JPH0763649A - Apparatus and method for measuring focal length of divergence optical system - Google Patents

Apparatus and method for measuring focal length of divergence optical system

Info

Publication number
JPH0763649A
JPH0763649A JP23567693A JP23567693A JPH0763649A JP H0763649 A JPH0763649 A JP H0763649A JP 23567693 A JP23567693 A JP 23567693A JP 23567693 A JP23567693 A JP 23567693A JP H0763649 A JPH0763649 A JP H0763649A
Authority
JP
Japan
Prior art keywords
optical system
measured
light beam
focal length
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23567693A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimozono
裕明 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP23567693A priority Critical patent/JPH0763649A/en
Publication of JPH0763649A publication Critical patent/JPH0763649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

(57)【要約】 【目的】発散系光学系の焦点距離を測定する装置および
方法を提供する。 【構成】移動自在に支持された被測定光学系への入射収
束光束の生成手段1と、被測定光学系21を移動自在に
支持する光学支持体14と、被測定光学系21からの出
射光束の収束点検出手段11とからなり、光束収束点が
検出される収束光束生成手段1と被測定光学系21の位
置とから、焦点距離を演算する。
(57) [Summary] [Object] To provide an apparatus and method for measuring the focal length of a divergent optical system. Constitution: A means 1 for generating a convergent light flux incident on an optical system to be measured which is movably supported, an optical support 14 for movably supporting an optical system to be measured 21, and a light flux emitted from the optical system to be measured 21. And the position of the measured optical system 21 and the convergent light beam generation unit 1 where the light beam convergence point is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光学系の焦点距離の
測定装置および測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring the focal length of an optical system.

【0002】[0002]

【従来の技術】従来、凹レンズの焦点距離の測定装置と
して、特開平5−142094号公報記載の発明が報告
されている。この従来技術を、図8を用いて説明する。
収束光束51中に被験凹レンズ52をおき、収束光束の
収束点53と被験凹レンズの虚焦点が一致するときに収
束光束51は被験凹レンズ52により平行光束54に変
換されることを利用し、無限遠観測用望遠鏡55を用い
て被験凹レンズ53からの出射光が平行光束となる被験
凹レンズ52の光軸方向の位置を決定し、そのときの被
験凹レンズの表面の位置と被験凹レンズに入射する収束
光束の収束点との距離fをもって被験凹レンズの焦点距
離とする方法である。
2. Description of the Related Art Conventionally, an invention described in JP-A-5-142094 has been reported as a device for measuring the focal length of a concave lens. This conventional technique will be described with reference to FIG.
A test concave lens 52 is placed in the convergent light beam 51, and the fact that the convergent light beam 51 is converted into a parallel light beam 54 by the test concave lens 52 when the convergence point 53 of the convergent light beam and the imaginary focal point of the test concave lens coincide with each other. Using the observation telescope 55, the position in the optical axis direction of the test concave lens 52 in which the light emitted from the test concave lens 53 becomes a parallel light flux is determined, and the position of the surface of the test concave lens at that time and the convergent light flux incident on the test concave lens are determined. In this method, the focal length of the concave lens to be tested is defined as the distance f from the convergence point.

【0003】[0003]

【発明が解決しようとする課題】焦点距離は、焦点と、
主点との距離であるが、従来はレンズの主点の代わりに
レンズ表面を用いており、正確な焦点距離を測定できな
いという問題があった。
The focal length is defined by the focal point,
Regarding the distance from the principal point, conventionally, the lens surface is used instead of the principal point of the lens, and there is a problem that an accurate focal length cannot be measured.

【0004】[0004]

【課題を解決するための手段】本発明は、前述の課題を
解決するためになされたものであり、収束光束生成手段
と、収束光束生成手段を移動自在に支持する光学支持体
と、収束光束生成手段の位置の読取手段と、読取手段で
読みとられた収束光束生成手段の位置の記憶手段と、被
測定光学系をその光軸方向に移動自在に支持する光学支
持体と、被測定光学系の位置の読取手段と、読取手段で
読みとられた位置の記憶手段と、被測定光学系から出射
する光束の収束点を検出する光束収束点検出手段と、収
束光束生成手段の位置および被測定光学系の位置から、
被測定光学系の焦点距離を算出する演算手段とを備えた
ことを特徴とする発散系光学系の焦点距離の測定装置を
提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and includes a convergent light beam generating means, an optical support for movably supporting the convergent light beam generating means, and a convergent light beam. A reading means for the position of the generating means, a storage means for the position of the convergent light flux generating means read by the reading means, an optical support for movably supporting the optical system to be measured in its optical axis direction, and an optical to be measured. A reading unit for reading the position of the system, a storage unit for reading the position read by the reading unit, a light beam convergence point detecting unit for detecting a convergence point of the light beam emitted from the optical system to be measured, and a position and a target of the convergent light beam generating unit. From the position of the measurement optical system,
There is provided a measuring device for a focal length of a divergence system optical system, comprising: an arithmetic means for calculating a focal length of an optical system to be measured.

【0005】また、本発明は、少なくとも3箇所のN箇
所の収束光束生成手段の位置をxi(i=1,2,・・・
,N)とし、被測定光学系の位置をyi (i=1,
2,・・・,N)とするとき、上記焦点距離を算出する演
算手段が、数3により算出する演算手段であることを特
徴とする発散系光学系の焦点距離の測定装置を提供す
る。
Further, according to the present invention, at least three positions of the convergent light beam generating means at N positions are set to x i (i = 1, 2, ...).
, N), and the position of the measured optical system is y i (i = 1, 1,
2, ..., N), the arithmetic means for calculating the focal length is an arithmetic means for calculating by the formula (3).

【0006】[0006]

【数3】 [Equation 3]

【0007】また、本発明は、被測定光学系を移動し、
被測定光学系からの出射する光束の収束点が光束収束点
検出手段により検出される位置を求めることを、少なく
とも3箇所の収束光束生成手段の位置に対して行い、各
々における収束光束生成手段の位置と被測定光学系の位
置とから、被測定光学系の焦点距離を求めることを特徴
とする発散系光学系の焦点距離の測定方法を提供する。
Further, according to the present invention, the optical system to be measured is moved,
The position where the convergence point of the light flux emitted from the optical system to be measured is detected by the light flux convergence point detection means is determined for at least three positions of the converged light flux generation means, and Provided is a method for measuring the focal length of a divergence system optical system, which is characterized in that the focal length of the system under measurement is obtained from the position and the position of the system under measurement.

