JP2511271B2 - Curvature radius measuring device and measuring method - Google Patents

Curvature radius measuring device and measuring method

Info

Publication number
JP2511271B2
JP2511271B2 JP18216587A JP18216587A JP2511271B2 JP 2511271 B2 JP2511271 B2 JP 2511271B2 JP 18216587 A JP18216587 A JP 18216587A JP 18216587 A JP18216587 A JP 18216587A JP 2511271 B2 JP2511271 B2 JP 2511271B2
Authority
JP
Japan
Prior art keywords
measured
optical system
converging
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18216587A
Other languages
Japanese (ja)
Other versions
JPS6428534A (en
Inventor
裕明 下薗
博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP18216587A priority Critical patent/JP2511271B2/en
Publication of JPS6428534A publication Critical patent/JPS6428534A/en
Application granted granted Critical
Publication of JP2511271B2 publication Critical patent/JP2511271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、レンズ面の曲率半径の測定装置および測
定方法に関する。
TECHNICAL FIELD The present invention relates to an apparatus and method for measuring the radius of curvature of a lens surface.

従来の技術 レンズ面の曲率半径の測定装置としては第8図と第9
図で示される構成のものが提案されている。
2. Description of the Related Art As a device for measuring the radius of curvature of a lens surface, FIGS.
The configuration shown in the figure has been proposed.

まず前者の第8図の測定装置では、レーザ光源1、拡
大光学系2、光束の一部を反射する反射平面板3、収束
光学系4、光学ベンチ5、載物台6、カメラ7およびモ
ニター8を備えている。この載物台6の上には被測定物
9が載せてある。
First, in the former measuring device shown in FIG. 8, a laser light source 1, a magnifying optical system 2, a reflecting flat plate 3 for reflecting a part of a light flux, a converging optical system 4, an optical bench 5, a stage 6, a camera 7, and a monitor. Eight. An object to be measured 9 is placed on the stage 6.

収束光束の収束点P1に被測定球面10の頂点を置くと、
被測定物9からの反射光束と、前記反射平面板3で反射
した光束が干渉して干渉パターンを生じる。この干渉パ
ターンはカメラ7を介してモニター8により観察でき
る。このときの被測定物9の光軸方向の位置を測長機
(図示せず)で読む。
If the apex of the measured spherical surface 10 is placed at the convergence point P1 of the convergent light flux,
The reflected light beam from the DUT 9 and the light beam reflected by the reflecting flat plate 3 interfere with each other to form an interference pattern. This interference pattern can be observed by the monitor 8 via the camera 7. The position in the optical axis direction of the DUT 9 at this time is read by a length measuring machine (not shown).

次に被測定物9を光軸方向に移動して(9が図に示す
ように凹面の場合収束光学系から被測定物9を遠ざける
方向9が凸面の場合には近づける方向)、破線で示すよ
うに被測定物9の曲率中心が光束収束点P1の延長線上に
くるようにする。
Next, the DUT 9 is moved in the optical axis direction (in the case where 9 is a concave surface as shown in the drawing, the direction in which the DUT 9 is moved away from the converging optical system is a convex surface in the case of 9), and is indicated by a broken line. Thus, the center of curvature of the DUT 9 is located on the extension line of the light flux convergence point P1.

この時、被測定球面10に入る光束は、入った方向とち
ょうど逆方向に反射され、きた光路をそのままもどるこ
とになる。このため前と同様に、モニター8に干渉パタ
ーンが観察されることになる。この時の被測定物9の光
軸方向の位置を読む。すると、被測定物9の移動距離M
がわかり、これが被測定球面10の曲率半径となる。
At this time, the light flux entering the measured spherical surface 10 is reflected in the direction exactly opposite to the entering direction, and returns to the optical path as it is. Therefore, the interference pattern is observed on the monitor 8 as before. At this time, the position of the DUT 9 in the optical axis direction is read. Then, the moving distance M of the DUT 9
Is found, and this is the radius of curvature of the measured spherical surface 10.

一方、後者の第9図の測定装置では、第9図の測定装
置の収束光学系4が省略してある。これは、SPIE vol.1
92 Interferometry(1979)pp75−84に開示されてい
る。
On the other hand, in the latter measuring device of FIG. 9, the converging optical system 4 of the measuring device of FIG. 9 is omitted. This is SPIE vol.1
92 Interferometry (1979) pp 75-84.

拡大光学系2から平行光束として光束を出し、その光
束を被測定球面10で反射させ、光束を収束させる。光束
収束点P2が反射平面板3上にくると、干渉パターンが生
ずる。
A light flux is emitted as a parallel light flux from the magnifying optical system 2, the light flux is reflected by the measured spherical surface 10, and the light flux is converged. When the light flux converging point P2 comes on the reflecting flat plate 3, an interference pattern occurs.

