JP2510534B2 - Control equipment for refrigeration equipment - Google Patents

Control equipment for refrigeration equipment

Info

Publication number
JP2510534B2
JP2510534B2 JP24269886A JP24269886A JP2510534B2 JP 2510534 B2 JP2510534 B2 JP 2510534B2 JP 24269886 A JP24269886 A JP 24269886A JP 24269886 A JP24269886 A JP 24269886A JP 2510534 B2 JP2510534 B2 JP 2510534B2
Authority
JP
Japan
Prior art keywords
control
rotation speed
capacity
centrifugal compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24269886A
Other languages
Japanese (ja)
Other versions
JPS6396450A (en
Inventor
哲夫 柳井
譲 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Kucho KK
Original Assignee
Shin Nippon Kucho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Kucho KK filed Critical Shin Nippon Kucho KK
Priority to JP24269886A priority Critical patent/JP2510534B2/en
Publication of JPS6396450A publication Critical patent/JPS6396450A/en
Application granted granted Critical
Publication of JP2510534B2 publication Critical patent/JP2510534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は空調等に用いる冷凍設備の制御装置に係り、
とりわけ低負荷時でも適切に制御することができ制御装
置の簡略化を図ることができる冷凍設備の制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a control device for refrigeration equipment used for air conditioning,
In particular, the present invention relates to a refrigeration facility control device that can be controlled appropriately even when the load is low and that can simplify the control device.

(従来の技術) 空調等に従来用いられている冷凍設備およびその制御
装置の概略系統図を第5図に示す。
(Prior Art) FIG. 5 shows a schematic system diagram of a refrigeration facility and a control device therefor, which are conventionally used for air conditioning and the like.

第5図において、蒸発器1内の冷媒ガスが遠心圧縮機
2に吸込まれ加圧されて、高圧高温のガスになり凝縮器
3で冷却されて液化し、この液がフロート弁4を通って
低圧の蒸発器1に噴出し、周囲(冷水)から熱を奪って
蒸発し、蒸発した低圧冷媒ガスが再び遠心圧縮機2に吸
込まれ、このようにして冷凍設備が構成されている。
In FIG. 5, the refrigerant gas in the evaporator 1 is sucked into and pressurized by the centrifugal compressor 2, becomes high-pressure and high-temperature gas, is cooled in the condenser 3 and is liquefied, and this liquid passes through the float valve 4. The low-pressure refrigerant gas is ejected to the low-pressure evaporator 1 and heat is taken from the surroundings (cold water) to be evaporated, and the evaporated low-pressure refrigerant gas is sucked into the centrifugal compressor 2 again, thus constituting the refrigeration equipment.

遠心圧縮機2は羽根車の回転により、冷媒ガスを圧縮
し、一般にかご形誘導電動機5で駆動されている。
The centrifugal compressor 2 compresses the refrigerant gas by the rotation of the impeller and is generally driven by the squirrel cage induction motor 5.

一般に、遠心圧縮機2を10000rpm程度の高速で回転さ
せるため、電動機5は約3000rpmで運転し、遠心圧縮機
2とは増速ギヤ26で接続されている。
Generally, in order to rotate the centrifugal compressor 2 at a high speed of about 10,000 rpm, the electric motor 5 is operated at about 3000 rpm and is connected to the centrifugal compressor 2 by a speed increasing gear 26.

基本的な冷凍サイクルをモリエ線図を用い第6図に示
す。点Aは蒸発器1を出て遠心圧縮機2に入る状態で、
飽和蒸気線の上にのっている。この冷媒ガスを圧縮する
とき断熱圧縮されるものとすると、A→Bのように変化
する。圧縮された冷媒を凝縮器3内で冷却すると、圧力
は変わらないでエンタルピだけが減少し、全部の冷媒が
液体になると、飽和液線上の点Cに達する。この冷媒液
をフロート弁4の絞りを通して断熱膨張させると、冷媒
の状態はC→Dに移る。その後蒸発器1に入り周囲から
熱を奪ってエンタルピが増し、完全に増発すると点Aに
達する。このサイクルで冷凍に使用される熱量は点Aと
点Dのエンタルピの差である。冷凍容量としては、この
エンタルピ差と冷媒循環量との積で表わされる。
The basic refrigeration cycle is shown in FIG. 6 using the Mollier diagram. Point A is a state where it leaves the evaporator 1 and enters the centrifugal compressor 2,
It is on the saturated vapor line. If this refrigerant gas is adiabatically compressed, it changes as A → B. When the compressed refrigerant is cooled in the condenser 3, the pressure remains unchanged, only the enthalpy decreases, and when all the refrigerant becomes liquid, the point C on the saturated liquid line is reached. When this refrigerant liquid is adiabatically expanded through the throttle of the float valve 4, the refrigerant state shifts from C to D. After that, it enters the evaporator 1 and takes heat from the surroundings to increase the enthalpy, and when it completely increases, it reaches the point A. The amount of heat used for freezing in this cycle is the difference in enthalpy between points A and D. The refrigeration capacity is represented by the product of this enthalpy difference and the refrigerant circulation amount.

実際の運転においては、(1)熱負荷に応じた冷凍容
量とするための冷凍容量制御、(2)電動機のオーバロ
ードを防止するための電流制御(3)起動時の起動電流
を制限する起動装置などによって運転・制御される。こ
れらの制御について以下説明する。
In actual operation, (1) refrigeration capacity control for adjusting the refrigeration capacity according to heat load, (2) current control for preventing overload of the motor (3) start-up for limiting start-up current at start-up It is operated and controlled by a device. These controls will be described below.

(1) 冷凍容量制御 第5図に示すように、冷凍設備を出る冷水はほぼ一定
の温度(例えば7℃)で空調機の冷却器6に供給され、
熱負荷により温度が上昇して冷凍設備に戻る。しかし、
空調機の冷却器6の熱負荷は、天候、設備使用状況など
によって変化し、冷凍設備に戻る冷水温度は常に一定と
はならない。
(1) Refrigeration capacity control As shown in FIG. 5, cold water exiting the refrigeration equipment is supplied to the cooler 6 of the air conditioner at a substantially constant temperature (for example, 7 ° C.),
The heat load raises the temperature and returns to the refrigeration equipment. But,
The heat load on the cooler 6 of the air conditioner changes depending on the weather, equipment usage conditions, etc., and the chilled water temperature returning to the refrigeration equipment is not always constant.

すなわち、定格運転においては、冷凍設備を出た冷水
(例えば7℃)は、空調機の冷却器6の熱負荷によって
温度上昇(例えば5deg)して、高い温度(この場合12
℃)になって冷凍設備に戻る。冷凍設備では、冷水を再
び冷却(この場合5deg)して出口水温となる。冷媒は、
冷水を冷却するのに見合う量循環している。
That is, in the rated operation, the cold water (eg, 7 ° C.) exiting the refrigerating equipment rises in temperature (eg, 5 deg ) due to the heat load of the cooler 6 of the air conditioner, and reaches a high temperature (in this case, 12 ° C.).
℃) and return to the freezer. In the refrigeration equipment, the cold water is cooled again (5 deg in this case) to reach the outlet water temperature. The refrigerant is
It circulates in an amount suitable for cooling cold water.

