood stored in the blood reservoir 10 are drawn into the artificial heart 1. Artificial heart 1 is the second
When applying positive pressure to the cylinder 8 (blood discharge), negative pressure is applied to the second working chamber 11 of the blood reservoir 10, the second diaphragm 9 expands, and the second pump chamber 14 becomes negative pressure. Blood is aspirated from the left atrium 17. Blood is thereby stored in the second pump chamber 13. This stored blood is then sucked into the artificial heart 1 together with the blood sucked from the left atrium 17 by the cannula 7 during the next suction period of the artificial heart 1.

したがって、吸引期間に人工心臓1の第1作動室3に加
える負圧を格別に大きくしなくても、人工心臓1の血液
吸引量が実質上増大する。
Therefore, the amount of blood suctioned by the artificial heart 1 is substantially increased without particularly increasing the negative pressure applied to the first working chamber 3 of the artificial heart 1 during the suction period.

次に本発明の他の実施例および変形例を説明する。上述
の実施例では、電磁弁24および28で、血液リザーバ
10の第2作動室に、人工心臓1の第1作動室3に加え
る脈圧とは逆位相の脈圧を加えるようにしているが、本
発明の第2実施例では、電磁弁24を省略する。この第
2実施例を説明すると、第2実施例では、第6a図に示
すように、電磁弁28のみを備えて、第2ポンピング流
体管15は、微小オリフィス37を介して大気連通とす
る。この第2実施例では、CPU60は、第4b図およ
び第4c図に示す「正圧制御」のサブルーチン(79)
は省略した制御動作を行なうものとする。他の制御動作
は前述の実施例と同様である。
Next, other embodiments and modifications of the present invention will be described. In the embodiment described above, the electromagnetic valves 24 and 28 apply a pulse pressure to the second working chamber of the blood reservoir 10 that is in the opposite phase to the pulse pressure applied to the first working chamber 3 of the artificial heart 1. In the second embodiment of the present invention, the solenoid valve 24 is omitted. This second embodiment will be described. In the second embodiment, as shown in FIG. 6a, only the electromagnetic valve 28 is provided, and the second pumping fluid pipe 15 is communicated with the atmosphere through a minute orifice 37. In this second embodiment, the CPU 60 executes the "positive pressure control" subroutine (79) shown in FIGS. 4b and 4c.
shall perform the omitted control operation. Other control operations are similar to those in the previous embodiment.

この第2実施例では、人工心臓1が第1カニユーレ7に
負圧を加える(血液吸引)ときに血液リザーバ10の第
2作動室11に該負圧が加わって第2ダイアフラム9が
収縮し、第1カニユーレ7で左心房17から吸引される
血液と血液リザーバ10の貯留血液が人工心臓1に吸引
される。人工心臓1が第2カニユーレ8に正圧を加える
(血液吐出うときには、血液リザーバ10の第2作動室
11に負圧が加わって第2ダイアフラム9が拡張し、第
2ポンプ室14が負圧となり、これが左心房17より血
液を吸引する。これにより血液が第2ポンプ室13に貯
留する。そして、この貯留血液は、人工心臓1の次の吸
引期間に、カニユーレ7で左心房17から吸引される血
液と共に人工心臓1に吸引される。
In this second embodiment, when the artificial heart 1 applies negative pressure to the first cannula 7 (blood suction), the negative pressure is applied to the second working chamber 11 of the blood reservoir 10, causing the second diaphragm 9 to contract. Blood sucked from the left atrium 17 by the first cannula 7 and blood stored in the blood reservoir 10 are sucked into the artificial heart 1. The artificial heart 1 applies positive pressure to the second cannula 8 (when discharging blood, negative pressure is applied to the second working chamber 11 of the blood reservoir 10, the second diaphragm 9 expands, and the second pump chamber 14 is under negative pressure) This aspirates blood from the left atrium 17. This causes the blood to accumulate in the second pump chamber 13. Then, during the next aspiration period of the artificial heart 1, this accumulated blood is aspirated from the left atrium 17 by the cannula 7. The artificial heart 1 is sucked into the artificial heart 1 along with the blood.