【0008】また、本発明は、収束光束生成手段を移動
し、被測定光学系から出射する光束の収束点が光束収束
点検出手段により検出される位置を求めることを、少な
くとも3箇所の被測定光学系の位置に対して行い、各々
における、被測定光学系の位置と、収束光束生成手段の
位置とから、被測定光学系の焦点距離を求めることを特
徴とする発散系光学系の焦点距離の測定方法を提供す
る。
Further, according to the present invention, the convergent light beam generating means is moved to obtain the position where the convergence point of the light beam emitted from the optical system to be measured is detected by the light beam convergence point detecting means. The focal length of the divergence optical system is characterized in that the focal length of the optical system to be measured is obtained from the position of the optical system to be measured and the position of the convergent light beam generating means in each position of the optical system. The measurement method of is provided.

【0009】さらに、本発明は、少なくとも3箇所の収
束光束生成手段の位置xi (i=1,2,・・・ ,N)
と、被測定光学系の位置をyi (i=1,2,・・・ ,
N)とから、数3により被測定光学系の焦点距離を算出
することを特徴とする上記発散系光学系の焦点距離の測
定方法を提供する。
Further, according to the present invention, there are at least three positions x i (i = 1, 2, ..., N) of the convergent light beam generating means.
And the position of the optical system to be measured is y i (i = 1, 2, ...,
N) is used to calculate the focal length of the optical system to be measured by Equation 3, and a method for measuring the focal length of the divergent optical system is provided.

【0010】本発明の測定装置の構成を、図1により説
明する。本発明の測定装置は、収束光束生成手段1(実
施例ではレーザー光源2、凸レンズ3、凸レンズ4)
と、収束光束生成手段1をその光束の光軸方向に移動自
在に支持する光学支持体5(実施例では載物台6および
光学ベンチ7)と、収束光束生成手段1の位置の読取手
段8(実施例ではレーザー干渉測長器9)と、読取手段
8で読み取られた位置の記憶手段10と、被測定光学系
21を、その光軸方向に移動自在に支持する光学支持体
14(実施例では載物台15および光学ベンチ16)
と、被測定光学系21の位置の読取手段17(実施例で
はレーザー干渉測長器18)と、読取手段17で読み取
られた位置の記憶手段19と、被測定光学系21から出
射する光束の収束点を検出する光束収束点検出手段11
(実施例では2次元CCDセンサー12)と、記憶手段
10、および記憶手段19に記憶された値から被測定光
学系の焦点距離を演算する演算手段20とを備える。
The structure of the measuring apparatus of the present invention will be described with reference to FIG. The measuring apparatus of the present invention is a convergent light beam generating means 1 (laser light source 2, convex lens 3, convex lens 4 in the embodiment).
An optical support 5 (in this embodiment, the stage 6 and the optical bench 7) for movably supporting the convergent light beam generating means 1 in the optical axis direction of the light beam, and a reading means 8 for reading the position of the convergent light beam generating means 1. (In the embodiment, the laser interferometer length measuring device 9), the storage means 10 for the position read by the reading means 8, and the optical system to be measured 21 are supported movably in the optical axis direction (optical support 14). In the example, the stage 15 and the optical bench 16)
Reading means 17 for the position of the measured optical system 21 (laser interferometer length measuring device 18 in the embodiment), storage means 19 for the position read by the reading means 17, and the luminous flux emitted from the measured optical system 21. Light flux convergence point detection means 11 for detecting a convergence point
(A two-dimensional CCD sensor 12 in the embodiment), a storage unit 10, and a calculation unit 20 for calculating the focal length of the optical system to be measured from the values stored in the storage unit 19.

【0011】次に、本発明の測定方法を、図1および図
2により説明する。本発明の測定方法は以下の手順から
なる。収束光束生成手段1の位置の設定数N(≧3)を
決めた後、収束光束生成手段1を第1の設定位置に設置
する(ステップ1)。
Next, the measuring method of the present invention will be described with reference to FIGS. 1 and 2. The measuring method of the present invention comprises the following steps. After the set number N (≧ 3) of the positions of the convergent light beam generating means 1 is determined, the convergent light beam generating means 1 is installed at the first setting position (step 1).

【0012】被測定光学系21を、その光軸方向に移動
し、光束収束点検出手段11が光束収束点を検出する被
測定光学系21の位置を求める(実施例では2次元CC
Dセンサー12により画像として観察される光束の光束
径が最小になる被測定光学系21の位置を求める。)
(ステップ2)。
The measured optical system 21 is moved in the direction of its optical axis, and the position of the measured optical system 21 at which the light beam convergence point detection means 11 detects the light beam convergence point is obtained (in the embodiment, a two-dimensional CC).
The position of the measured optical system 21 at which the light flux diameter of the light flux observed as an image by the D sensor 12 is minimized is obtained. )
(Step 2).

【0013】収束光束生成手段1の位置x1 、および被
測定光学系21の位置y1 を読み取り、記憶させた後
(ステップ3)、収束光束生成手段1を第2の設定位置
へ移動する(ステップ4)。
After reading and storing the position x 1 of the convergent light beam generating means 1 and the position y 1 of the optical system to be measured 21 (step 3), the convergent light beam generating means 1 is moved to the second set position ( Step 4).

【0014】以下収束光束生成手段1の位置の設定数N
を満足するまでステップ2、3、4を繰り返す。こうし
て求めたN組の共役配置における、収束光束生成手段1
の設定位置xii(i=1,2,・・・ ,N)と、被測定光
学系21の位置yi (i=1,2,・・・,N)とから、
演算手段20を用いて焦点距離を算出する。
Hereinafter, the set number N of positions of the convergent light beam generating means 1 will be described.
Repeat steps 2, 3, and 4 until the above is satisfied. Converging light beam generation means 1 in the N sets of conjugate arrangements thus obtained
From the set position x i i (i = 1, 2, ..., N) of the target optical system 21 and the position y i (i = 1, 2, ..., N) of the measured optical system 21,
The calculation means 20 is used to calculate the focal length.