空調機の冷却器6の熱負荷が減少して、冷水の温度上
昇が少なく(例えば3deg)になったとすると、冷水は定
格時より低い温度(この場合10℃)で冷凍設備に戻る。
ここで冷凍設備内の冷媒循環量が定格時と同様である
と、冷水出口温度は、当初の値(この場合7℃)より低
くなってしまい、好ましくない。
If the heat load on the cooler 6 of the air conditioner decreases and the temperature rise of the cold water becomes small (for example, 3 deg ), the cold water returns to the refrigeration facility at a temperature lower than the rated time (10 ° C. in this case).
Here, if the refrigerant circulation amount in the refrigerating equipment is the same as that at the time of rating, the cold water outlet temperature becomes lower than the initial value (7 ° C. in this case), which is not preferable.

そこで、冷却出口温度を一定にた持つよう、温度測定
器7で冷水温度を測定し、調節器25によって、吸込ベー
ン21、バイパス弁24を操作して冷媒循環量を減じて、冷
凍機容量を制御することとしている。
Therefore, in order to keep the cooling outlet temperature constant, the temperature of the cold water is measured by the temperature measuring device 7, and the controller 25 operates the suction vane 21 and the bypass valve 24 to reduce the refrigerant circulation amount to reduce the refrigerator capacity. It is supposed to be controlled.

この吸込ベーン制御、バイパス弁制御について、以下
詳細に説明する。
The suction vane control and the bypass valve control will be described in detail below.

i) 吸込ベーン制御 吸込ベーン制御は、遠心圧縮機の吸込口に整流翼(ベ
ーン)を設け、ベーンの角度(開度)を変えることによ
って、遠心圧縮機の特性を変じ、冷媒循環量を制御する
ものである。
i) Suction vane control In suction vane control, a rectifying blade (vane) is provided at the suction port of the centrifugal compressor, and the angle (opening) of the vane is changed to change the characteristics of the centrifugal compressor and control the refrigerant circulation amount. To do.

吸込ベーン制御は、定格容量から部分容量の大半にわ
たって用いられる。しかし、吸込ベーン制御をある開度
以下に閉じるとサージングを起こし運転不能となるた
め、制御範囲に制限がある。
Suction vane control is used from rated capacity to most of the partial capacity. However, if the suction vane control is closed below a certain opening degree, surging will occur and operation will be impossible, so the control range is limited.

遠心圧縮機の冷媒容量と圧力との関係を第7図に示
す。展Hの圧力は凝縮器3と蒸発器1との圧力差に相当
する圧力であり、曲線Tは、冷媒が冷凍機内を循環する
際に生ずる圧力損失(装置抵抗曲線)である。曲線Aは
定格容量での圧縮機特性曲線であり、装置抵抗曲線Tと
は、定格冷凍容量の線上で交わっている。
The relationship between the refrigerant capacity and pressure of the centrifugal compressor is shown in FIG. The pressure of the extension H is a pressure corresponding to the pressure difference between the condenser 3 and the evaporator 1, and the curve T is a pressure loss (device resistance curve) generated when the refrigerant circulates in the refrigerator. Curve A is a compressor characteristic curve at the rated capacity, and intersects with the device resistance curve T on the line of the rated refrigeration capacity.

冷凍容量制御を行い、吸込ベーン21を閉じた状態が曲
線Bで、装置抵抗曲線Tとの交点は左に移り、冷凍容量
は定格時より減じている。
The state in which the refrigerating capacity is controlled and the suction vane 21 is closed is the curve B, the intersection with the device resistance curve T has moved to the left, and the refrigerating capacity has decreased from the rated value.

さらに吸込ベーン21を閉じると、圧縮機特性曲線は、
サージング域に入り、曲線Cでは運転不能となる。
When the suction vane 21 is further closed, the compressor characteristic curve becomes
It enters the surging area and becomes inoperable on curve C.

吸込ベーン制御は、サージング域に入る手前までが制
御範囲となる。
The control range of suction vane control is just before entering the surging area.

ii) バイパス弁制御 吸込ベーン制御の制御範囲以下の冷凍容量制御を行う
ために、バイパス弁制御が用いられる。
ii) Bypass valve control Bypass valve control is used to control the refrigeration capacity within the control range of the suction vane control.

冷凍設備容量を下げるためには、冷媒の循環量を更に
減じなければならない。しかし、吸込ベーン21によって
全体循環量を更に減じると、前述したサージング域に入
るため、遠心圧縮機2での冷媒量をサージング域に入ら
ない量低量に保ち、蒸発器1での蒸発作用を行う冷凍容
量を減じるようにしたのがバイパス弁制御である。
In order to reduce the capacity of the refrigeration equipment, the circulation amount of the refrigerant must be further reduced. However, if the total circulation amount is further reduced by the suction vane 21, it enters the surging region described above, so that the amount of refrigerant in the centrifugal compressor 2 is kept at a low amount that does not enter the surging region, and the evaporation action in the evaporator 1 is reduced. Bypass valve control is designed to reduce the refrigeration capacity to be used.

すなわち、凝縮器3の高圧冷媒ガスの一部をバイパス
弁24によって蒸発器1にバイパスすることで、凝縮器3
で凝縮する冷媒量を減じ、蒸発器1に噴出する冷媒量を
減らすものである。
That is, by bypassing a part of the high-pressure refrigerant gas of the condenser 3 to the evaporator 1 by the bypass valve 24, the condenser 3
The amount of the refrigerant condensed by is reduced and the amount of the refrigerant ejected to the evaporator 1 is reduced.

バイパスする冷媒量を調節することによって冷凍設備
の能力が制御できる。
The capacity of the refrigeration equipment can be controlled by adjusting the amount of refrigerant to be bypassed.

多くの冷凍設備は、吸込ベーン制御とバイパス制御を
組み合わせることで、冷凍設備の能力を100%〜約5%
の範囲に制御することが可能となっている。
Most refrigeration equipment has a capacity of 100% to about 5% by combining suction vane control and bypass control.
It is possible to control in the range of.

熱負荷が更に減少し、冷凍設備の能力を約5%より少
なくしなければならなくなると、吸込ベーン制御、バイ
パス弁制御の組合わせによっても冷凍容量を制御するこ
とができなくなり、冷水出口温度は徐々に低くなる。こ
のまま冷水温度を下げていくことは、冷水が凍結するこ
ととなり、冷凍機に重大な不都合を生じるため、冷水出
口温度がある程度(例えば6℃)以下となった場合に
は、圧縮機の運転を停止し、冷水温度が再び高くなった
(例えば12℃)後、再度起動する用にON−OFF制御運転
となる。
If the heat load is further reduced and the capacity of the refrigeration equipment must be reduced to less than about 5%, the refrigeration capacity cannot be controlled even by the combination of the suction vane control and the bypass valve control, and the chilled water outlet temperature becomes Gradually lowers. If the chilled water temperature is lowered as it is, the chilled water freezes, which causes a serious inconvenience to the refrigerator. Therefore, when the chilled water outlet temperature falls below a certain level (for example, 6 ° C), the operation of the compressor is stopped. After stopping and the chilled water temperature becomes high again (for example, 12 ° C), the ON-OFF control operation is performed to restart.