次に、第10図と第9図の鎖線に示すように、被測定物
9を反射平面板3の方に近づけて、被測定球面10で反射
した平行光束が収束光となって反射平面で折りかえさ
れ、光束収束点P3が被測定球面10にくるようにおく。こ
の時にも干渉パターンが生ずるために、位置決定ができ
る。
Next, as shown by the chain lines in FIG. 10 and FIG. 9, the DUT 9 is brought closer to the reflection plane plate 3, and the parallel light flux reflected by the measured spherical surface 10 becomes convergent light and is reflected on the reflection plane. The light flux is converged so that the light flux converging point P3 comes to the measured spherical surface 10. Since the interference pattern is generated at this time as well, the position can be determined.

この被測定物9の移動距離Mから曲率半径r=4×M
により曲率半径を求めるのである。
From the moving distance M of the DUT 9, the radius of curvature r = 4 × M
The radius of curvature is calculated by.

発明が解決しようとする問題点 ところが前者の装置では、曲率半径が載物台6の移動
可能距離よりも長いと安定ができず、言換れば曲率半径
の測定範囲が光学ベンチ5の長さで制限されてしまう。
The problem to be solved by the invention is that the former device cannot be stabilized if the radius of curvature is longer than the movable distance of the stage 6, that is, the measurement range of the radius of curvature is the length of the optical bench 5. Will be limited by.

また後者の装置では、拡大光学系2からの平行光線が
被測定球面10側に射出され、かつ光束の折りかえしを利
用しているため、光学ベンチ5より長い曲率半径を測定
できる。しかし、被測定球面10の面形状が凹面に限ら
れ、凸面の被測定物の曲率半径が測定できない。また凹
面の測定においても第10図に示すように5回反射の光束
を利用することになり得られる干渉パターンのビジビリ
ティが低いという欠点も持っている。
Further, in the latter device, the parallel light beam from the magnifying optical system 2 is emitted to the measured spherical surface 10 side and the turning of the light flux is utilized, so that a radius of curvature longer than that of the optical bench 5 can be measured. However, the surface shape of the measured spherical surface 10 is limited to a concave surface, and the radius of curvature of the convex measured object cannot be measured. Also, in the measurement of the concave surface, as shown in FIG. 10, the light flux of five reflections is used, and there is a drawback that the visibility of the interference pattern is low.

発明の目的 この発明は、上記欠点を解消し凹面及び凸面の曲率半
径が長くても高精度に測定することができる曲率半径測
定装置および測定方法を提供することを目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to provide a radius-of-curvature measuring device and a measuring method which can eliminate the above-mentioned drawbacks and can measure with high accuracy even if the concave and convex surfaces have a long radius of curvature.

発明の要旨 この発明の曲率半径測定装置は特許請求の範囲第1項
を要旨としている。またこの発明の曲率半径測定方法は
特許請求の範囲第5項を要旨としている。
SUMMARY OF THE INVENTION The radius-of-curvature measuring device of the present invention has the scope of claim 1 as its gist. Further, the curvature radius measuring method of the present invention has the scope of claim 5 as its gist.

問題点を解決するための手段 第1図と第2図を参照する。Means for Solving the Problems Reference is made to FIG. 1 and FIG.

この出願の第1発明の装置では、光源(実施例ではレ
ーザ光源21)を光束を拡大光学係22で拡大したのち収束
光学係24で収束するようになっている。被測定物29は載
物台26に載せてあり、この載物台26は光学支持体(実施
例では光学ベンチ25)において光軸方向に移動自在に支
持されている。
In the apparatus of the first invention of this application, a light source (a laser light source 21 in the embodiment) is designed to expand a light flux by a magnifying optical section 22 and then converge it by a converging optical section 24. An object 29 to be measured is placed on a stage 26, and the stage 26 is supported by an optical support (optical bench 25 in the embodiment) so as to be movable in the optical axis direction.

載物台26の移動量は読み取り手段(実施例では測定機
30)により読み取る。記憶手段31は、収束光学係24の光
束射出側のレンズ面(実施例ではレンズ最後面24a)か
ら光束収束点P3までの距離L(バックフォーカス距離)
を記憶する。
The moving amount of the stage 26 is read by the reading means (in the example, the measuring machine
Read according to 30). The storage means 31 has a distance L (back focus distance) from a lens surface (lens rear surface 24a in the embodiment) on the light exit side of the converging optics 24 to the light convergence point P3.
Is stored.

演算部32は、被測定物の被測定球面29aの移動距離S
と前記距離Lを用いて により被測定球面29aの曲率半径rを演算する。
The calculation unit 32 calculates the moving distance S of the measured spherical surface 29a of the measured object.
And using the distance L Then, the radius of curvature r of the measured spherical surface 29a is calculated.