【0015】また、本発明の他の測定方法を説明する。
図1および図3により説明する。本発明の他の測定方法
は以下の手順からなる。被測定光学系21の光軸方向の
位置の設定数N(≧3)を決めた後、第1の設定位置に
設置する(ステップ11)。
Another measuring method of the present invention will be described.
This will be described with reference to FIGS. 1 and 3. Another measuring method of the present invention comprises the following steps. After determining the set number N (≧ 3) of the positions of the optical system 21 to be measured in the optical axis direction, the optical system 21 is installed at the first set position (step 11).

【0016】収束光束生成手段1を、被測定光学系21
の光軸方向に移動し、光束収束点検出手段11により光
束収束点が検出される収束光束生成手段1の位置を求め
る(実施例では2次元CCDセンサー12により画像と
して観察された光束の光束径が最小になる収束光束生成
手段1の位置を求める。)(ステップ12)。
The convergent light beam generating means 1 is connected to the measured optical system 21.
The position of the converged light beam generation means 1 at which the light beam convergence point detection means 11 detects the light flux convergence point is obtained (in the embodiment, the light flux diameter of the light flux observed as an image by the two-dimensional CCD sensor 12). The position of the convergent light flux generating means 1 that minimizes is obtained) (step 12).

【0017】収束光束生成手段1の位置x1 および被測
定光学系21の位置y1 を読み取り、記憶させた後(ス
テップ13)、被測定光学系21を第2の設定位置へ移
動する(ステップ14)。
After reading and storing the position x 1 of the convergent beam generating means 1 and the position y 1 of the measured optical system 21 (step 13), the measured optical system 21 is moved to the second set position (step). 14).

【0018】以下被測定光学系21の位置の設定数Nを
満足するまでステップ2、3、4を繰り返す。こうして
求めたN組の共役配置における、収束光束生成手段1の
設定位置xi(i=1,2,・・・ ,N)と、被測定光学
系21の位置yi (i=1,2,・・・,N)とから、演
算手段20を用いて焦点距離を算出する。
Hereinafter, steps 2, 3, and 4 are repeated until the set number N of positions of the optical system to be measured 21 is satisfied. Thus the N sets of conjugated arrangement determined, setting the position of the convergent light beam generating means 1 x i (i = 1,2, ···, N) and the position y i (i = 1,2 of the measurement optical system 21 , ..., N), the focal length is calculated using the calculating means 20.

【0019】[0019]

【作用】図4を参照して、本発明に用いた焦点距離算出
の原理を説明する。レンズLに入射する収束光束の収束
点即ち物点をO、レンズLにより屈折した光束の収束点
即ち像点をI、レンズLの焦点位置をF、およびF’と
し、OとFの距離をx、F’とIの距離をy、レンズL
の焦点距離をfとすると、物点Oと像点Iは共役となる
ので、ニュートンの式
The principle of focal length calculation used in the present invention will be described with reference to FIG. Let O be the convergence point of the convergent light beam incident on the lens L, that is, the object point, I be the convergence point of the light beam refracted by the lens L, that is, the image point, and F and F ′ are the focal positions of the lens L. x, F'and the distance between I and y, lens L
Assuming that the focal length of f is f, the object point O and the image point I are conjugate, so Newton's equation

【0020】[0020]

【数4】x・y=f・f[Formula 4] x · y = f · f

【0021】が成り立つ。物点OをO’にΔx移動(物
点Oがレンズから遠ざかる方向を正とする)させ、レン
ズLをΔy移動(レンズLが物点Oに近づく方向を正と
する)したときに像点Iの移動がないとすると、O’と
Iも共役であるから
Is satisfied. When the object point O is moved to Δ ′ by Δx (the direction in which the object point O moves away from the lens is positive), and the lens L is moved in Δy (the direction in which the lens L approaches the object point O is positive), the image point If I does not move, O'and I are also conjugate

【0022】[0022]

【数5】(x−Δx+Δy)(y−Δy)=f・f(5) (x−Δx + Δy) (y−Δy) = f · f

【0023】もまた成立することになる。従って、物点
を光軸方向に異なる3箇所x1 、x2 、x3 に設定し、
それぞれに対するレンズの位置がy1 、y2 、y3 のと
きに像点の位置の移動がなかったとすると、
The above also holds. Therefore, the object points are set at three different points x 1 , x 2 , and x 3 in the optical axis direction,
If there is no movement of the image point position when the lens position is y 1 , y 2 and y 3 for each,

【0024】[0024]

【数6】(x−(x2 −x1 )+(y2 −y1 ))(y
−(y2 −y1 ))=f・f (x−(x3 −x1 )+(y3 −y1 ))(y−(y3
−y1 ))=f・f
[6] (x- (x 2 -x 1) + (y 2 -y 1)) (y
− (Y 2 −y 1 )) = f · f (x− (x 3 −x 1 ) + (y 3 −y 1 )) (y− (y 3
-Y 1 )) = f · f

【0025】が成立し、また数4も成立しているので、
これら3つの式を連立方程式として解き、x、y、fを
数7により求めることができる。
Since ## EQU3 ## is established, and also Equation 4 is established,
By solving these three equations as simultaneous equations, x, y, and f can be obtained by the equation 7.

【0026】[0026]

【数7】 [Equation 7]

【0027】さらに、物点Oを光軸方向に異なるN箇所
(N≧3)xi (i=1,2,・・・,N)に設定した場
合には、次のように焦点距離fを求めることができる。
物点xi に対する像点位置が動かないレンズ位置をyi
(i=1,2,・・・ ,N)として、
Further, when the object point O is set at N different points (N ≧ 3) x i (i = 1, 2, ..., N) in the optical axis direction, the focal length f is as follows. Can be asked.
The lens position where the image point position with respect to the object point x i does not move is y i
(I = 1, 2, ..., N),

【0028】[0028]

【数8】(x−(xi −xj )+(yi −yj ))(y
−(yi −yj ))=f・f (i=1,2,・・・ ,N) (jは1からNまでの任意の整数)
(X- (x i −x j ) + (y i −y j )) (y
− (Y i −y j )) = f · f (i = 1, 2, ..., N) (j is an arbitrary integer from 1 to N)