次に電流制御について説明する。 Next, the current control will be described.

(2) 電流制御 冷凍容量制御は、前述したように冷水出口温度を設定
された値に保つよう、ベーン制御、バイパス制御によっ
て行なわれている。
(2) Current control Refrigeration capacity control is performed by vane control and bypass control so as to maintain the chilled water outlet temperature at the set value as described above.

ここで、冷凍設備運転開始初期などで、冷水温度が設
定された値にくらべ高い場合、冷凍容量制御としては、
冷水温度を設定された値に速やかに近づけようと、吸込
ベー21を定格容量における開度より更に開き冷凍容量を
増すようにしている。また冷媒の比重量は通常運転時よ
り大きい。
Here, when the chilled water temperature is higher than the set value, such as at the beginning of operation of the refrigeration equipment, as the refrigeration capacity control,
In order to quickly bring the cold water temperature close to the set value, the suction bay 21 is opened further than the opening at the rated capacity to increase the refrigeration capacity. The specific weight of the refrigerant is larger than that in normal operation.

その結果、遠心圧縮機2は定格未上の働き、誘導電動
機5にオーバーワードとなる場合がある。そこで、誘導
電動機5の給電線に電流測定器11を設け、電流値を測定
して調節器25に入力し、オーバーロードとならないよう
に電流値が定格値より越えた場合に、冷凍容量制御より
優先して吸込ベーン21、バイパス弁24を操作して電流値
を下げる制御を行っている。その後電流値が定格値を下
まわったなら、再び冷凍容量制御が行われる。
As a result, the centrifugal compressor 2 may have an unrated performance, and the induction motor 5 may overwhelm. Therefore, a current measuring device 11 is provided on the feeder line of the induction motor 5, the current value is measured and input to the controller 25, and when the current value exceeds the rated value so as not to cause overload, the refrigeration capacity control is performed. The suction vane 21 and the bypass valve 24 are preferentially operated to control to reduce the current value. After that, if the current value falls below the rated value, the refrigeration capacity control is performed again.

次に起動装置について説明する。 Next, the starting device will be described.

(3) 起動装置 誘導電動機5としては、冷凍設備能力に合わせおおむ
ね75kwより大きなものが用いられる。かご形誘導電動機
5の起動は全電圧起動では起動電流が大きいため受電設
備量に限りのある施設では、スターデルタ起動やリアク
トル起動などの起動装置22および操作スイッチ23を用い
ている。
(3) Starter As the induction motor 5, an induction motor having a capacity of more than 75 kW is used according to the refrigerating equipment capacity. Since the starting current of the squirrel-cage induction motor 5 is large in the full-voltage starting, the starting device 22 and the operating switch 23 such as star-delta starting and reactor starting are used in facilities where the amount of power receiving equipment is limited.

(発明が解決しようとする問題点) 従来の冷凍設備の制御装置は、吸込ベーン21およびバ
イパス弁24を制御するものであり、吸込ベーン21および
バイパス弁24を必要とするためとりわけ次のような問題
が生じている。
(Problems to be Solved by the Invention) A conventional control device for refrigeration equipment controls the suction vane 21 and the bypass valve 24, and requires the suction vane 21 and the bypass valve 24. There is a problem.

すなわち、吸込ベーン21は精密で複雑な構造をしてお
い故障の心配があり、また吸込ベーン21、バイパス弁24
の操作機構は、圧力バウンダリを貫通するため、特殊な
気密装置を必要としている。さらに機密装置は定期的に
点検し、部品の交換を必要としている。
In other words, the suction vane 21 has a precise and complicated structure and there is a risk of failure, and the suction vane 21 and the bypass valve 24
The operating mechanism of (1) penetrates the pressure boundary and thus requires a special airtight device. In addition, confidential devices require regular inspection and replacement of parts.

また、従来の制御は、ベーン制御とバイパス制御とを
組み合わせて行うため、専用の調節器を必要とし、制御
方法が複雑で、設定調製も熟練を要している。また、ON
−OFF制御運転を頻繁に行うことは、電動機起動時に大
電流が流れることで、起動発熱の除去、電動機各部に大
きな荷重がかかることによる疲労、開閉器の疲労などの
問題があり、好ましくない。そのため、一般に起動を約
20分〜1時間に1回をこえて行わないように制御されて
いる(連続再起動防止制御)。
In addition, since the conventional control is performed by combining the vane control and the bypass control, a dedicated controller is required, the control method is complicated, and the setting and adjustment also requires skill. Also, ON
Frequent OFF control operation is not preferable because a large current flows at the time of starting the motor, which causes problems such as removal of heat generation at startup, fatigue due to a large load applied to each part of the motor, and fatigue of the switch. Therefore, generally start up
It is controlled not to exceed once every 20 minutes to 1 hour (continuous restart prevention control).

その結果、熱負荷が約5%以下となるような場合、冷
水温度が低くなり、圧縮機が停止した後、再び冷水温度
が高くなり、再起動の設定温度になっても、連続再起動
防止制御が働き起動することができず、冷水温度はさら
に上昇し、空調機側に不都合を生じることも考えられ
る。また、消費電力は冷凍設備能力に比例することが望
ましいが、低熱負荷域においてはバイパス弁制御となる
ため、遠心圧縮機2の仕事量は変わらなくなり、効率は
悪くなる傾向にある。
As a result, when the heat load is about 5% or less, the cold water temperature becomes low, the cold water temperature becomes high again after the compressor stops, and even if the restart temperature is reached, continuous restart prevention is prevented. It is conceivable that the control cannot be activated and the temperature of the chilled water further rises, causing an inconvenience on the air conditioner side. Further, it is desirable that the power consumption be proportional to the refrigerating equipment capacity, but since the bypass valve control is performed in the low heat load region, the work of the centrifugal compressor 2 does not change, and the efficiency tends to deteriorate.

また、従来の冷凍設備の制御機器は、受電設備容量に
限りがある場合、起動装置22を必要とし、この起動装置
の設備費および設置スペースのみならず、保守点検の必
要性も生じている。
Further, the conventional control equipment for refrigeration equipment requires the starter 22 when the capacity of the power receiving equipment is limited, and not only the equipment cost and installation space of this starter but also the need for maintenance and inspection have arisen.

このような問題を解決するために、遠心圧縮機2の回
転数を調節して冷凍容量を制御することが提案されてい
る。
In order to solve such a problem, it has been proposed to control the refrigeration capacity by adjusting the rotation speed of the centrifugal compressor 2.