したがって、この第2実施例でも、吸引期間に人工心臓
1の第1作動室3に加える負圧を格別に大きくしなくて
も、人工心臓1の血液吸引量が実質上増大する。
Therefore, in this second embodiment as well, the amount of blood suctioned by the artificial heart 1 is substantially increased without particularly increasing the negative pressure applied to the first working chamber 3 of the artificial heart 1 during the suction period.

第3実施例では、第6b図に示すように、電磁弁24と
28の両者を省略し、すなわちポンピング装置12を、
従来のポンピング装置と実質上同様な構造として、アキ
ュムレータ20の負圧室に、第2ポンピング流体管15
を介して血液リザーバ10の第2作動室を連通させる。
In the third embodiment, as shown in FIG. 6b, both the solenoid valves 24 and 28 are omitted, that is, the pumping device 12 is
A second pumping fluid pipe 15 is connected to the negative pressure chamber of the accumulator 20 in a structure substantially similar to that of a conventional pumping device.
communicates with the second working chamber of the blood reservoir 10 via.

血液リザーバ10の第2作動室11に加える負圧を、人
工心臓1の第1作動室3に加える負圧よりも低くするた
めに、第2ポンピング流体管15には、負圧伝播を抑制
する可調整絞り弁(オリフィス)38と、大気通流を行
なう微小オリフィス37が備えられている。
In order to make the negative pressure applied to the second working chamber 11 of the blood reservoir 10 lower than the negative pressure applied to the first working chamber 3 of the artificial heart 1, the second pumping fluid pipe 15 is provided with a device that suppresses the propagation of negative pressure. An adjustable throttle valve (orifice) 38 and a minute orifice 37 for communicating atmospheric air are provided.

この第3実施例では、人工心臓1が第1カニユレ7に負
圧を加える(血液吸引)ときに血液リザーバ10の第2
作動室11に該負圧が加わって第2ダイアフラム9が収
縮し、第1カニューレ7で左心房17から吸引される血
液と血液リザーバ10の貯留血液が人工心臓1に吸引さ
れる。人工心臓1が第2カニユーレ8に正圧を加える(
血液吐出)ときには、血液リザーバ10の第2作動室1
1に負圧が加わっているので第2ダイアフラム9が拡張
し、第2ポンプ室14が負圧となり、これが左心房17
より血液を吸引する。これにより血液が第2ポンプ室1
3に貯留する。そして、この貯留血液は、人工心臓1の
次の吸引期間に、カニユーレ7で左心房17から吸引さ
れる血液と共に人工心臓1に吸引される。
In this third embodiment, when the artificial heart 1 applies negative pressure to the first cannula 7 (blood suction), the second
The negative pressure is applied to the working chamber 11, causing the second diaphragm 9 to contract, and blood drawn from the left atrium 17 by the first cannula 7 and blood stored in the blood reservoir 10 are drawn into the artificial heart 1. The artificial heart 1 applies positive pressure to the second cannula 8 (
blood ejection), the second working chamber 1 of the blood reservoir 10
1, the second diaphragm 9 expands and the second pump chamber 14 becomes negative pressure, which causes the left atrium 17
Suction more blood. This causes the blood to flow into the second pump chamber 1.
Store in 3. This stored blood is then sucked into the artificial heart 1 together with the blood sucked from the left atrium 17 by the cannula 7 during the next suction period of the artificial heart 1.

したがって、この第2実施例でも、吸引期間に人工心臓
1の第1作動室3に加える負圧を格別に大きくしなくて
も、人工心臓lの血液吸引量が実質上増大する。
Therefore, in this second embodiment as well, the amount of blood suctioned by the artificial heart 1 is substantially increased without particularly increasing the negative pressure applied to the first working chamber 3 of the artificial heart 1 during the suction period.