【0029】のN個の式が成立する。数8の(N−1)
個の式に数4を代入し、両辺を展開整理すると、
The N expressions of are established. Equation (N-1)
Substituting equation 4 into this equation and expanding and rearranging both sides,

【0030】[0030]

【数9】−(yi −yj )x+(−(xi −xj )+
(yi −yj ))y=−(yi −yj )((xi −x
j )−(yi −yj )) (i=1,2,・・・ ,N、但しi=Jを除く) (j は1からNまでの任意の整数)
## EQU9 ## − (y i −y j ) x + (− (x i −x j ) +
(Y i −y j )) y = − (y i −y j ) ((x i −x
j )-(y i- y j )) (i = 1, 2, ..., N, except i = J) (j is an arbitrary integer from 1 to N)

【0031】となり、x,yについて線形の(N−1)
個の式を得る。これら(N−1)個の式を観測方程式と
し、最小自乗法を適用することにより数3のようにx、
y、fを求めることができる。
And (N-1) which is linear in x and y
Get an expression. By using these (N-1) equations as observation equations and applying the least squares method, x,
It is possible to obtain y and f.

【0032】測定箇所が3箇所の場合と3箇所以上の場
合に分けて説明したが、数3においてN=3、j=1の
場合は数7の結果に一致するので、数3が焦点距離を求
める一般式となる。
The description has been made separately for the case where there are three measurement points and the case where there are three or more measurement points. However, in the case of N = 3 and j = 1 in the equation 3, the result of the equation 7 agrees, so the equation 3 It becomes a general formula to obtain.

【0033】本発明の測定装置、および測定方法はこの
原理に基づき構成されたものであり、収束光束生成手段
1を、光学支持体5で移動自在に支持することで、物点
の位置を変更できる。
The measuring apparatus and the measuring method of the present invention are constructed on the basis of this principle, and the position of the object point is changed by movably supporting the convergent light beam generating means 1 by the optical support 5. it can.

【0034】被測定光学系21の移動は、被測定光学系
21を光学支持体14で移動自在に支持することで行
う。収束光束生成手段1の位置に対して、被測定光学系
21を移動させ、光束収束点検出手段11が光束収束点
を検出する位置を求めることで、物点と像点が共役であ
ることの確認ができる。
The optical system to be measured 21 is moved by movably supporting the optical system to be measured 21 with an optical support 14. By moving the optical system to be measured 21 with respect to the position of the convergent light beam generation unit 1 and obtaining the position where the light beam convergence point detection unit 11 detects the light beam convergence point, it is possible to determine that the object point and the image point are conjugate. You can check.

【0035】また、被測定光学系21の位置に対して、
光束収束点検出手段11が光束収束点を検出するよう
に、被測定光学系21を移動させて、物点と像点の共役
の確認をしてもよい。
Further, with respect to the position of the optical system to be measured 21,
The optical system to be measured 21 may be moved so that the light flux convergence point detection means 11 detects the light flux convergence point, and the conjugate of the object point and the image point may be confirmed.

【0036】演算手段20は、少なくとも3箇所の共役
配置に対する、被測定光学系21の位置の値と、光束収
束点検出手段11の位置の値とから被測定光学系21の
焦点距離を演算する機能を有する。以上により、本発明
は、発散系光学系の焦点距離の測定を可能とするもので
ある。
The calculating means 20 calculates the focal length of the measured optical system 21 from the value of the position of the measured optical system 21 and the value of the position of the light beam convergence point detecting means 11 with respect to at least three conjugate arrangements. Have a function. As described above, the present invention makes it possible to measure the focal length of the divergent optical system.

【0037】[0037]

【実施例】実施例の測定装置を、図1により説明する。
実施例の測定装置は、収束光束生成手段1と、収束光束
生成手段1をその光束の光軸方向に移動自在に支持する
光学支持体5と、収束光束生成手段1の位置の読取手段
8と、読取手段8で読み取られた位置の記憶手段10
と、被測定光学系21をその光軸方向に移動自在に支持
する光学支持体14と、被測定光学系21の位置の読取
手段17と、読取手段17で読み取られた位置の記憶手
段19と、被測定光学系21からの光束の収束点を検出
する光束収束点検出手段11と,記憶手段10と記憶手
段19で記憶された収束光束生成手段1と被測定光学系
21の位置情報をもとに、被測定光学系の焦点距離を演
算する演算手段20とを備える。
EXAMPLE A measuring apparatus of an example will be described with reference to FIG.
The measuring apparatus of the embodiment includes a convergent light beam generating means 1, an optical support 5 for movably supporting the convergent light beam generating means 1 in the optical axis direction of the light beam, and a reading means 8 for reading the position of the convergent light beam generating means 1. , Storage means 10 for the position read by the reading means 8
An optical support 14 for movably supporting the optical system to be measured 21 in the optical axis direction, a reading unit 17 for the position of the optical system 21 to be measured, and a storage unit 19 for the position read by the reading unit 17. The light flux convergence point detection means 11 for detecting the convergence point of the light flux from the measured optical system 21, the converged light flux generation means 1 stored in the storage means 10 and the storage means 19, and the position information of the measured optical system 21. And a calculation means 20 for calculating the focal length of the optical system to be measured.

【0038】被測定光学系21は、収束光束生成手段1
からの光束中に、光軸をほぼ一致させて配置される。以
下に各部位毎の説明を行う。 (収束光束生成手段1)レーザー光源2からの光束を凸
レンズ3および凸レンズ4を用いて収束光束にして用い
る。
The optical system to be measured 21 comprises the convergent light beam generating means 1
The optical axis is substantially aligned with the light flux from. The respective parts will be described below. (Convergent light flux generating means 1) The light flux from the laser light source 2 is used as a convergent light flux by using the convex lens 3 and the convex lens 4.

【0039】(光学支持体5)収束光束生成手段1を保
持する載物台6と光学ベンチ7からなる。光学ベンチ7
は、収束光束生成手段1の光束の光軸方向に長くなった
ものである。この上に置かれた載物台6は図示しないパ
ルスモーターと送りねじで光学ベンチ7上を移動自在と
なっている。
(Optical support 5) It is composed of a stage 6 for holding the convergent light beam generating means 1 and an optical bench 7. Optical bench 7
Indicates that the light flux of the convergent light flux generation means 1 is elongated in the optical axis direction. The stage 6 placed on this is movable on the optical bench 7 by a pulse motor and a feed screw (not shown).