第8図はこの遠心圧縮機2の回転数を制御した場合の
遠心圧縮機2の冷凍容量と圧力との関係を示す特製図
で、点Hの圧力は、凝縮器3と蒸発器1との圧力差に相
当する圧力であり、曲線Tは冷媒が冷凍機内循環する際
に生ずる圧力損失(装置抵抗曲線)である。曲線Aは定
格容量での圧縮機特性曲線であり、装置抵抗曲線Tと
は、定格冷凍容量の線上で交わっている。冷凍容量制御
を行い遠心圧縮機2の回転数を減じた状態が曲線Bで、
装置抵抗曲線Tとの交点は左に移り、冷凍容量は定格時
より減じている。
FIG. 8 is a special drawing showing the relationship between the refrigerating capacity and the pressure of the centrifugal compressor 2 when the rotational speed of the centrifugal compressor 2 is controlled. The pressure at the point H is that of the condenser 3 and the evaporator 1. The pressure corresponds to the pressure difference, and the curve T is the pressure loss (device resistance curve) generated when the refrigerant circulates in the refrigerator. Curve A is a compressor characteristic curve at the rated capacity, and intersects with the device resistance curve T on the line of the rated refrigeration capacity. The state in which the refrigeration capacity is controlled and the rotational speed of the centrifugal compressor 2 is reduced is the curve B,
The intersection with the device resistance curve T has moved to the left, and the refrigeration capacity has decreased from the rated value.

このように遠心圧縮機2の回転数を制御することで冷
凍設備の冷凍容量の制御は可能である。
By controlling the rotation speed of the centrifugal compressor 2 in this way, the refrigerating capacity of the refrigerating equipment can be controlled.

しかし、遠心圧縮機2の特性は回転数を減じることに
よって、冷凍容量は回転数に比例し、圧力は回転数の2
乗に比例して減じる性質がある。
However, the characteristics of the centrifugal compressor 2 are that the refrigeration capacity is proportional to the number of revolutions and the pressure is 2
It has the property of being reduced in proportion to the power.

そのため、さらに冷凍容量を減らそうと、圧縮機の回
転数をさらに減じると、曲線Cのようになり、凝縮器3
と蒸発器1との圧力差(点H以上の圧力)を保ちかつ冷
媒を循環させることが不可能となる。
Therefore, if the rotation speed of the compressor is further reduced in order to further reduce the refrigeration capacity, a curve C is obtained, and the condenser 3
It becomes impossible to circulate the refrigerant while maintaining the pressure difference (pressure above the point H) between the evaporator and the evaporator 1.

従って、単純に回転数を調節するだけでは、広範囲と
りわけ低負荷時の冷凍容量を制御することはできない。
Therefore, it is not possible to control the refrigeration capacity over a wide range, especially when the load is low, simply by adjusting the rotation speed.

また、ON−OFF制御運転は、前述のような問題がある
ため、制御方法として広く用いることは適当でない。
Further, since the ON-OFF control operation has the above-mentioned problems, it is not suitable to be widely used as a control method.

本発明はこのような点を考慮してなされたものであ
り、低負荷時でも適切に制御することができかつ制御装
置の簡略化を図ることができる冷凍設備の制御装置を提
供することを目的とする。
The present invention has been made in consideration of the above points, and an object thereof is to provide a control device for a refrigeration facility that can be appropriately controlled even under a low load and can simplify the control device. And

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明は、熱負荷に応じた回転数信号を発生する回転
数制御器を備え、遠心圧縮機の回転数を制御して冷凍容
量を制御する冷凍設備の制御装置であって、遠心圧縮機
の連続回転数制御ができない低熱負荷時に、プロセス量
(この場合は熱負荷量)に追従する連続回転数制御か
ら、脈動回転制御に制御方式を切替えることとし、前記
回転数制御器が凝縮器と蒸発器との圧力差以上の圧力を
生じさせる高回転数信号と、前記圧力差以下の圧力を生
じさせる低回転数信号とを交互に発生させて、遠心圧縮
機の回転数を制御することを特徴としている。
(Means for Solving Problems) The present invention includes a rotation speed controller that generates a rotation speed signal according to a heat load, and controls a rotation speed of a centrifugal compressor to control a refrigerating capacity of a refrigeration facility. When the control device is a low heat load that cannot control the continuous rotation speed of the centrifugal compressor, the control method is switched from continuous rotation speed control that follows the process amount (heat load amount in this case) to pulsation rotation control, The rotation speed controller alternately generates a high rotation speed signal that causes a pressure equal to or higher than the pressure difference between the condenser and the evaporator, and a low rotation speed signal that causes a pressure equal to or lower than the pressure difference, and performs centrifugal compression. It is characterized by controlling the rotation speed of the machine.

(作 用) 冷凍機運転中は電動機を連続運転し、高熱負荷時に
は、負荷に応じた回転数による遠心圧縮機の連続回転制
御をし、遠心圧縮機の連続回転制御ができない低熱負荷
時、回転数制御器が凝縮器と蒸発器との圧力差以上の圧
力を生じさせる高回転数信号と、この圧力差以下の圧力
を生じさせる低回転数信号とを交互に発生させて遠心圧
縮機の回転数を制御し、このようにして冷凍容量を適切
に制御することができ、理論的には0〜100%の容量連
続制御が可能となる。
(Operation) Continuously operate the electric motor during refrigerator operation, and during high heat load, control the continuous rotation of the centrifugal compressor according to the rotation speed according to the load, and rotate at low heat load where continuous rotation control of the centrifugal compressor is not possible. The rotation speed of the centrifugal compressor is generated by the number controller alternately generating a high rotation speed signal that produces a pressure greater than the pressure difference between the condenser and the evaporator and a low rotation speed signal that produces a pressure less than this pressure difference. By controlling the number, the refrigerating capacity can be appropriately controlled in this way, and theoretically, continuous capacity control of 0 to 100% becomes possible.

(実施例) 以下図面を参照して本発明の実施例について説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第4図は本発明による冷凍設備の制御装置
の一実施例を示す図である。第1図において、蒸発器1
内の冷媒ガスが遠心圧縮機に吸込まれ加圧されて高圧高
温のになり凝縮器3で冷却されて液化し、この液がフロ
ート弁4を通って低圧の蒸発器1に噴出し周囲(冷水)
から熱を奪って蒸発し、蒸発した低圧冷媒ガスが再び遠
心圧縮機2に吸込まれ、このようにして冷凍設備が構成
されている。また、遠心圧縮機2は羽根車の回転によっ
て冷媒を圧縮するものであり、かご形誘導電動機5によ
って駆動されている。さらに、遠心圧縮機2の吐出側に
逆流防止弁15が設けられている。
1 to 4 are views showing an embodiment of a control device for refrigeration equipment according to the present invention. In FIG. 1, the evaporator 1
The refrigerant gas inside is sucked into the centrifugal compressor, pressurized, becomes a high pressure and high temperature, is cooled in the condenser 3 and is liquefied, and this liquid is jetted to the low pressure evaporator 1 through the float valve 4 and the surrounding (cold water )
The heat is taken away from the refrigerant to evaporate, and the evaporated low-pressure refrigerant gas is sucked into the centrifugal compressor 2 again, and the refrigeration equipment is configured in this way. The centrifugal compressor 2 compresses the refrigerant by rotating the impeller, and is driven by the squirrel cage induction motor 5. Further, a check valve 15 is provided on the discharge side of the centrifugal compressor 2.