なお、簡単な実施態様では、第3実施例の第2ポンピン
グ流体管15をも省略して、血液リザーバ10の外容器
16を気密体とする。この変形例では、人工心臓1が第
1カニユーレ7に負圧を加える(血液吸引)ときに血液
リザーバ10の第2ポンプ室14に該負圧が加わって第
2ダイアフラム9が収縮し、これに伴って第2作動室1
1が負圧となり、第1カニユーレ7で左心房17から吸
引される血液と血液リザーバlOの貯留血液が人工心臓
lに吸引される。人工心臓1が第2カニユーレ8に正圧
を加える(血液吐出)ときには、血液リザーバ10の第
2作動室11の圧力が常態圧に復帰しようとして第2ダ
イアフラム9を拡張させ、これにより第2ポンプ室14
が負圧となり、これが左心房17より血液を吸引する。
In a simple embodiment, the second pumping fluid pipe 15 of the third embodiment is also omitted, and the outer container 16 of the blood reservoir 10 is made airtight. In this modification, when the artificial heart 1 applies negative pressure to the first cannula 7 (blood suction), the negative pressure is applied to the second pump chamber 14 of the blood reservoir 10, causing the second diaphragm 9 to contract. Accordingly, the second working chamber 1
1 becomes a negative pressure, and the blood sucked from the left atrium 17 by the first cannula 7 and the blood stored in the blood reservoir lO are sucked into the artificial heart l. When the artificial heart 1 applies positive pressure to the second cannula 8 (blood ejection), the pressure in the second working chamber 11 of the blood reservoir 10 attempts to return to normal pressure, causing the second diaphragm 9 to expand. room 14
becomes a negative pressure, which sucks blood from the left atrium 17.

これにより血液が第2ポンプ室13に貯留する。そして
、この貯留血液は、人工心臓1の次の吸引期間に、カニ
ユーレ7で左心房17から吸引される血液と共に人工心
臓1に吸引される。
Blood is thereby stored in the second pump chamber 13. This stored blood is then sucked into the artificial heart 1 together with the blood sucked from the left atrium 17 by the cannula 7 during the next suction period of the artificial heart 1.

したがって、この変形例でも、吸引期間に人工心臓1の
第1作動室3に加える負圧を格別に大きくシ、なくても
、人工心臓1の血液吸引量が実質上増大する。
Therefore, in this modification as well, the amount of blood suctioned by the artificial heart 1 is substantially increased even if the negative pressure applied to the first working chamber 3 of the artificial heart 1 during the suction period is not particularly large.

第2ダイアフラム9が、比較的に自己復元力の高いもの
であるときには、外容器16を省略するか、あるいは第
2作動室1 ’1を大気連通とする単なる外容器として
もよい。この変形例では、人工心臓1が第1カニユーレ
7に負圧を加える(血液吸引)ときに血液リザーバ10
の第2ポンプ室14に該負圧が加わって第2ダイアフラ
ム9が収縮し、第1カニユーレ7で左心房17から吸引
される血液と血液リザーバ10の貯留血液が人工心臓l
に吸引される。人工心臓1が第2カニユーレ8に正圧を
加える(血液吐出)ときには、第2ダイアフラム9が原
形に復帰しようとして拡張し、これにより第2ポンプ室
14が負圧となり、これが左心房17より血液を吸引す
る。これにより血液が一第2ポンプ室13に貯留する。
When the second diaphragm 9 has a relatively high self-restoring force, the outer container 16 may be omitted, or the second diaphragm 9 may be simply provided with an outer container that communicates with the atmosphere. In this modification, when the artificial heart 1 applies negative pressure to the first cannula 7 (blood suction), the blood reservoir 10
The negative pressure is applied to the second pump chamber 14 of the artificial heart, causing the second diaphragm 9 to contract, and the blood sucked from the left atrium 17 by the first cannula 7 and the blood stored in the blood reservoir 10 to the artificial heart l.
is attracted to. When the artificial heart 1 applies positive pressure to the second cannula 8 (blood ejection), the second diaphragm 9 expands in an attempt to return to its original shape, resulting in negative pressure in the second pump chamber 14, which causes blood to flow from the left atrium 17. aspirate. As a result, blood is stored in the second pump chamber 13.