ここで移動距離Sとは、被測定物の被測定球面29aが
前記光束収束点P3にある時の位置CP1と、被測定球面29a
が収束光学系24に近づいて収束光束が収束まえに被測定
球面29aで反射して折りかえされ光束収束点P4が収束光
学係24の光束射出側のレンズ面24aにある時の位置CP2
と、の間の移動距離である。
Here, the moving distance S is the position CP1 when the measured spherical surface 29a of the measured object is at the light flux converging point P3 and the measured spherical surface 29a.
Is close to the converging optical system 24, and the convergent light beam is reflected by the measured spherical surface 29a before being converged and turned back, and the light beam converging point P4 is on the light exit side lens surface 24a of the converging optical member 24.
Is the distance traveled between.

この出願の第2の発明の方法では、光源21からの光束
を収束光学系により収束して被測定物29の被測定球面29
aに導く。
In the method of the second invention of this application, the luminous flux from the light source 21 is converged by the converging optical system and the measured spherical surface 29 of the measured object 29 is measured.
lead to a.

そして、被測定物29を光学軸にそって移動して、被測
定球面29aが前記収束光束の光束収束点P3にくるように
し、かつ被測定球面29aを収束光学系24に近づけて収束
光束を収束まえに被測定球面29aで反射して折りかえし
て収束光束の光束収束点P4が収束光学系24の光束射出側
のレンズ面(レンズ最後面24a)にくるようにする。
Then, the measured object 29 is moved along the optical axis so that the measured spherical surface 29a comes to the light flux converging point P3 of the convergent luminous flux, and the measured spherical surface 29a is brought closer to the converging optical system 24 to converge the convergent luminous flux. Before converging, the light is converged and reflected on the measured spherical surface 29a so that the converging light beam converging point P4 comes to the lens surface (lens rearmost surface 24a) of the converging optical system 24 on the light beam exit side.

前述の被測定球面29aが収束光束の光束収束点P3にき
たときの被測定球面29aの位置CP1から、前述の収束光束
の光束収束点P4が収束光学系24の光束射出側のレンズ面
24aにきたときの被測定球面29aの位置CP2への移動距離
S、および光束射出側のレンズ面24aから光束収束点P3
までの距離Lを に代入して曲率半径rを演算して求めるのである。
From the position CP1 of the measured spherical surface 29a when the measured spherical surface 29a reaches the luminous flux convergence point P3 of the convergent luminous flux, the luminous flux convergence point P4 of the converged luminous flux is the lens surface on the luminous flux exit side of the converging optical system 24.
The moving distance S of the measured spherical surface 29a to the position CP2 at the time of reaching 24a, and the light flux converging point P3 from the lens surface 24a on the light flux exit side.
Distance to To calculate the radius of curvature r.

作用 被測定球面29aの移動距離Sとバックフォーカス距離
Lを求めて、これらの値を曲率半径rを求める式に代入
することにより、曲率rを求めることができる。
The curvature r can be obtained by obtaining the moving distance S and the back focus distance L of the measured spherical surface 29a and substituting these values into the equation for obtaining the radius of curvature r.

実施例1 第1図を参照する。Example 1 Referring to FIG.

実施例1の曲率半径測定装置は、レーザ光源21、拡大
光学系22、反射平面板23、収束光学系24、光学支持体と
しての光学ベンチ25、載物台26、カメラ27、モニター
(モニターTV)28、載物台26の移動量の読取り手段とし
ての測長機30、記憶手段31および演算部32を有してい
る。
The radius-of-curvature measuring apparatus according to the first embodiment includes a laser light source 21, a magnifying optical system 22, a reflecting flat plate 23, a converging optical system 24, an optical bench 25 as an optical support, a stage 26, a camera 27, a monitor (monitor TV). ) 28, a length measuring machine 30 as a means for reading the amount of movement of the stage 26, a storage means 31, and a computing section 32.

[レーザ光源と拡大光学系] 前記レーザ光源21は、コヒーレントな光束を発生し、
例えば“He−Neレーザなどが用いられる。拡大光学系22
は、レンズ33,34とハーフミラー35を有している。拡大
光学系22はレーザ光束を拡大するのである。
[Laser Light Source and Enlarging Optical System] The laser light source 21 generates a coherent light beam,
For example, "He-Ne laser or the like is used. Magnifying optical system 22
Has lenses 33 and 34 and a half mirror 35. The magnifying optical system 22 magnifies the laser beam.

[反射平面板] 反射平面板23は、レンズ34と収束光学系24の間に設け
られている。この反射平面板23は、拡大された光束の一
部を反射する。この反射平面板23の前面側は、カメラ27
の撮像面と共役関係にある。
[Reflective Flat Plate] The reflective flat plate 23 is provided between the lens 34 and the converging optical system 24. The reflection plane plate 23 reflects a part of the expanded light flux. The front side of the reflective flat plate 23 is a camera 27.
Has a conjugate relationship with the image pickup plane.

[収束光学系] 収束光学系24は、拡大された光束を収束して被測定物
29に導く。
[Converging optical system] The converging optical system 24 converges the expanded light beam to measure the object to be measured.
Lead to 29.