電源とかご形誘導電動機5との間には、開閉器14およ
び電力調整装置10が順次接続され、開閉器14には操作ス
イッチ13が接続されている。
A switch 14 and a power adjustment device 10 are sequentially connected between the power source and the squirrel cage induction motor 5, and an operation switch 13 is connected to the switch 14.

また、電力調整装置10には回転数制御器9が接続され
ており、回転数制御器9には冷凍設備の冷水出口に取付
けられた温度測定器7からの測定信号が入力する温度調
節器8が接続されている。このように回転数制御器9
は、温度測定器7から測定した熱負荷に応じた回転数信
号を発生させて、電力調整装置10へ送信するよう構成さ
れている。さらに、回転数制御器9には電流測定器11か
らのかご形誘導電動機5の電流値信号が入力する電流調
節器12が接続されている。
Further, a rotation speed controller 9 is connected to the power adjustment device 10, and the rotation speed controller 9 receives a measurement signal from a temperature measurement device 7 attached to the chilled water outlet of the refrigeration equipment. Are connected. In this way, the rotation speed controller 9
Is configured to generate a rotation speed signal according to the heat load measured by the temperature measuring device 7 and transmit the rotation speed signal to the power adjusting device 10. Further, the rotation speed controller 9 is connected to a current controller 12 to which the current value signal of the squirrel cage induction motor 5 from the current measuring device 11 is input.

この回転数制御器9は回転数制御機能29と時間制御機
能30の2つの主要機能と、これらを切換る連続回転、脈
動回転切換機能28とから成り立っている。
The rotation speed controller 9 comprises two main functions, a rotation speed control function 29 and a time control function 30, and a continuous rotation / pulsation rotation switching function 28 for switching these.

(1) 回転数制御機能 高熱負荷が連続安定した状態で、遠心圧縮機の連続回
転数制御を行うことができる時には、負荷に応じた回転
数で電動機が連続運転するように回転数を調節する信号
を発信する。
(1) Rotation speed control function When the continuous rotation speed control of the centrifugal compressor can be performed under the condition that the high heat load is continuously stable, the rotation speed is adjusted so that the motor continuously operates at the rotation speed according to the load. Send a signal.

(2) 時間制御機能 低熱負荷が連続安定した状態で、遠心圧縮機の連続回
転数制御を行うことができてできない時には、電動機を
凝縮器3と蒸発機1との圧力差以上の圧力を生じさせる
高回転数(r1)とこの圧力差以下の圧力を生じさせる低
回転数(r2)とを交互に切替て運転する様に、負荷に応
じて、単位時間内の高回転数(r1)信号の発信時間と低
回転数(r2)信号の発信時間とを調節して交互に発信す
る。すなわち、調節は単位時間(サイクル時間)単位で
行われ、単位時間内における高回転数(r1)で運転する
時間と低回転数(r2)で運転する時間との合計は一定と
し、負荷に応じて高回転数(r1)と低回転数(r2)の各
運転時間が調節される。たとえば、単位時間を10秒とし
て、高回転数(r1)での運転を8秒、低回転数(r2)で
の運転を2秒にすると、平均冷凍容量は高回転数(r1
で連続運転した時の冷凍容量の4/5にすことができる。
(2) Time control function When the continuous rotation speed control of the centrifugal compressor cannot be performed under the condition that the low heat load is continuously stable, the electric motor generates a pressure higher than the pressure difference between the condenser 3 and the evaporator 1. Depending on the load, the high rotation speed (r 1 ) and the low rotation speed (r 2 ) that produces a pressure less than this pressure difference may be switched alternately. 1 ) Adjust the signal transmission time and the low rotation speed (r 2 ) signal transmission time to transmit alternately. That is, the adjustment is performed in a unit of time (cycle time), and the total of the time of operating at a high rotational speed (r 1 ) and the time of operating at a low rotational speed (r 2 ) within a unit time is constant and the load is The operating time of high rpm (r 1 ) and low rpm (r 2 ) is adjusted accordingly. For example, if the unit time is 10 seconds and the operation at high rotation speed (r 1 ) is 8 seconds and the operation at low rotation speed (r 2 ) is 2 seconds, the average refrigeration capacity is high rotation speed (r 1 )
It can be reduced to 4/5 of the refrigeration capacity during continuous operation.

このように、高回転数(r1)の運転時間を減らす(低
回転数(r2)の運転時間を増す)ことで、平均冷凍容量
を減じることができる。ここで、高回転数(r1)と低回
転数(r2)はプロセス量(熱負荷)の変化によって調節
されるようなものではなく、凝縮圧力、蒸発圧力、遠心
圧縮機の特製などの機械的要因によってあらかじめ決め
られてしまうものである。
In this way, the average refrigeration capacity can be reduced by reducing the operating time at high rotational speed (r 1 ) (increasing the operating time at low rotational speed (r 2 )). Here, the high rotation speed (r 1 ) and the low rotation speed (r 2 ) are not adjusted by the change of the process amount (heat load), but the condensation pressure, the evaporation pressure, the special centrifugal compressor, etc. It is predetermined by mechanical factors.

次にこのような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment having such a configuration will be described.

電動機起動時は、操作スイッチ13を操作することで、
開閉器14が閉じ、電力調整装置10に電気を供給し、電力
調整装置10では、電流値を制限しながら電動機5に電力
を供給する。電動機5が所定の回転数となるまでの間、
回転数制御器9からの信号はバイパスされる。
When starting the electric motor, by operating the operation switch 13,
The switch 14 is closed to supply electricity to the electric power adjusting device 10, and the electric power adjusting device 10 supplies electric power to the electric motor 5 while limiting the current value. Until the electric motor 5 reaches a predetermined rotation speed,
The signal from the rotation speed controller 9 is bypassed.