そして、この貯留血液は、人工心臓1の次の吸引期間に
、カニユーレ7で左心房17から吸引される血液と共に
人工心臓1に吸引される。
This stored blood is then sucked into the artificial heart 1 together with the blood sucked from the left atrium 17 by the cannula 7 during the next suction period of the artificial heart 1.

したがって、この変形例でも、吸引期間に人工心臓1の
第1作動室3に加える負圧を格別に大きくしな・くても
、人工心臓1の血液吸引量が実質上増大する。
Therefore, in this modification as well, the amount of blood suctioned by the artificial heart 1 is substantially increased without particularly increasing the negative pressure applied to the first working chamber 3 of the artificial heart 1 during the suction period.

〔発明の効果〕〔Effect of the invention〕

いずれにしても本発明の血液ポンプ装置は、可変内容積
のポンプ室(4)を区画する第1可撓部材(2);前記
ポンプ室(4)に流入弁(5)を介して連通ずる流入管
部材(7);前記ポンプ室(4)に流出弁(6)を介し
て連通ずる流出管部材(8);前記ポンプ室(4)の外
部から第1可撓部材(2)に該ポンプ室(4)の容積を
縮める圧力(正圧)および拡げる圧力(負圧)を交互に
加えるポンピング手段(12) ;および、第2可撓部
材(9)で区画された可変容積室(14)を有し、該可
変容積室(14)が前記流入管(7)に連通した血液リ
ザーバ(10) ;を備え、ポンピング手段(12)が
、ポンプ室(4)の外部から第1可撓部材(2)にポン
プ室(4)の容積を縮める正圧力および拡げる負圧力を
交互に加え、流入管(7)が例えば生体心臓の左心房(
17)に接続され流出管(8)が大動脈(18)に接続
されていると、ポンピング手段(12)が正圧力を加え
た(吐出期間の)とき第1可撓部材(2)の外表面に圧
縮力が加わるので第1可撓部材(2)が収縮しその内空
間すなわちポンプ室(4)の容積が小さくなり、ポンプ
室(4)の血液が流出管(8)を経て大動脈(18)に
送出され、ボンピング手段(12)が負圧力を加えた(
吸入期間の)とき第1可撓部材(2)の外表面に引張力
が加わるので第1可撓部材(2)が拡大しポンプ室(4
)の容積が大きくなり、左心房(17)の血液が流入管
(7)を通してポンプ室(4)に吸入される。
In any case, the blood pump device of the present invention includes: a first flexible member (2) that defines a pump chamber (4) with a variable internal volume; Inflow pipe member (7); Outflow pipe member (8) that communicates with the pump chamber (4) via the outflow valve (6); Pumping means (12) that alternately applies pressure to contract (positive pressure) and pressure to expand (negative pressure) the volume of the pump chamber (4); and a variable volume chamber (14) partitioned by the second flexible member (9). ), the variable volume chamber (14) communicating with the inflow tube (7); and a pumping means (12) configured to pump a first flexible tube from the outside of the pumping chamber (4). A positive pressure that reduces the volume of the pump chamber (4) and a negative pressure that expands the volume of the pump chamber (4) are alternately applied to the member (2), and the inflow tube (7) is inserted into the left atrium (
17) and the outflow tube (8) is connected to the aorta (18), the outer surface of the first flexible member (2) when the pumping means (12) applies positive pressure (during the ejection period). As a compressive force is applied to the first flexible member (2), the first flexible member (2) contracts and the volume of its internal space, that is, the pump chamber (4) becomes smaller, and the blood in the pump chamber (4) passes through the outflow tube (8) and flows into the aorta (18). ), and the pumping means (12) applied negative pressure (
During the suction period), a tensile force is applied to the outer surface of the first flexible member (2), causing the first flexible member (2) to expand and fill the pump chamber (4).
) increases in volume, and blood from the left atrium (17) is sucked into the pump chamber (4) through the inflow tube (7).