【0040】(読取手段8)載物台6に図示しないコー
ナーキューブを取り付け、レーザー干渉測長器9により
収束光束生成手段1と一体で移動する載物台6の光学ベ
ンチ7に対する位置を読み取る。方向は、載物台6(収
束光束生成手段1)が被測定光学系21に近づく方向を
正とする。
(Reading means 8) A corner cube (not shown) is attached to the stage 6, and the position of the stage 6 which moves integrally with the convergent beam generation means 1 with respect to the optical bench 7 is read by the laser interferometer length measuring device 9. The direction is positive when the stage 6 (convergent light beam generating means 1) approaches the optical system 21 to be measured.

【0041】(記憶手段10)レーザー干渉測長器9で
読み取られた位置情報はA/D変換され、記憶手段10
に記憶される。 (光束収束点検出手段11)2次元CCDセンサー12
である。得られる画像はモニター13で観察する。2次
元CCDセンサー12上に集光する光束の光束径が最小
となるとき、被測定光学系の像面が2次元CCDセンサ
ー上にあると判断する。
(Storage Means 10) The position information read by the laser interferometer length measuring device 9 is A / D converted and stored in the storage means 10.
Memorized in. (Light flux convergence point detection means 11) Two-dimensional CCD sensor 12
Is. The obtained image is observed on the monitor 13. When the diameter of the light beam focused on the two-dimensional CCD sensor 12 is minimum, it is determined that the image plane of the optical system to be measured is on the two-dimensional CCD sensor.

【0042】(光学支持体14)被測定光学系21を保
持する載物台15と光学ベンチ16からなり、光学ベン
チ16は、被測定光学系の光軸方向に長くなったもので
ある。この上に置かれた載物台15は図示しないパルス
モーターと送りねじで光軸方向に移動自在となってい
る。
(Optical support 14) The optical bench 16 comprises a stage 15 for holding an optical system 21 to be measured and an optical bench 16. The optical bench 16 is elongated in the optical axis direction of the optical system to be measured. The stage 15 placed on this is movable in the optical axis direction by a pulse motor and a feed screw (not shown).

【0043】(読取手段17)載物台15に図示しない
コーナーキューブを取り付け、レーザー干渉測長器18
により、被測定光学系21と一体で移動する載物台15
の光学ベンチ16に対する位置を読み取る。方向は、載
物台15(2次元CCDセンサー12)が光束収束点検
出手段11に近づく方向を正とする。
(Reading means 17) A corner cube (not shown) is attached to the stage 15, and a laser interferometer 18 is used.
The stage 15 that moves integrally with the optical system 21 to be measured by
The position of the optical axis with respect to the optical bench 16 is read. The direction is positive when the stage 15 (two-dimensional CCD sensor 12) approaches the light beam convergence point detection means 11.

【0044】(記憶手段19)レーザー干渉測長器18
で読み取られた位置情報はA/D変換され、記憶手段1
9に記憶される。
(Memory means 19) Laser interferometer 18
The position information read by is A / D converted and stored in the storage unit 1.
9 is stored.

【0045】(演算手段20)共役関係にあるN箇所
(N≧3)の収束光束生成手段1の位置(載物台6の光
学ベンチ7に対する位置として読み込んだ値)xi (i
=1,2,・・・ ,N)と、被測定光学系21の位置(載
物台15の光学ベンチ16に対する位置として読み込ん
だ値)yi (i=1,2,・・・ ,N)とから数10によ
り被測定光学系の焦点距離を演算する機能を有する。
(Calculating means 20) Positions (values read as positions of the stage 6 with respect to the optical bench 7) of the convergent light beam generating means 1 at N locations (N ≧ 3) having a conjugate relationship x i (i
, 1, 2, ..., N) and the position of the measured optical system 21 (value read as the position of the stage 15 with respect to the optical bench 16) y i (i = 1, 2, ..., N) ) And the equation (10), the focal length of the optical system to be measured is calculated.

【0046】[0046]

【数10】 [Equation 10]

【0047】実施例の測定方法を、図1および図2によ
り説明する。収束光束生成手段1の位置の設定数N(≧
3)を決めた後、収束光束生成手段1からの光束が、被
測定光学系21に光軸にほぼ一致して導かれるように、
収束光束生成手段1を第1の設定位置に設置する(ステ
ップ1)。光束収束点検出手段11が、光束径最小であ
ることを検出する被測定光学系21の位置を、被測定光
学系21をその光軸方向に移動することにより求める
(ステップ2)。
The measuring method of the embodiment will be described with reference to FIGS. 1 and 2. The set number N of the positions of the convergent light beam generation means 1 (≧
After determining 3), the light flux from the convergent light flux generation means 1 is guided to the optical system 21 to be measured so as to substantially coincide with the optical axis.
The convergent light flux generating means 1 is installed at the first setting position (step 1). The light flux convergence point detection means 11 obtains the position of the measured optical system 21 which detects that the diameter of the light flux is the minimum by moving the measured optical system 21 in the optical axis direction (step 2).

【0048】収束光束生成手段1の位置x1 および被測
定光学系21の位置y1 を読取り、記憶させた後(ステ
ップ3)、収束光束生成手段1を第2の設定位置へ移動
する(ステップ4)。以下収束光束生成手段1の位置の
設定数Nを満足するまでステップ2、3、4を繰り返
す。
After reading and storing the position x 1 of the convergent light beam generating means 1 and the position y 1 of the measured optical system 21 (step 3), the convergent light beam generating means 1 is moved to the second set position (step 3). 4). Hereinafter, steps 2, 3, and 4 are repeated until the set number N of positions of the convergent light beam generating means 1 is satisfied.