遠心圧縮機2の運転中、熱負荷が変動しても、冷凍機
出口冷水温度を一定に保つよう、温度測定器7は冷水出
口温度を測定し、温度調節器8に信号を送る。温度調節
計8では入力信号と設定した値とを比較し、偏差に応じ
た調節信号を回転数制御器9に送る。回転数制御器9で
は調節信号に見合う冷凍容量となる回転数で遠心圧縮機
2が運転されるような制御信号に変換し、電力調整装置
10を制御する。電力調整装置10では供給された電源の電
圧、周波数を調整し、誘導電動機5に供給し、電動機5
を所定の回転数で運転する。
During operation of the centrifugal compressor 2, the temperature measuring device 7 measures the chilled water outlet temperature and sends a signal to the temperature controller 8 so as to keep the chiller outlet chilled water temperature constant even if the heat load changes. The temperature controller 8 compares the input signal with the set value, and sends an adjustment signal corresponding to the deviation to the rotation speed controller 9. The rotation speed controller 9 converts into a control signal for operating the centrifugal compressor 2 at a rotation speed that provides a refrigeration capacity commensurate with the adjustment signal, and a power adjustment device.
Control 10 The power adjusting device 10 adjusts the voltage and frequency of the supplied power and supplies the voltage to the induction motor 5,
Is operated at a predetermined rotation speed.

この回転数制御を2図乃至第4図で説明する。 This rotation speed control will be described with reference to FIGS.

(1) 定格容量時 定格の熱負荷があると、温度調節器8は、温度測定器
7からの信号を受けて、冷凍容量が定格(100%)(A
点)となるように、回転数制御器9に100%信号を送
る。
(1) At rated capacity When there is a rated heat load, the temperature controller 8 receives a signal from the temperature measuring device 7, and the refrigerating capacity is rated (100%) (A
100% signal is sent to the rotation speed controller 9 so as to be (point).

回転数制御器9は100%信号を受けたので、電動機を
定格容量に見合う回転数rA(例えば2800rpm)で連続運
転するように電力調整装置10を制御する。
Since the rotation speed controller 9 receives the 100% signal, the rotation speed controller 9 controls the power adjusting device 10 so as to continuously operate the electric motor at a rotation speed r A (for example, 2800 rpm) commensurate with the rated capacity.

(2) 高熱負荷時(連続回転制御)(例えば容量90
%) 熱負荷が減少し、定格の90%になったとすると、温度
調節器8は温度測定器7からの信号を受けて冷凍容量が
90%(B点)となるように回転数制御器9に90%信号を
送る。回転数制御器9は、90%信号を受けたので、電動
機を冷凍容量90%に見合う回転数rB(例えば2650rpm)
で連続回転で運転するように電力調整装置10を制御す
る。この制御方法はC点(例えば冷凍容量80%)まで行
われ、その時の回転数はr1(例えば2500rpm)となる。
(2) High heat load (continuous rotation control) (for example, capacity 90
%) If the heat load is reduced to 90% of the rated value, the temperature controller 8 receives a signal from the temperature measuring device 7 and the refrigerating capacity is reduced.
A 90% signal is sent to the rotation speed controller 9 so that it becomes 90% (point B). Since the rotation speed controller 9 receives a 90% signal, the rotation speed r B (for example, 2650 rpm) corresponding to the refrigeration capacity of the motor is 90%.
Controls the electric power adjustment device 10 so as to operate in continuous rotation. This control method is performed up to point C (for example, refrigeration capacity 80%), and the rotation speed at that time is r 1 (for example, 2500 rpm).

r1は凝縮器3と蒸発器1との圧力差以上の圧力を生じ
させる最低の回転数である。
r 1 is the minimum number of rotations that produces a pressure equal to or higher than the pressure difference between the condenser 3 and the evaporator 1.

(3) 低熱負荷時(脈動回転制御)(例えば容量40
%) 熱負荷が更に減少し、定格の40%になったとすると、
温度調節器8は温度測定器7からの信号を受けて冷凍容
量が40%(D点)となるように回転数制御器9に40%信
号を送る。
(3) Low heat load (pulsation rotation control) (for example, capacity 40
%) If the heat load is further reduced to 40% of the rating,
The temperature controller 8 receives the signal from the temperature measuring device 7 and sends a 40% signal to the rotation speed controller 9 so that the refrigerating capacity becomes 40% (point D).

回転数制御器9は、40%信号を受けたので高熱負荷時
に同様に、電動機を冷凍容量40%に見合う回転数で運転
するように回転数を下げ(例えば1800rpm)てしまう
と、この回転数では、凝縮器3と蒸発器1との圧力差以
上の圧力を生じさせる最低の回転数r1(この場合2500rp
m)より低く、冷媒を循環させることは不可能となり、
冷凍容量はゼロとなってしまう。そこで回転数制御器9
では連続回転制御から脈動回転制御に切替えて凝縮器3
と蒸発器1との圧力差以上の圧力を生じさせる回転数r1
とこの圧力差以下を生じさせる回転数r2(例えば2000rp
m)とを交互に切替えることにし、入力信号に応じ、r1,
r2それぞれの運転時間を調節する。
Since the rotation speed controller 9 receives a 40% signal, if the rotation speed is lowered (for example, 1800 rpm) so that the motor operates at a rotation speed commensurate with the refrigeration capacity of 40%, the rotation speed will be the same when a high heat load is applied. Then, the minimum rotation speed r 1 (in this case 2500 rp) that produces a pressure equal to or higher than the pressure difference between the condenser 3 and the evaporator 1.
m) lower, making it impossible to circulate the refrigerant,
The freezing capacity becomes zero. Therefore, the rotation speed controller 9
Then, switch from continuous rotation control to pulsation rotation control
Number of revolutions r 1 that produces a pressure greater than the pressure difference between the
And a rotational speed r 2 (for example, 2000rp
m) and are switched alternately, depending on the input signal, r 1 ,
r 2 Adjust each operation time.

すなわち、冷凍容量40%の信号を受けると、第3図の
ようにr1での運転時間とr2での運転時間を略同一になる
ように運転する。
That is, when a signal of a refrigeration capacity of 40% is received, the operation is performed so that the operation time at r 1 and the operation time at r 2 are substantially the same as shown in FIG.

熱負荷が更に減少し、例えば定格の25%(E点)にな
ったとすると、D点よりも冷凍容量が小さいので第4図
のようにr1の運転時間をr2での運転時間よりも少なくし
て運転する。
If the heat load is further reduced to, for example, 25% of the rating (point E), the refrigerating capacity is smaller than the point D, so the operating time of r 1 is shorter than that of r 2 as shown in Fig. 4. Drive less.

このように、回転数制御器9は、温度調節器8からの
リニアな信号を受けて、連続回転制御のできる範囲で
は、回転数の制御、連続回転制御のできない範囲におい
ては、r1での運転時間、r2での運転時間を制御すること
で冷凍容量をほぼ100〜0%に制御することが可能とな
る。
In this way, the rotation speed controller 9 receives a linear signal from the temperature controller 8 and controls the rotation speed within a range where continuous rotation control can be performed, and r 1 within a range where continuous rotation control cannot be performed. operating time, it is possible to control the refrigeration capacity is almost 100% to 0% by controlling the driving time in the r 2.

冷凍容量に対する電動機の回転数、交互運転での運転
時間などは、個々の冷凍機を設計する上で決定すること
になる。
The number of rotations of the electric motor with respect to the refrigerating capacity, the operating time in alternate operation, etc. will be determined when designing the individual refrigerators.