しかして、吸入期間のとき、吸引圧がリザーA(10)
の可変容積室(14)および流入管(7)に加わり、リ
ザーバ(10)の可変容積室(14)は第2可撓部材(
9)で区画されているので、リザーバ(10)の可変容
積室(14)の血液および流入管(7)の血液がポンプ
室(4°)に吸引される。このときの吸引圧によりリザ
ーバ(10)の可変容積室(14)が収縮する。すなわ
ちリザーバ(10)の第2可撓部材(9)が収縮する。
Therefore, during the inhalation period, the suction pressure is riser A (10)
The variable volume chamber (14) of the reservoir (10) joins the variable volume chamber (14) of the reservoir (10) and the inflow tube (7) of the second flexible member (
9), blood in the variable volume chamber (14) of the reservoir (10) and blood in the inflow tube (7) are sucked into the pump chamber (4°). The suction pressure at this time causes the variable volume chamber (14) of the reservoir (10) to contract. That is, the second flexible member (9) of the reservoir (10) contracts.

吐出期間のときには、流入管(8)およびリザーノ<(
10)の可変容積室(14)には、ポンプ室(4)の圧
力が加わらない。そこでリザーバ(10)の第2可撓部
材(9)がその復元力により、ならびに流入管(7)の
血流の慣性により、拡大して流入管(7)の血液を吸弓
し、血液が可変容積室(14)に貯留される。次にポン
プ室(4)の吸引期間になると、ポンプ室(4)の負圧
が流入管(7)およびリザーバ(10)の可変容積室(
14)に加わり、流入管(7)およびリザーバ(10)
の可変容積室(14)の血液がポンプ室(4)に吸入さ
れ、リザーバ(10)の可変容積室(14)が収縮し第
2可撓部材(9)が収縮する。以下同様にして、ポンプ
室(4)が正圧のときにはリザーバ(10)の可変容積
室(14)に流入管(7)の血液が吸入され第2可撓部
材が(9)拡大し、ポンプ室(4)が負圧のときには流
入管(7)およびリザーバ(10)の可変容積室(14
)の血液がポンプ室(4)に吸入され第2可撓部材(9
)が収縮し、ポンプ室(4)の正圧/負圧の交互切換わ
りに伴って、リザーバ(10)の可変容積室(14)が
拡大(第2可撓部材9が拡大)/収縮(第2可撓部材9
が収縮)の交互切換わりを生じ、ポンプ室(4)の正圧
期間にも、流入管(7)を介して左心房(17)の血液
がリザーバ(10)の可変容積室(14)に吸引される
During the discharge period, the inflow pipe (8) and the
The pressure of the pump chamber (4) is not applied to the variable volume chamber (14) of 10). Then, the second flexible member (9) of the reservoir (10) expands due to its restoring force and the inertia of the blood flow in the inflow tube (7), and sucks the blood in the inflow tube (7). It is stored in the variable volume chamber (14). Next, during the suction period of the pump chamber (4), the negative pressure of the pump chamber (4) increases the inflow pipe (7) and the variable volume chamber (10) of the reservoir (10).
14), the inlet pipe (7) and the reservoir (10)
The blood in the variable volume chamber (14) of is sucked into the pump chamber (4), the variable volume chamber (14) of the reservoir (10) contracts and the second flexible member (9) contracts. Similarly, when the pump chamber (4) has positive pressure, the blood in the inflow tube (7) is sucked into the variable volume chamber (14) of the reservoir (10), the second flexible member (9) expands, and the pump When the chamber (4) is under negative pressure, the variable volume chamber (14) of the inflow pipe (7) and the reservoir (10)
) is sucked into the pump chamber (4) and the second flexible member (9
) contracts, and as the pump chamber (4) alternates between positive pressure and negative pressure, the variable volume chamber (14) of the reservoir (10) expands (the second flexible member 9 expands) and contracts (the second flexible member 9 expands). 2 flexible member 9
During positive pressure periods in the pump chamber (4), blood from the left atrium (17) flows through the inflow tube (7) into the variable volume chamber (14) of the reservoir (10). be attracted.