[光学ベンチと載物台] 光学ベンチ25は光学軸方向又は光束方向に長くなった
ものである。この上には載物台26が光学軸方向に沿って
移動自在になっている。この載物台26の移動は、たとえ
ば図示しないパルスモータと送りねじにより行う。
[Optical Bench and Table] The optical bench 25 is elongated in the optical axis direction or the light beam direction. On this, a stage 26 is movable along the optical axis direction. The movement of the stage 26 is performed by, for example, a pulse motor and a feed screw (not shown).

載物台26にはコーナキューブ36が取付けてある。 A corner cube 36 is attached to the stage 26.

[モニター光学系] カメラ27とレンズ37およびモニター28は拡大光学系22
側に属している。これらカメラ27,レンズ37およびモニ
ター28は、後述する光束収束点の共役位置CP1,CP2(第
1図と第2図参照)を目視で観察するための光学系を構
成している。
[Monitor optics] Camera 27, lens 37 and monitor 28 are magnifying optics 22
Belongs to the side. The camera 27, the lens 37, and the monitor 28 constitute an optical system for visually observing conjugate positions CP1 and CP2 (see FIGS. 1 and 2) of the light flux converging points, which will be described later.

[測長機] 測長機30は、レーザ光源38と、コーナキューブ36を含
む光学系と、処理部39を有している。この測長機30とし
てはたとえば公知の2周波レーザ干渉形測長機を使用で
きる。このタイプの測長機を用いる場合、処理部39に
は、参照信号(f1−f2)とコーナキューブ36および別の
コーナキューブ(図示せず)により反射されて合成され
たドップラ信号(f1−f2±Δf)とを比較することによ
り、±Δfに対応する載物台26の移動距離を演算する。
このタイプの測定機は公知なので構造説明を省略する。
[Measuring Machine] The measuring machine 30 has a laser light source 38, an optical system including a corner cube 36, and a processing unit 39. As the length measuring machine 30, for example, a known two-frequency laser interference type length measuring machine can be used. When using this type of length measuring machine, the processing unit 39 causes the reference signal (f1−f2) and the Doppler signal (f1−f2) reflected by the corner cube 36 and another corner cube (not shown) to be synthesized. By comparing with ± Δf), the moving distance of the stage 26 corresponding to ± Δf is calculated.
Since this type of measuring machine is known, the structural description thereof will be omitted.

処理部39により得られた載物台26の移動距離S、つま
り被測定物29の被測定球面29aの移動距離Sと、記憶手
段31にすでに記憶された距離情報Lは、演算部32に入力
される。この記憶手段31の距離Lとはバックフォーカス
距離(又はバックフォーカル距離)ともいい、次のよう
にあらかじめ求めることができる。
The moving distance S of the stage 26 obtained by the processing unit 39, that is, the moving distance S of the measured spherical surface 29a of the measured object 29 and the distance information L already stored in the storage unit 31 are input to the calculation unit 32. To be done. The distance L of the storage means 31 is also called a back focus distance (or a back focal distance) and can be calculated in advance as follows.

すなわち、第3図に示すように、バックフォーカス距
離Lとは、収束光学系24の固有のものであり、収束光学
系24のレンズ最後面(光束射出側のレンズ面)24aから
光束収束点P3までの距離をいう。
That is, as shown in FIG. 3, the back focus distance L is unique to the converging optical system 24, and is from the lens rear end surface (lens surface on the light beam exit side) 24a of the converging optical system 24 to the light beam converging point P3. To the distance.

反射平面40を光束収束点P3においた時の位置(破線で
示す)と、反射平面40で折りかえし収束光学系のレンズ
最後面24aに光束収束点P4があるようにおいた時の位置
(実戦で示す)と、の距離lを用いて、バックフォーカ
ス距離は、 L=2×l により求めることができる。
The position when the reflection plane 40 is at the light flux converging point P3 (shown by a broken line) and the position when the light flux converging point P4 is placed on the lens rear surface 24a of the converging optical system after being folded by the reflection plane 40 (in actual battle The back focus distance can be calculated by L = 2 × l using the distance l of

[演算部] 第1図にもどって演算部32は、バックフォーカス距離
Lと移動距離Sを用いてあとでのべる結像関係式に基い
て曲率半径rを求めるようになっている。
[Calculation Unit] Returning to FIG. 1, the calculation unit 32 uses the back focus distance L and the movement distance S to determine the radius of curvature r based on the imaging relational expression which will be described later.

第2図を参照する。被測定物29の被測定球面29aが第
1図と同じように光束収束点P3にある場合(破線で示
す)と、収束光束が被測定球面29aで折り返されて光束
収束点P4が収束光学系24のレンズ最後面24aにある場合
を示している。つまり、実線で示した被測定物29は破線
で示した被測定物29から収束光学系24側に移動距離S移
動した状態を示している。
Please refer to FIG. When the measured spherical surface 29a of the object to be measured 29 is at the light flux converging point P3 as shown in FIG. 1 (shown by a broken line), the convergent light flux is folded back at the measured spherical surface 29a and the light flux converging point P4 is converged. 24 shows the case of being on the lens rear surface 24a. That is, the object 29 shown by the solid line shows a state in which the object 29 shown by the broken line has moved the moving distance S toward the convergent optical system 24 side.