連続回転制御と脈動回転制御との切替回転数の決定に
は、設計によることのほか、遠心圧縮機2の吸込と吐出
との圧力差を測定する差圧測定装置27を設け、その信号
を回転数制御器9に入力くして、あらかじめ設定した値
と比較して求めることも可能である。
The determination of the number of rotations for switching between continuous rotation control and pulsation rotation control depends on the design, and a differential pressure measuring device 27 for measuring the pressure difference between the suction and discharge of the centrifugal compressor 2 is provided and the signal is rotated. It is also possible to input it to the number controller 9 and compare it with a preset value.

すなわち、熱負荷が少なくなると、冷凍容量を下げる
ため、回転数制御器9は、電動機の回転数を下げる制御
をする。それにより遠心圧縮機で発生する吸込と吐出と
の圧力差も下がる。そこでこの差圧が凝縮器3と蒸発器
1との圧力差より小さくなろうとする直前で連続回転制
御から脈動回転制御に切替える。また、r2の回転数もこ
の差圧が凝縮器3と蒸発器1との差圧力より小さくなっ
たところで、それ以上回転数を下げる必要のないことが
判明できる。
That is, when the heat load decreases, the refrigerating capacity is reduced, and therefore the rotation speed controller 9 controls to reduce the rotation speed of the electric motor. As a result, the pressure difference between suction and discharge generated in the centrifugal compressor is also reduced. Therefore, the continuous rotation control is switched to the pulsation rotation control immediately before the pressure difference is about to become smaller than the pressure difference between the condenser 3 and the evaporator 1. Further, it can be seen that when the differential pressure of r 2 becomes smaller than the differential pressure between the condenser 3 and the evaporator 1, it is unnecessary to further reduce the rotational speed.

脈動回転制御で運転中、回転数がr2になるとと、遠心
圧縮機2で発生する圧力は、凝縮器3と蒸発器1との圧
力差以下の圧力となるので、回転数r1の時に加圧、搬送
した冷媒が、通常とは逆に凝縮器から蒸発器へ逆流し、
正常な冷凍サイクルを構成することができなくなること
が考えられる。
When the rotational speed reaches r 2 during the operation with the pulsating rotation control, the pressure generated in the centrifugal compressor 2 becomes a pressure equal to or lower than the pressure difference between the condenser 3 and the evaporator 1, and therefore at the rotational speed r 1 . Pressurized and conveyed refrigerant flows backward from the condenser to the evaporator, contrary to the usual
It is possible that a normal refrigeration cycle cannot be constructed.

この冷媒の逆流を防止するために遠心圧縮機の吐出側
に逆流防止弁15を設ける。
A backflow prevention valve 15 is provided on the discharge side of the centrifugal compressor to prevent the backflow of the refrigerant.

冷凍設備運転開始初期などで冷水温度が設定された値
とくらべ高い場合に、冷水温度による制御としては、冷
水温度を設定された温度に速やかに近づけようと定格容
量における回転数より更に回転数を高める働きをする。
また、冷媒の比重量は通常運転時より大きい。その結果
遠心圧縮機2は定格以上に働き電動機5はオーバロード
となることがある。この場合、オーバロードを防止する
ため、誘導電動機5への電流値を電流測定器11で測定
し、電流調節器12に信号を送る。電流調節器12では入力
信号と設定した値とを比較し、偏差に応じた調節信号を
回転数制御器9に送る。回転数制御器9では、電流調節
器12からの信号を温度調節器8からの信号より優先し
て、電力調整装置10を制御する。
When the chilled water temperature is higher than the set value at the beginning of operation of the refrigeration equipment, the control based on the chilled water temperature requires that the chilled water temperature be faster than the rated capacity in order to bring the chilled water temperature closer to the set temperature. Acts to enhance.
Further, the specific weight of the refrigerant is larger than that during normal operation. As a result, the centrifugal compressor 2 may work above the rated value and the electric motor 5 may be overloaded. In this case, in order to prevent overload, the current value to the induction motor 5 is measured by the current measuring device 11 and a signal is sent to the current controller 12. The current controller 12 compares the input signal with the set value and sends an adjustment signal corresponding to the deviation to the rotation speed controller 9. In the rotation speed controller 9, the signal from the current controller 12 is prioritized over the signal from the temperature controller 8 to control the power regulator 10.

すなわち、電流測定器11、電流調節器12は、電動機へ
の入力電流を常に測定し、電流値が定格電流値の100%
を越えた場合、電流値を下げるべく回転数制御器9に、
温度調節器8からの信号によって制御されている回転数
を下げるように指示信号を出す。
That is, the current measuring device 11 and the current regulator 12 constantly measure the input current to the motor, and the current value is 100% of the rated current value.
When it exceeds, the rotation speed controller 9 should reduce the current value.
An instruction signal is issued to reduce the number of revolutions controlled by the signal from the temperature controller 8.

回転数制御器9では、温度調節器8からの信号による
制御を止め、回転数を徐々に下げるように電力調整装置
10を制御する。
The rotation speed controller 9 stops the control by the signal from the temperature controller 8 and gradually lowers the rotation speed.
Control 10

電動機の回転数が下り電流値が定格電流を下まわった
(例えば95%)ならば、電流調節器12は指示信号を停止
する。回転数制御器9は再び温度調節器8からの信号に
よって、回転数制御を行う。
If the number of revolutions of the electric motor is lower than the rated current value (for example, 95%), the current regulator 12 stops the instruction signal. The rotation speed controller 9 again controls the rotation speed according to the signal from the temperature controller 8.