このようにポンプ室(4)の正圧期間(吐出期間)にも
リザーバ(10)が流入管(7)を介して左心房(17
)より血液を吸引するので、血液吸引量が多くなり、ポ
ンプ室(4)の負圧を格別に強くすることなく、また流
入管(7)を格別に太くすることなく、吸引血液量が増
加する。リザーバ(10)は、可変容積室(14)を区
画する第2可撓部材(9)を有するものであり、格別に
逆止弁を要しないので、血液に乱流を生じにくく、した
がって血栓を生じない。
In this way, even during the positive pressure period (discharge period) of the pump chamber (4), the reservoir (10) is connected to the left atrium (17) via the inflow pipe (7).
), the amount of blood suctioned increases without increasing the negative pressure in the pump chamber (4) or making the inflow pipe (7) particularly thick. do. The reservoir (10) has a second flexible member (9) that partitions the variable volume chamber (14), and does not require a special check valve, so it is difficult to cause turbulence in the blood and therefore prevents blood clots. Does not occur.

また、本願のもう1つの発明では更に、ボンピング手段
(12)が吐出期間のときにリザーバ(lO)の第2可
撓部材(9)にその外部から拡げる圧力を加える引圧印
加手段(28)と、ボンピング手段(12)が°吸入期
間のときに第2可撓部材(9)にその外部から縮める圧
力を加える押圧印加手段(24)と、を備えるので、ポ
ンプ室(3)の正圧/負圧の交互切換わりに伴った、リ
ザーバ(10)の可変容積室(14)の拡大/収縮の幅
が大きくなり、リザーバ(10)の前述の利点が更に大
きくなる。
Further, another invention of the present application further includes a suction pressure applying means (28) that applies expanding pressure from the outside to the second flexible member (9) of the reservoir (lO) when the pumping means (12) is in the discharge period. and a pressure application means (24) that applies pressure to contract the second flexible member (9) from the outside during the suction period of the pumping means (12), so that the positive pressure in the pump chamber (3) is reduced. The width of expansion/contraction of the variable volume chamber (14) of the reservoir (10) becomes larger as the negative pressure is alternately switched, and the above-mentioned advantages of the reservoir (10) are further enhanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成を示す外観図であり
、一部分は縦断面を示す。 第2図は、第1図に示す血液リザーバ10の拡大縦断面
図である。 第3図は、第1図に示す圧力センサ33〜36に接続さ
れ第1図に示す電磁弁22〜24.26〜28の開閉を
制御するコントローラの構成を示すブロック図である。 第4a図、第4b図、第4c図および第4d図は、第3
図に示すCPU60の制御動作を示すフローチャートで
ある。 第5図は、第1図に示す圧力センサ33〜36の検出圧
力と、電磁弁の開閉の関係を示すタイムチャートである
。 第6a図は、本発明のもう1つの実施例の、第1図〜第
3図に示す実施例と異なっている主部を示す縦断面図で
ある。 第6b図は、本発明の他のもう1つの実施例の、第1図
〜第3図に示す実施例と異なっている主部を示す縦断面
図である。 1−人工心臓       2:第1ダイアフラム(第
1可撓部材)3:第1作動室      4:第1ポン
プ室(ポンプ室)5:流入用の逆止弁(流入弁) 6:流出用の逆止弁(流出弁) 7:第1カニユーレ(流入管部材) 8:第2カニユーレ(人出管部材) 9:第2ダイアフラム(第2可撓部材)10:血液リザ
ーバ(リザーバ) 11:第2作動室 12:ポンピング装置(ポンピング手段)13:第1ポ