[測定手順] 第1図を参照すると、レーザ光源21のコヒーレントな
光束は拡大光学系22で拡大されたあと反射平面板23でそ
の一部が反射されてカメラ27に導かれる。反射平面板23
を通った平行光束は収束光学系24で平行光束が収束され
る。
[Measurement Procedure] Referring to FIG. 1, the coherent light flux of the laser light source 21 is expanded by the magnifying optical system 22, and then part of it is reflected by the reflecting flat plate 23 to be guided to the camera 27. Reflective flat plate 23
The parallel light flux passing through is converged by the converging optical system 24.

まず第1図と第2図(a)の鎖線で示すように、被測
定球面29aを収束光束の光束収束点P3にもってくる。被
測定球面29a上に光束が収束しているか否かの判断は次
のように行うことができる。すなわち、光束が点状に収
束したところで反射されるということは、キャッツアイ
と称して光軸に関して対象に反射され、その対称性を無
視するとあたかももと来た光路を逆行していくようにみ
える。
First, as shown by the chain line in FIGS. 1 and 2 (a), the measured spherical surface 29a is brought to the light flux convergence point P3 of the convergent light flux. Whether or not the light flux is converged on the measured spherical surface 29a can be determined as follows. That is, the fact that the light beam is reflected when it converges in a point shape is called cat's eye and is reflected by the object with respect to the optical axis, and if the symmetry is ignored, it seems as if it were going backwards in the original optical path. .

この反射光束と、先に述べた反射平面板23での反射光
束は同様の光束となり干渉を生ずることになる。カメラ
27を経てモニター28上に干渉パターンをみることができ
る。
This reflected light beam and the above-described reflected light beam on the reflecting flat plate 23 become similar light beams and cause interference. camera
The interference pattern can be seen on the monitor 28 via 27.

従って、被測定球面29a上に光束が収束しているか否
かの判断が容易に可能である。
Therefore, it is possible to easily determine whether or not the light flux converges on the measured spherical surface 29a.

次に、第2図(a)実線で示すように被測定物29を収
束光学系24のほうに移動距離Sを近づける。そうして収
束光束が被測定球面29aで反射して折りかえされ、光束
収束点P4が収束光学系24のレンズ最後面24aにあるよう
にもってくる。この時も先と同様に干渉パターンが得ら
れるのでモニター28で容易に光束が収束しているか否か
を判断できる。
Next, as shown by the solid line in FIG. 2A, the moving distance S of the object 29 to be measured is brought closer to the convergent optical system 24. Then, the convergent light flux is reflected by the spherical surface 29a to be measured and reflected, and the light flux convergence point P4 is brought to be on the rearmost lens surface 24a of the converging optical system 24. At this time as well, since the interference pattern is obtained as in the previous case, the monitor 28 can easily determine whether or not the light flux is converged.

上記二つの位置間の距離Sを上述のように測長機30に
より読みとり、その移動距離Sと前記バックフォーカス
距離Lとは、近軸の結像関係式から の関係があるため、演算部32はこの式から曲率半径 を求める。
The distance S between the two positions is read by the length measuring machine 30 as described above, and the moving distance S and the back focus distance L are calculated from the paraxial image formation relational expression. Since there is a relation of Ask for.

ここで、被測定物は凹面であるので移動距離Sとバッ
クフォーカス距離LとはS>L/2の関係にあり、rは負
の値をとる。
Here, since the object to be measured is a concave surface, the moving distance S and the back focus distance L have a relationship of S> L / 2, and r takes a negative value.

一方被測定物が凸面である場合を第2図(b)に示
す。
On the other hand, FIG. 2B shows the case where the object to be measured is a convex surface.

この場合移動距離Sとバックフォーカス距離LとはS
<L/2の関係にある点で被測定物29が凹面である第2図
(a)と相違するが、上述したS<L/2の範囲内におい
て第2図(a)と同様に収束光束が被測定球面29aで反
射して折りかえされ光束収束点P′4が収束光学系24の
レンズ最終面24aにあるように移動させることができ
る。なおこのときのrは正の値をとる。
In this case, the moving distance S and the back focus distance L are S
It differs from FIG. 2A in which the object to be measured 29 is concave in that it has a relationship of <L / 2, but within the range of S <L / 2 described above, it converges similarly to FIG. 2A. The light beam is reflected by the spherical surface 29a to be measured and is reflected, so that the light beam convergence point P'4 can be moved so as to be on the final lens surface 24a of the convergence optical system 24. Note that r at this time has a positive value.