このように本実施例によれば、電動機起動時は電力調
整装置10で電流値を制限しながら電動機5を回転するこ
とができ、特別の起動装置を設ける必要がなくなる。ま
た、電動機の運転中、遠心圧縮機2の連続回転制御を行
うことができない低負荷時に、回転数r1と回転数r2を交
互に切換える脈動回転で遠心圧縮機2の回転を制御する
ことができるので、構造の複雑な吸込ベーン21およびバ
イパス弁24が不要となる。さらに、電流測定器11で測定
した電流値信号が電流調節器12に送られ、この電流調整
計12により誘導電動機5のオーバロードが防止される。
As described above, according to this embodiment, when the electric motor is started, the electric power adjusting device 10 can rotate the electric motor 5 while limiting the current value, and it is not necessary to provide a special starting device. Further, during operation of the electric motor, when the load on the centrifugal compressor 2 cannot be controlled continuously, the rotation of the centrifugal compressor 2 is controlled by pulsating rotation that alternately switches the rotational speed r 1 and the rotational speed r 2. Therefore, the suction vane 21 and the bypass valve 24 having a complicated structure are unnecessary. Further, the current value signal measured by the current measuring device 11 is sent to the current regulator 12, and the current regulator 12 prevents the induction motor 5 from overloading.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、遠心圧縮機の連
続回転制御を行うことができない低熱負荷時に、回転数
制御器が凝縮器と蒸発器との圧力差以上の圧力を生じさ
せる高回転数信号と、この圧力差以下のも圧力を生じさ
せる低回転数信号とを交互に発生させて、遠心圧縮機の
回転数を制御し、このようにして冷凍容量を適切に制御
することができる。従って、複雑な構造を有するバイパ
ス弁や吸込ベーンを必要としなくなるので、制御装置が
簡略化され0〜100%の容量制御が可能となる。
As described above, according to the present invention, at the time of low heat load where the continuous rotation control of the centrifugal compressor cannot be performed, the rotation speed controller generates a high rotation speed that produces a pressure equal to or higher than the pressure difference between the condenser and the evaporator. The signal and a low speed signal that produces a pressure less than this pressure difference are alternately generated to control the speed of the centrifugal compressor and thus to control the refrigeration capacity appropriately. Therefore, since a bypass valve and a suction vane having a complicated structure are not required, the control device is simplified and the capacity control of 0 to 100% is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本発明による冷凍設備の制御装置の
一実施例を示す図であり、第1図はその概略系統図、第
2図は冷凍容量と遠心圧縮機の回転数との関係を示す
図、第3図および第4図は遠心圧縮機を脈動回転運転し
た場合の時間経過と遠心圧縮機の回転数との関係を示す
図、第5図は従来の冷凍設備の制御装置の概略系統図、
第6図はモリエ線図を用いて基本冷凍サイクルを示す
図、第7図は吸込ベーン制御をした場合の遠心圧縮機の
冷凍容量と圧力との関係を示す図、第8図は回転数制御
をした場合の遠心圧縮機の冷凍容量と圧力との関係を示
す図である。 1……蒸発器、2……遠心圧縮機、3……凝縮器、4…
…フロート弁、5……誘導電動機、6……冷却器、7…
…温度測定器、8……温度調節器、9……回転数制御
器、10……電力調整装置、11……電力測定器、12……電
流調節器、13……操作スイッチ、14……開閉器、15……
逆流防止弁。
1 to 4 are views showing an embodiment of a control device for refrigerating equipment according to the present invention. FIG. 1 is a schematic system diagram thereof, and FIG. 2 shows refrigerating capacity and rotational speed of a centrifugal compressor. FIG. 3 is a diagram showing the relationship, FIG. 3 and FIG. 4 are diagrams showing the relationship between the elapsed time and the rotational speed of the centrifugal compressor when the centrifugal compressor is operated in pulsating rotation, and FIG. Schematic diagram of
FIG. 6 is a diagram showing a basic refrigeration cycle using a Mollier diagram, FIG. 7 is a diagram showing a relationship between refrigeration capacity and pressure of a centrifugal compressor when suction vane control is performed, and FIG. 8 is a rotation speed control. It is a figure which shows the relationship between the refrigerating capacity and pressure of a centrifugal compressor in the case of performing. 1 ... Evaporator, 2 ... Centrifugal compressor, 3 ... Condenser, 4 ...
... Float valve, 5 ... Induction motor, 6 ... Cooler, 7 ...
… Temperature measuring instrument, 8 …… Temperature controller, 9 …… Rotation speed controller, 10 …… Power regulator, 11 …… Power meter, 12 …… Current regulator, 13 …… Operation switch, 14 …… Switch, 15 ……
Check valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱負荷に応じた回転数信号を発生する回転
数制御器を備え、遠心圧縮機の回転数を制御して冷凍容
量を制御する冷凍設備の制御装置において、遠心圧縮機
の連続回転数制御ができない低熱負荷時に、前記回転数
制御器が凝縮器と蒸発器との圧力差以上の圧力を生じさ
せる高回転数信号と、前記圧力差以下の圧力を生じさせ
る低回転数信号とを交互に発生させて、遠心圧縮機の回
転数を制御することを特徴とする冷凍設備の制御装置。
1. A controller for refrigeration equipment, comprising a rotation speed controller for generating a rotation speed signal according to a heat load, for controlling the rotation speed of a centrifugal compressor to control a refrigerating capacity. At a low heat load that cannot control the rotation speed, the rotation speed controller generates a high rotation speed signal that generates a pressure equal to or higher than the pressure difference between the condenser and the evaporator, and a low rotation speed signal that generates a pressure that is equal to or lower than the pressure difference. To control the number of revolutions of the centrifugal compressor.
JP24269886A 1986-10-13 1986-10-13 Control equipment for refrigeration equipment Expired - Lifetime JP2510534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24269886A JP2510534B2 (en) 1986-10-13 1986-10-13 Control equipment for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24269886A JP2510534B2 (en) 1986-10-13 1986-10-13 Control equipment for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS6396450A JPS6396450A (en) 1988-04-27
JP2510534B2 true JP2510534B2 (en) 1996-06-26

Family

ID=17092913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24269886A Expired - Lifetime JP2510534B2 (en) 1986-10-13 1986-10-13 Control equipment for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2510534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845898B2 (en) * 1988-08-11 1999-01-13 レーヴエ・プンペンフアブリーク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for improving the economics of operation of pressure raising devices and similar devices
JP5625610B2 (en) * 2010-08-18 2014-11-19 株式会社デンソー TECHNICAL FIELD The present invention relates to an ejector refrigeration cycle including an ejector.
KR102548674B1 (en) * 2017-09-25 2023-06-28 존슨 컨트롤스 테크놀러지 컴퍼니 Two-stage oil-powered eductor system

Also Published As

Publication number Publication date
JPS6396450A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US5284026A (en) Control system for an air conditioning/refrigeration system
EP2414492B1 (en) Control system for operating condenser fans
EP1735574B1 (en) System and method for capacity control in a multiple compressor chiller system
US7628028B2 (en) System and method for compressor capacity modulation
US7793509B2 (en) System and method for capacity control in a multiple compressor chiller system
US4538422A (en) Method and control system for limiting compressor capacity in a refrigeration system upon a recycle start
KR900005983B1 (en) Method and control system for limiting the load palced on a refrigeration system a recycle start
US20070271938A1 (en) Automated inlet steam supply valve controls for a steam turbine powered chiller unit
US20050160750A1 (en) Automatic start/stop sequencing controls for a steam turbine powered chiller unit
EP1946022B1 (en) System and method for capacity control in a multiple compressor liquid chiller system
US5222370A (en) Automatic chiller stopping sequence
JP2510534B2 (en) Control equipment for refrigeration equipment
JPH11201563A (en) Cooling device
JP3948879B2 (en) Refrigeration equipment
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
WO2022244192A1 (en) Refrigeration cycle apparatus
CN117053445A (en) Anti-surge control method of compressor and air conditioner
JPH01312345A (en) Air conditioner
KR19990061392A (en) Overload protection device of turbo chiller
IL114806A (en) Method and system for controlling a refrigeration system
JPH10170082A (en) Turbo freezer
JPH0573983B2 (en)
JP2009250140A (en) Refrigerating unit
JPH05133624A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term