ンピング流体管 14:第2ポンプ室(可変容積室)1
5:第2ポンピング流体管 16:外容器17:左心房
        18二大動脈−20=アキユムレータ
    21:正圧室22〜23:電磁弁      
24:電磁弁(押圧印加手段)25:負圧室     
   26〜27:電磁弁28:電磁弁(引圧印加手段
)29:モータ30:エアーポンプ     31:モ
ータ32:エアーポンプ     33〜36:圧力セ
ンサ37:オリフイス      38:可変絞り弁1
01:人工心臓      110:血液リザーバ11
2:ポンピング装置
FIG. 1 is an external view showing the configuration of an embodiment of the present invention, and a portion thereof shows a longitudinal section. FIG. 2 is an enlarged longitudinal cross-sectional view of the blood reservoir 10 shown in FIG. FIG. 3 is a block diagram showing the configuration of a controller that is connected to the pressure sensors 33-36 shown in FIG. 1 and controls opening and closing of the electromagnetic valves 22-24 and 26-28 shown in FIG. 1. Figures 4a, 4b, 4c and 4d are the third
It is a flowchart which shows the control operation of CPU60 shown in the figure. FIG. 5 is a time chart showing the relationship between the detected pressures of the pressure sensors 33 to 36 shown in FIG. 1 and the opening and closing of the electromagnetic valves. FIG. 6a is a longitudinal sectional view of another embodiment of the present invention, showing the main parts that are different from the embodiment shown in FIGS. 1 to 3. FIG. FIG. 6b is a longitudinal sectional view showing the main parts of another embodiment of the present invention, which are different from the embodiment shown in FIGS. 1 to 3. FIG. 1-Artificial heart 2: First diaphragm (first flexible member) 3: First working chamber 4: First pump chamber (pump chamber) 5: Inflow check valve (inflow valve) 6: Outflow check valve Stop valve (outflow valve) 7: First cannula (inflow pipe member) 8: Second cannula (outflow pipe member) 9: Second diaphragm (second flexible member) 10: Blood reservoir (reservoir) 11: Second Working chamber 12: Pumping device (pumping means) 13: First pumping fluid pipe 14: Second pump chamber (variable volume chamber) 1
5: Second pumping fluid pipe 16: Outer container 17: Left atrium 18 Two aortas - 20 = Accumulator 21: Positive pressure chambers 22-23: Solenoid valve
24: Solenoid valve (pressure applying means) 25: Negative pressure chamber
26-27: Solenoid valve 28: Solenoid valve (suction pressure applying means) 29: Motor 30: Air pump 31: Motor 32: Air pump 33-36: Pressure sensor 37: Orifice 38: Variable throttle valve 1
01: Artificial heart 110: Blood reservoir 11
2: Pumping device

Claims (2)