【0049】こうして求めたN組の収束光束生成手段1
の設定位置xi (i=1,2,・・・,N)と、被測定光
学系21の位置yi (i=1,2,・・・ ,N)とから演
算手段20により被測定光学系の焦点距離を算出する。
また、実施例の他の測定方法を図1および図3により説
明する。被測定光学系21の位置の設定数N(≧3)を
決めた後、収束光束生成手段1からの光束が、被測定光
学系21に光軸にほぼ一致して導かれるように、被測定
光学系21を第1の設定位置に設置する(ステップ1
1)。
N sets of convergent light flux generating means 1 thus obtained
The set position x i (i = 1, 2, ..., N) and the position y i (i = 1, 2, ..., N) of the measured optical system 21 are measured by the calculation means 20. Calculate the focal length of the optical system.
Further, another measuring method of the embodiment will be described with reference to FIGS. After the set number N (≧ 3) of the positions of the optical system to be measured 21 is determined, the light beam from the convergent light beam generating means 1 is guided to the optical system to be measured 21 so as to be substantially aligned with the optical axis. The optical system 21 is installed at the first setting position (step 1
1).

【0050】光束収束点検出手段11が、光束径最小で
あることを検出する収束光束生成手段1の位置を、収束
光束生成手段1をその光束の光軸方向に移動することに
より求める(ステップ12)。収束光束生成手段1の位
置x1 および被測定光学系21の位置y1 を読み取り、
記憶させた後(ステップ13)、被測定光学系21を第
2の設定位置へ移動する(ステップ14)。
The position of the convergent light flux generating means 1 for detecting that the light flux convergent point detecting means 11 detects that the light flux diameter is minimum is obtained by moving the convergent light flux generating means 1 in the optical axis direction of the light flux (step 12). ). The position x 1 of the convergent light beam generation means 1 and the position y 1 of the measured optical system 21 are read,
After storing (step 13), the measured optical system 21 is moved to the second set position (step 14).

【0051】以下、被測定光学系21の位置の設定数N
を満足するまでステップ12、13、14を繰り返す。
こうして求めたN組の収束光束生成手段1の設定位置x
i (i=1,2,・・・,N)と、被測定光学系21の位
置yi (i=1,2,・・・ ,N)とから演算手段20に
より被測定光学系の焦点距離を算出する。
Below, the set number N of positions of the optical system 21 to be measured is set.
Repeat steps 12, 13, and 14 until the following is satisfied.
The set positions x of the N sets of convergent light beam generation means 1 thus obtained
From i (i = 1, 2, ..., N) and the position y i (i = 1, 2, ..., N) of the measured optical system 21, the focus of the measured optical system is calculated by the calculating means 20. Calculate the distance.

【0052】ところで、この発明は上述の実施例に限定
されない。光束の収束点の検出手段としては,光束中に
1次元のラインセンサーをおき、光束径が最小となると
ころを検出してもよい。また、図5に示すような検出手
段でもよい。即ちピンホール22,リレーレンズ23、
光電変換素子24からなり、光電変換素子24をピンホ
ール22のリレーレンズ23による共役位置に配置す
る。この検出手段を収束点をもつ光束中を光束の光軸方
向に移動させると、ピンホール22が光束の収束点に一
致したときに光電変換素子24の出力が最大となり、収
束点を検出することが可能である。
The present invention is not limited to the above embodiment. As a means for detecting the convergence point of the light flux, a one-dimensional line sensor may be placed in the light flux to detect the location where the light flux diameter is minimum. Further, the detecting means as shown in FIG. 5 may be used. That is, the pinhole 22, the relay lens 23,
It is composed of a photoelectric conversion element 24, and the photoelectric conversion element 24 is arranged at a conjugate position of the pinhole 22 by the relay lens 23. When this detecting means is moved in the optical axis direction of the light flux having the convergence point, the output of the photoelectric conversion element 24 becomes maximum when the pinhole 22 coincides with the convergence point of the light flux, and the convergence point is detected. Is possible.

【0053】あるいは、図6に示す干渉パターンを利用
する構成でもよい。即ちレーザー光源25、レンズ(2
6、27、28)からなる収束光束生成手段1の光束中
に設けた、光束の一部を来た光路に沿って逆行反射させ
る反射手段29と、被測定光学系21出射後の光束を逆
行反射させる反射手段30と、により構成するのであ
る。
Alternatively, the structure using the interference pattern shown in FIG. 6 may be used. That is, the laser light source 25, the lens (2
6, 27, 28) provided in the light flux of the convergent light flux generation means 1 and reflecting means 29 for retroreflecting a part of the light flux along the optical path along which the light flux is emitted after being emitted from the optical system 21 to be measured. The reflecting means 30 for reflecting the light is used.

【0054】反射手段30が図に示すような凹面の場合
は、収束点の後方に配置し、凹面の球心が光束の収束点
に一致したときに、光束が来た光路に沿って逆行反射す
るので、反射手段29で反射された光束との干渉により
干渉パターンが得られる。反射手段30が凸面の場合
は、収束点より被測定光学系21に近付けて配置し、凸
面の球心が光束の収束点に一致したときに、光束が来た
光路に沿って逆行反射するので、反射手段29で反射さ
れた光束との干渉により干渉パターンが得られる。
When the reflecting means 30 is a concave surface as shown in the drawing, it is arranged behind the converging point, and when the spherical center of the concave surface coincides with the converging point of the light beam, it is retroreflected along the optical path along which the light beam comes. Therefore, an interference pattern is obtained by the interference with the light flux reflected by the reflecting means 29. When the reflecting means 30 is a convex surface, the reflecting means 30 is arranged closer to the optical system 21 to be measured than the converging point, and when the spherical center of the convex surface coincides with the converging point of the light beam, it is retroreflected along the optical path where the light beam came. An interference pattern is obtained by the interference with the light flux reflected by the reflection means 29.

【0055】反射手段30が平面の場合は、光束の収束
点がその平面上にあるとき、光束は光軸に対称に反射
し、反射手段29により反射された光束と干渉し、干渉
パターンを得る。いずれの場合も、干渉パターンはレン
ズ32を介して、2次元CCDセンサー33、モニター
34で観察される。このように、反射手段30を、収束
点の検出手段として用いるのである。
When the reflecting means 30 is a plane, when the convergence point of the light beam is on the plane, the light beam is reflected symmetrically with respect to the optical axis and interferes with the light beam reflected by the reflecting means 29 to obtain an interference pattern. . In any case, the interference pattern is observed by the two-dimensional CCD sensor 33 and the monitor 34 via the lens 32. In this way, the reflection means 30 is used as a convergence point detection means.