この配置により曲率半径を測定すると、被測定物が凹
部であっても凸面であっても、被測定球面29aで収束光
束を折りかえし、収束光学系24のレンズ最後面24aに収
束点P4をもってくる被測定球面29aの位置は常に収束光
学系24のバックフォーカス距離Lの中にある。したがっ
て被測定物は凹面凸面の制限がなく、曲率半径の測定が
でき、しかも光学ベンチ25により載物台26の移動可能範
囲は、最大でも収束光学系24のバックフォーカス距離L
程度でよいことになる。
When the radius of curvature is measured by this arrangement, whether the measured object is a concave surface or a convex surface, the convergent light flux is turned over by the measured spherical surface 29a, and the convergent point P4 is brought to the lens rearmost surface 24a of the converging optical system 24. The position of the measured spherical surface 29a is always within the back focus distance L of the converging optical system 24. Therefore, the object to be measured is not limited to the concave surface and the convex surface, the radius of curvature can be measured, and the movable range of the stage 26 by the optical bench 25 is at most the back focus distance L of the converging optical system 24.
The degree will be good.

実施例2 実施例1では被測定物の位置決めの判断を干渉パター
ンの発生により行ったが、実施例2ではそうではなく別
のやり方である。
Second Embodiment In the first embodiment, the positioning of the object to be measured is determined by the generation of the interference pattern, but in the second embodiment, this is not the case but another method.

第4図では第1図の反射平面板23はなく、カメラ27と
モニター28の代わりに受光手段49、すなわち受光器50と
遮光板51とレンズ53が設けられている。実施例2のその
他の部分については実施例1と実質的に同じであるので
同じ符号をつけ、それらの説明を省略する。
In FIG. 4, the reflecting flat plate 23 of FIG. 1 is not provided, but instead of the camera 27 and the monitor 28, light receiving means 49, that is, a light receiver 50, a light shielding plate 51, and a lens 53 are provided. Since the other parts of the second embodiment are substantially the same as those of the first embodiment, the same reference numerals are given and the description thereof will be omitted.

遮光板51にはピンホール52がある。受光手段49に特に
このピンホール52は、収束光束の光束収束点P5、P6(第
5図)と共役位置にある。ピンホール52の後方に受光器
50をおく。収束光束が光束収束点P5において点状で反射
されると反射してきた光束は全てピンホール52を通り受
光器50の出力が増す。よって、位置決めの判断ができ
る。
The light blocking plate 51 has a pinhole 52. In particular, the pinhole 52 of the light receiving means 49 is located at a conjugate position with the light flux converging points P5 and P6 (FIG. 5) of the convergent light flux. Receiver behind pinhole 52
Put 50. When the convergent light flux is reflected pointwise at the light flux converging point P5, all the reflected light flux passes through the pinhole 52 and the output of the light receiver 50 increases. Therefore, the positioning can be determined.

また、第5図のように光束収束点P6で反射されると同
様に反射してきた光束は全てピンホール52を通り受光器
52の出力が増す。よってこのときも位置決めの判断がで
きる。
Further, as shown in FIG. 5, all the light fluxes reflected at the light flux convergence point P6 pass through the pinhole 52 and the light receiver.
52 output increases. Therefore, the positioning can be determined at this time as well.

第6図は、被測定物の移動位置に対する受光器の出力
の関係を示している。ここで×1は、第5図の収束光束
が被測定球面29aで折りかえされ光束収束点P6が収束光
学系24のレンズ最後面24aにある位置、×2は被測定球
面29aが光束収束点P5にある位置である。
FIG. 6 shows the relationship between the moving position of the object to be measured and the output of the light receiver. Here, x1 is the position where the convergent light flux of FIG. 5 is turned around on the measured spherical surface 29a and the light flux converging point P6 is at the lens rear surface 24a of the converging optical system 24, and x2 is the light converging point of the measured spherical surface 29a. The position is on P5.

ところで、この発明は上述の実施例と限定されない。 By the way, the present invention is not limited to the above embodiments.

たとえば、第7図を参照すると、実施例1の場合と異
なり収束光学系124と反射平面板123が一体にして平凸レ
ンズ形にすることもできる。また、平凸レンズ以外の形
状のものも採用できる。
For example, referring to FIG. 7, unlike the case of the first embodiment, the converging optical system 124 and the reflecting flat plate 123 can be integrated into a plano-convex lens shape. Also, a shape other than a plano-convex lens can be adopted.

また、光束収束点の共役位置にラインセンサまたはエ
リアセンサをおき、反射光束の光束径が最小になるとこ
ろを検出するようにしてもよい。
Further, a line sensor or an area sensor may be provided at the conjugate position of the light flux converging point to detect the position where the light flux diameter of the reflected light flux is minimum.

あるいは光源をインコヒーレント光源として光束収束
点の共役基地を接眼レンズにより目視観察してもよい。
Alternatively, the light source may be an incoherent light source, and the conjugate base of the light flux convergence point may be visually observed with an eyepiece lens.