【特許請求の範囲】[Claims] (1)可変内容積のポンプ室を区画する第1可撓部材; 前記ポンプ室に流入弁を介して連通する流入管部材; 前記ポンプ室に流出弁を介して連通する流出管部材; 前記ポンプ室の外部から第1可撓部材に該ポンプ室の容
積を縮める圧力および拡げる圧力を交互に加えるポンピ
ング手段;および、 第2可撓部材で区画された可変容積室を有し、該可変容
積室が前記流入管に連通した血液リザーバ; を備える血液ポンプ装置。
(1) A first flexible member that partitions a pump chamber with a variable internal volume; An inflow pipe member that communicates with the pump chamber via an inflow valve; An outflow pipe member that communicates with the pump chamber via an outflow valve; The pump a pumping means that alternately applies pressure to contract and expand the volume of the pump chamber from the outside of the chamber to a first flexible member; and a variable volume chamber partitioned by a second flexible member; A blood pump device comprising: a blood reservoir in communication with the inflow tube.
(2)可変内容積のポンプ室を区画する第1可撓部材; 前記ポンプ室に流入弁を介して連通する流入管部材; 前記ポンプ室に流出弁を介して連通する流出管部材; 前記ポンプ室の外部から第1可撓部材に該ポンプ室の容
積を縮める圧力および拡げる圧力を交互に加えるポンピ
ング手段; 第2可撓部材で区画された可変容積室を有し、該可変容
積室が前記流入管に連通した血液リザーバ; 前記ポンピング手段が前記縮める圧力を加えているとき
前記可変容積室の外部から第2可撓部材に該可変容積室
の容積を拡げる圧力を加える引圧印加手段 ;および、 前記ポンピング手段が前記拡げる圧力を加えているとき
前記可変容積室の外部から第2可撓部材に該可変容積室
の容積を縮める圧力を加える押圧印加手段; を備える血液ポンプ装置。
(2) a first flexible member that partitions a pump chamber with a variable internal volume; an inflow pipe member that communicates with the pump chamber via an inflow valve; an outflow pipe member that communicates with the pump chamber via an outflow valve; the pump Pumping means that alternately applies pressure for contracting and expanding the volume of the pump chamber from the outside of the chamber to the first flexible member; a variable volume chamber partitioned by a second flexible member; a blood reservoir communicating with the inflow tube; suction pressure applying means applying pressure from outside of the variable volume chamber to the second flexible member to expand the volume of the variable volume chamber when the pumping means is applying the contracting pressure; A blood pump apparatus comprising: a pressure applying means for applying pressure from outside of the variable volume chamber to the second flexible member to contract the volume of the variable volume chamber when the pumping means is applying the expanding pressure.
JP63274221A 1988-10-29 1988-10-29 Blood pump device Pending JPH02119869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274221A JPH02119869A (en) 1988-10-29 1988-10-29 Blood pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274221A JPH02119869A (en) 1988-10-29 1988-10-29 Blood pump device

Publications (1)

Publication Number Publication Date
JPH02119869A true JPH02119869A (en) 1990-05-07

Family

ID=17538712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274221A Pending JPH02119869A (en) 1988-10-29 1988-10-29 Blood pump device

Country Status (1)

Country Link
JP (1) JPH02119869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576593A (en) * 1990-06-15 1993-03-30 Cobe Lab Inc Reservoir bag assembly for vein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576593A (en) * 1990-06-15 1993-03-30 Cobe Lab Inc Reservoir bag assembly for vein
US5720741A (en) * 1990-06-15 1998-02-24 Cobe Laboratories, Inc. Venous reservoir bag assembly

Similar Documents

Publication Publication Date Title
US4796606A (en) Drive unit for medical pump
US3955557A (en) Blood pump for use in an artificial heart or such purpose
US4782817A (en) Ventricular support system
US5064353A (en) Pressure responsive linear motor driven pump
JPH08322927A (en) Blood pump apparatus
WO2007001503A2 (en) Aspiration control
JP2000014693A (en) Perfusion sucker
JP4188913B2 (en) Portable electronic penile arterial blood flow enhancer
US6296605B1 (en) High-pressure drive system
JPH02119869A (en) Blood pump device
JP2655670B2 (en) Medical pump drive
JPH05263763A (en) Piezoelectric pump and operating method thereof
JP2005013502A (en) Blood pump drive unit
US11698066B2 (en) Pressure-controlling device, and pressure-using apparatus
JPH07194691A (en) Method of eliminating high negative pressure
KR102525303B1 (en) A blood pump and an oxidation system having the same that flows blood in one direction
JPH0526169A (en) Fluid feed pumping device
JPS6384562A (en) Blood pump
JPH07136246A (en) Liquid feed pumping device
JPH0622605B2 (en) Auxiliary artificial heart drive
SE456441B (en) PULSING PUMP WITH ONE INPUT TYPE AND OUTPUT TYPE
JPH06154309A (en) Fluid feed pumping device
JPS58212451A (en) Artificial atrium
SU1713595A1 (en) Artificial heart valve
JPS55128684A (en) Bellow type fluid pump