【0056】さらには、収束光束生成手段をインコヒー
レント光源と、レンズとで構成し、収束点検出手段を接
眼レンズを有する光学系とし、収束点を目視で判断して
もよい。収束光束生成手段については、白色光源と、分
光手段であるモノクロメーターと、を用いて構成し、被
測定光学系の波長による焦点距離の違いを測定する構成
としてもよい。
Further, the converging light beam generating means may be composed of an incoherent light source and a lens, and the converging point detecting means may be an optical system having an eyepiece lens, and the converging point may be visually judged. The convergent light beam generating means may be configured by using a white light source and a monochromator as a spectroscopic means, and may be configured to measure the difference in focal length depending on the wavelength of the optical system to be measured.

【0057】演算手段については、実施例では数3にお
いてj=1と置くことによって得られた数10を用いる
ことを示したが、j=1に限らない。jは1からNまで
N通りの選択が可能である。また、数3においてjを1
からNまでN通りの計算で求めその一部または全部を平
均して焦点距離の値としてもよい。
With respect to the calculating means, in the embodiment, it is shown that the equation 10 obtained by setting j = 1 in the equation 3 is used, but it is not limited to j = 1. j can be selected from 1 to N in N ways. Also, in Equation 3, j is 1
It is also possible to obtain the focal length value by averaging a part or all of the values obtained from N to N calculations.

【0058】被測定光学系として、実施例では屈折系の
場合の配置を示したが、図7に示すように、収束光束生
成手段1からの光束を、被測定光学系36で反射させ、
その光束をハーフミラー35で折り曲げ光束収束点の検
出手段11に導く配置にすることにより、反射系光学系
の焦点距離の測定も可能である。
As the optical system to be measured, the arrangement in the case of the refracting system is shown in the embodiment, but as shown in FIG. 7, the light beam from the convergent light beam generation means 1 is reflected by the optical system 36 to be measured,
By arranging the light flux by the half mirror 35 to guide it to the detecting means 11 of the light flux convergence point, the focal length of the reflection optical system can be measured.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、光
学ベンチ上の載物台の移動量読取手段に用いるスケール
以外に、光学特性あるいは寸法が既知の参照物を必要と
することなく、発散系光学系の焦点距離を高精度に測定
できる。
As described above, according to the present invention, in addition to the scale used for the moving amount reading means of the stage on the optical bench, a reference object having known optical characteristics or dimensions is not required. The focal length of the diverging optical system can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学系の焦点距離測定装置の実施例の
構成図
FIG. 1 is a configuration diagram of an embodiment of a focal length measuring device for an optical system according to the present invention.

【図2】本発明の光学系の焦点距離測定方法の実施例の
手順を示す工程図
FIG. 2 is a process chart showing the procedure of an embodiment of a method for measuring the focal length of an optical system according to the present invention.

【図3】本発明の光学系の焦点距離測定方法の他の実施
例の手順を示す工程図
FIG. 3 is a process chart showing the procedure of another embodiment of the method for measuring the focal length of an optical system according to the present invention.

【図4】本発明の光学系の焦点距離測定の原理の説明に
供する被測定光学系の構成図
FIG. 4 is a block diagram of an optical system to be measured, which is used to explain the principle of measuring the focal length of the optical system of the present invention.

【図5】本発明の光学系の焦点距離測定装置における光
束収束点検出手段の変形例の構成図
FIG. 5 is a configuration diagram of a modified example of the light beam convergence point detection means in the optical system focal length measurement device of the present invention.

【図6】本発明の光学系の焦点距離測定装置における光
束収束点検出手段の他の変形例の構成図
FIG. 6 is a configuration diagram of another modified example of the light beam convergence point detection means in the focal length measuring device for an optical system according to the present invention.

【図7】本発明を反射凸面鏡に対して実施する場合の配
置を示す構成図
FIG. 7 is a configuration diagram showing an arrangement when the present invention is applied to a reflective convex mirror.

【図8】従来技術である焦点距離測定装置の構成図FIG. 8 is a configuration diagram of a conventional focal length measuring device.

【符号の説明】[Explanation of symbols]

1:収束光束生成手段 2:レーザー光源 3:凸レンズ 4:凸レンズ 5:光学支持体 6:載物台 7:光学ベンチ 8:読取手段 9:レーザー干渉測長器 10:記憶手段 11:収束点検出手段 12:2次元CCDセンサー 13:モニター 14:光学支持体 15:載物台 16:光学ベンチ 17:読取手段 18:レーザー干渉測長器 19:記憶手段 20:演算手段 21:被測定光学系 22:ピンホール 23:リレーレンズ 24:光電変換素子 25:レーザー光源 26:レンズ 27:レンズ 28:レンズ 29:反射手段 30:反射手段 31:ハーフミラー 32:レンズ 33:2次元CCDセンサー 34:モニター 35:ハーフミラー 36:被測定光学系 51:収束光束 52:被測定凹レンズ 53:収束光束収束点 54:平行光束 55:無限遠観測用望遠鏡 1: Convergent light beam generation means 2: Laser light source 3: Convex lens 4: Convex lens 5: Optical support body 6: Support table 7: Optical bench 8: Reading means 9: Laser interferometer 10: Storage means 11: Convergence point detection Means 12: Two-dimensional CCD sensor 13: Monitor 14: Optical support 15: Mounting table 16: Optical bench 17: Reading means 18: Laser interference measuring device 19: Storage means 20: Computing means 21: Optical system to be measured 22 : Pinhole 23: Relay lens 24: Photoelectric conversion element 25: Laser light source 26: Lens 27: Lens 28: Lens 29: Reflecting means 30: Reflecting means 31: Half mirror 32: Lens 33: Two-dimensional CCD sensor 34: Monitor 35 : Half mirror 36: Optical system to be measured 51: Convergent light beam 52: Concave lens to be measured 53: Converging light beam convergence point 54: Parallel light 55: infinity observation telescope