発明の効果 以上説明したようにこの発明によれば、被測定物の被
測定面の形状が凹面でも凸面でもその曲率半径が測定で
き、光学支持体における載物台の移動範囲内でより長い
曲率半径を測定できる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the radius of curvature of a measured surface of an object to be measured can be concave or convex, and a longer curvature can be obtained within the moving range of the stage of the optical support. The radius can be measured.

したがって測定は容易となる。 Therefore, the measurement becomes easy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の曲率半径測定装置の実施例1の構成
を示す図、第2図は実施例1において被測定物が移動距
離S移動した状態を示す。すなわち(a)が凹面の場合
で(b)が凸面の場合を示す図、第3図はバックフォー
カス距離を測定する原理を説明する図、第4図は実施例
2の構成を示す図、第5図は実施例2において被測定物
が移動距離S移動した状態を示す図、第6図は実施例2
の被測定物位置に対する受光器の出力を示す図、第7図
は別の実施例の図、第8図〜第10図は従来例を示す図で
ある。 21…レーザ光源 22…拡大光学系 23…反射平面板 24…収束光学系 24a…レンズ最後面(光束射出側のレンズ面) 25…光学ベンチ 26…載物台 27…カメラ 28…モニター 29…被測定物 29a…被測定球面 30…測長機 31…記憶手段 32…演算部
FIG. 1 is a diagram showing a configuration of a first embodiment of a radius-of-curvature measuring apparatus of the present invention, and FIG. 2 shows a state in which an object to be measured has moved a moving distance S in the first embodiment. That is, (a) is a concave surface and (b) is a convex surface, FIG. 3 is a diagram for explaining the principle of measuring the back focus distance, and FIG. 4 is a diagram for showing the configuration of the second embodiment. FIG. 5 is a diagram showing a state in which the object to be measured has moved by the moving distance S in Example 2, and FIG. 6 is Example 2
FIG. 7 is a diagram showing the output of the light receiver with respect to the position of the object to be measured, FIG. 7 is a diagram of another embodiment, and FIGS. 8 to 10 are diagrams showing a conventional example. 21 ... Laser light source 22 ... Enlargement optical system 23 ... Reflecting flat plate 24 ... Convergence optical system 24a ... Lens surface (lens surface on the exit side of the light beam) 25 ... Optical bench 26 ... Mounting stage 27 ... Camera 28 ... Monitor 29 ... Target Measured object 29a ... Measured spherical surface 30 ... Length measuring machine 31 ... Storage means 32 ... Computing unit