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】収束光束生成手段と、収束光束生成手段を
移動自在に支持する光学支持体と、収束光束生成手段の
位置の読取手段と、読取手段で読み取られた収束光束生
成手段の位置の記憶手段と、被測定光学系をその光軸方
向に移動自在に支持する光学支持体と、被測定光学系の
位置の読取手段と、読取手段で読み取られた位置の記憶
手段と、被測定光学系から出射する光束の収束点を検出
する光束収束点検出手段と、収束光束生成手段の位置お
よび被測定光学系の位置から、被測定光学系の焦点距離
を算出する演算手段とを備えたことを特徴とする発散系
光学系の焦点距離の測定装置。
1. A convergent light beam generating means, an optical support for movably supporting the convergent light beam generating means, a reading means for reading the position of the convergent light beam generating means, and a position for the convergent light beam generating means read by the reading means. Storage means, an optical support for movably supporting the optical system to be measured in the optical axis direction thereof, reading means for reading the position of the optical system to be measured, storage means for the position read by the reading means, and optical to be measured. A light flux convergence point detecting means for detecting a convergence point of a light flux emitted from the system, and an arithmetic means for calculating a focal length of the measured optical system from the position of the converged light flux generating means and the position of the measured optical system are provided. A device for measuring the focal length of a divergent optical system.
【請求項2】少なくとも3箇所のN箇所の収束光束生成
手段の位置をxi (i=1,2,・・・ N)とし、被測定
光学系の位置をyi (i=1,2,・・・ ,N)とすると
き、請求項1の焦点距離を算出する演算手段が、数1に
より算出する演算手段であることを特徴とする発散系光
学系の焦点距離の測定装置。 【数1】
2. The positions of at least three convergent light flux generating means at N positions are x i (i = 1, 2, ... N), and the positions of the optical system to be measured are y i (i = 1, 2,). , ..., N), the calculation means for calculating the focal length according to claim 1 is the calculation means for calculating the focal length according to equation (1). [Equation 1]
【請求項3】被測定光学系を移動し、被測定光学系から
の出射する光束の収束点が光束収束点検出手段により検
出される位置を求めることを、少なくとも3箇所の収束
光束生成手段の位置に対して行い、各々における収束光
束生成手段の位置と被測定光学系の位置とから、被測定
光学系の焦点距離を求めることを特徴とする発散系光学
系の焦点距離の測定方法。
3. A method of moving a measured optical system to obtain a position at which a convergence point of a light beam emitted from the measured optical system is detected by a light beam convergence point detecting means, at least at three convergent light beam generating means. A method for measuring the focal length of a divergence system optical system, characterized in that the focal length of the optical system to be measured is obtained from the positions of the convergent light beam generating means and the position of the optical system to be measured in each position.
【請求項4】収束光束生成手段を移動し、被測定光学系
から出射する光束の収束点が光束収束点検出手段により
検出される位置を求めることを、少なくとも3箇所の被
測定光学系の位置に対して行い、各々における、被測定
光学系の位置と、収束光束生成手段の位置とから、被測
定光学系の焦点距離を求めることを特徴とする発散系光
学系の焦点距離の測定方法。
4. At least three positions of the optical system to be measured are obtained by moving the convergent light beam generating means and obtaining a position where the convergence point of the light beam emitted from the optical system to be measured is detected by the light beam convergence point detecting means. The method for measuring the focal length of the divergence system optical system is characterized in that the focal length of the optics system to be measured is obtained from the position of the optical system to be measured and the position of the convergent light beam generating means in each case.
【請求項5】少なくとも3箇所の収束光束生成手段の位
置xi (i=1,2,・・・ ,N)と、被測定光学系の位
置をyi (i=1,2,・・・ ,N)とから、数2により
被測定光学系の焦点距離を算出することを特徴とする請
求項3または請求項4の発散系光学系の焦点距離の測定
方法。 【数2】
5. The positions x i (i = 1, 2, ..., N) of the convergent light beam generating means and the positions of the optical system to be measured are y i (i = 1, 2, ... ., N), the focal length of the optical system to be measured is calculated by the equation 2, and the method of measuring the focal length of the divergent optical system according to claim 3 or 4. [Equation 2]
JP23567693A 1993-08-27 1993-08-27 Apparatus and method for measuring focal length of divergence optical system Pending JPH0763649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23567693A JPH0763649A (en) 1993-08-27 1993-08-27 Apparatus and method for measuring focal length of divergence optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23567693A JPH0763649A (en) 1993-08-27 1993-08-27 Apparatus and method for measuring focal length of divergence optical system

Publications (1)

Publication Number Publication Date
JPH0763649A true JPH0763649A (en) 1995-03-10

Family

ID=16989559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23567693A Pending JPH0763649A (en) 1993-08-27 1993-08-27 Apparatus and method for measuring focal length of divergence optical system

Country Status (1)

Country Link
JP (1) JPH0763649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126807B2 (en) 2001-05-29 2006-10-24 Techno Ryowa Ltd. Ionized air flow discharge type non-dusting ionizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126807B2 (en) 2001-05-29 2006-10-24 Techno Ryowa Ltd. Ionized air flow discharge type non-dusting ionizer

Similar Documents

Publication Publication Date Title
US6714308B2 (en) Rapid in-situ mastering of an aspheric fizeau
US6909509B2 (en) Optical surface profiling systems
US6882433B2 (en) Interferometer system of compact configuration
US20110013198A1 (en) Dimensional probe and methods of use
US5015096A (en) Method and apparatus for testing optical components
US7130059B2 (en) Common-path frequency-scanning interferometer
JP5486379B2 (en) Surface shape measuring device
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
EP1209442A2 (en) Automated radius of curvature measurements
GB2404014A (en) Surface profiling method and apparatus
US5467192A (en) Improvements in or relating to surface curvature measurement
CN103842770A (en) Method and device for measuring homogeneously reflective surfaces
JP4183220B2 (en) Optical spherical curvature radius measuring device
AU663922B2 (en) Improvements in or relating to surface curvature measurement
WO2003091685A1 (en) Optical testing method and apparatus
JPH0755638A (en) Optical system focal length measuring device and measuring method
JP2005201703A (en) Interference measurement method and interference measurement system
JPH0763649A (en) Apparatus and method for measuring focal length of divergence optical system
US20210356250A1 (en) Surface sensing probe and methods of use
CN111121983B (en) A real-time wavelength detection device using laser interference principle and its use method
JPH0755640A (en) Optical system focal length measuring device and measuring method
US7898671B2 (en) Interferometer having a mirror system for measuring a measured object
JPH0763647A (en) Divergence optical system focal length measuring apparatus and measuring method
JPH0763648A (en) Divergence optical system focal length measuring device and measuring method
JPH07311117A (en) Apparatus for measuring position of multiple lens