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源と、 その光源の光束を拡大する拡大光学系と、 拡大された光束を収束させて被測定物に導く収束光学系
と、 前記被測定物をその光学軸方向に移動自在に支持する光
学支持体と、 被測定物の移動量の読み取り手段と、 収束光学系の光束射出側のレンズ面から光束収束点まで
の距離Lの記憶手段と、 被測定物の被測定面が前記光束収束点にある時の位置
と、被測定球面が収束光学系に近づいて収束光束が収束
する前に被測定面で反射して折りかえされ、光束収束点
が収束光学系の光束射出側のレンズ面にある時の位置
と、の間の移動距離S、 および前記距離Lから により、被測定面の曲率半径rを演算する演算部と、を
備えたことを特徴とする曲率半径測定装置。
1. A light source, a magnifying optical system for magnifying the luminous flux of the light source, a converging optical system for converging the magnified luminous flux and guiding it to an object to be measured, and the object to be measured is movable in its optical axis direction. An optical support that is supported by the device, a reading unit that reads the amount of movement of the DUT, a storage unit that stores the distance L from the lens surface on the light beam exit side of the converging optical system to the light beam convergence point, and the measured surface of the DUT. The position at the point of convergence of the light flux and the measured spherical surface are reflected and reflected by the surface to be measured before the convergent light flux approaches the converging optical system and converges, and the light flux converging point is at the light exit side of the converging optical system. From the distance S between the position when the lens is on the lens surface, and the distance L According to the present invention, there is provided a calculation unit for calculating the curvature radius r of the surface to be measured, and the curvature radius measurement device.
【請求項2】前記拡大光学系は、光束収束点の共役位置
が観察できる光学系を有し、光束収束点が被測定面上あ
るいは収束光学系の光束射出側のレンズ面上にあること
を目視により決定可能な構成となる特許請求の範囲第1
項に記載の曲率半径測定装置。
2. The magnifying optical system has an optical system capable of observing a conjugate position of a light flux converging point, and the light flux converging point is on a surface to be measured or a lens surface on a light flux exit side of the converging optical system. The first aspect of the present invention has a configuration that can be visually determined.
A radius-of-curvature measuring device described in the paragraph.
【請求項3】前記拡大光学系は、光束収束点の共役位置
に受光手段を有し、光束収束点が被測定球面上あるいは
収束光学系の光束射出側のレンズ面上にあることを光電
的に検出可能な構成となる特許請求の範囲第1項に記載
の曲率半径測定装置。
3. The magnifying optical system has a light receiving means at a conjugate position of a light flux converging point, and photoelectrically detects that the light flux converging point is on a spherical surface to be measured or on a lens surface on the light flux exit side of the converging optical system. The radius-of-curvature measuring device according to claim 1, which has a configuration capable of being detected.
【請求項4】前記光源としてコヒーレント光源を設け、
拡大光学系と収束光学系の途中に光束の一部を反射させ
る部分を設け、光束収束点が被測定球上あるいは収束光
学系の光束射出側のレンズ面上にある時に干渉パターン
が得られる構成となる特許請求の範囲第1項又は第2項
に記載の曲率半径測定装置。
4. A coherent light source is provided as the light source,
A structure is provided in the middle of the magnifying optical system and the converging optical system to reflect a part of the light beam, and an interference pattern is obtained when the light beam converging point is on the sphere to be measured or on the lens surface on the light beam exit side of the converging optical system. The radius-of-curvature measuring device according to claim 1 or 2, wherein
【請求項5】光源からの光束を収束光学系により収束し
て被測定物の被測定面に導き、 被測定物を光学軸にそって移動して、被測定面が前記収
束光束の光束収束点にくるようにし、また被測定面を収
束光学系に近づけて収束光束を収束する前に被測定面で
反射して折りかえして収束光束の光束収束点が収束光学
系の光束射出側のレンズ面にくるようにし、 前述の被測定面が収束光束の光束収束点にきたときの被
測定面の位置から前述の収束光束の光束収束点が収束光
学系の光束射出側のレンズ面にきたときの被測定面の位
置への移動距離S、および光束射出側のレンズ面から光
束収束点までの距離Lを に代入して曲率半径rを求める曲率半径測定方法。
5. A light beam from a light source is converged by a converging optical system to be guided to a surface to be measured of the object to be measured, the object to be measured is moved along an optical axis, and the surface to be measured converges the light beam of the converged light beam. Before the converging light beam is converged by bringing the measured surface closer to the converging optical system, the converging light beam is reflected by the surface to be measured and turned back so that the converging light beam converges at the light exit side of the converging optical system. When the surface to be measured reaches the convergence point of the converged light beam from the position of the surface to be measured, the convergence point of the converged light beam reaches the lens surface on the light exit side of the converging optical system. And the distance L from the lens surface on the light beam exit side to the light beam convergence point A method for measuring the radius of curvature by substituting into
JP18216587A 1987-07-23 1987-07-23 Curvature radius measuring device and measuring method Expired - Lifetime JP2511271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18216587A JP2511271B2 (en) 1987-07-23 1987-07-23 Curvature radius measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18216587A JP2511271B2 (en) 1987-07-23 1987-07-23 Curvature radius measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPS6428534A JPS6428534A (en) 1989-01-31
JP2511271B2 true JP2511271B2 (en) 1996-06-26

Family

ID=16113488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18216587A Expired - Lifetime JP2511271B2 (en) 1987-07-23 1987-07-23 Curvature radius measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2511271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183220B2 (en) * 2000-02-22 2008-11-19 フジノン株式会社 Optical spherical curvature radius measuring device
JP2010019750A (en) * 2008-07-11 2010-01-28 Olympus Corp Curvature radius measuring apparatus

Also Published As

Publication number Publication date
JPS6428534A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
JP3237309B2 (en) System error measuring method and shape measuring device using the same
CN109029288B (en) Reflective large-gradient aspheric surface and free-form surface detection device and method based on DMD wave-front sensing technology
JP4054893B2 (en) High resolution confocal microscope
CN100383606C (en) Method and device for accurately determining optical system focus plane by interferometer
JPS61178635A (en) Interference apparatus for measuring wave front aberration
JPH02161332A (en) Device and method for measuring radius of curvature
US5387951A (en) Intraocular length measuring instrument capable of avoiding errors in measurement caused by the movement of a subject&#39;s eye
JP2511271B2 (en) Curvature radius measuring device and measuring method
JP3120885B2 (en) Mirror surface measuring device
US6897421B2 (en) Optical inspection system having an internal rangefinder
JPH0755638A (en) Device and method for measuring focal length of optical system
JPS6212269Y2 (en)
JPH02295536A (en) Instrument for finding range between back and forth diameters of eye in organ
JPH07311117A (en) Apparatus for measuring position of multiple lens
JPH0755640A (en) Device and method for measuring focal length of optical system
US8462353B2 (en) Surface shape measurement apparatus
JPH0540025A (en) Shape measuring instrument
JPH0763649A (en) Method and device for measuring focal length of divergent optical system
JPH0755639A (en) Device and method for measuring focal length of optical system
JPH0334002B2 (en)
JPH0496727A (en) Dimension measuring device for living body eye
CN118654865A (en) Objective lens detection method and related device
JPH02295537A (en) Instrument for finding range between back and forth diameters of eye in organ
JPH05118829A (en) Method and apparatus for measuring radius of curvature
JP2003322590A (en) Surface shape measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12