JP3948879B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3948879B2
JP3948879B2 JP2000093467A JP2000093467A JP3948879B2 JP 3948879 B2 JP3948879 B2 JP 3948879B2 JP 2000093467 A JP2000093467 A JP 2000093467A JP 2000093467 A JP2000093467 A JP 2000093467A JP 3948879 B2 JP3948879 B2 JP 3948879B2
Authority
JP
Japan
Prior art keywords
compressor
frequency
zone
time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000093467A
Other languages
Japanese (ja)
Other versions
JP2001280714A (en
Inventor
勤 山口
伸八郎 上原
雅之 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000093467A priority Critical patent/JP3948879B2/en
Publication of JP2001280714A publication Critical patent/JP2001280714A/en
Application granted granted Critical
Publication of JP3948879B2 publication Critical patent/JP3948879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒を圧縮する能力を変更することのできる圧縮機を備えた冷凍装置に係わるものである。
【0002】
【従来の技術】
この種の冷凍装置として、圧縮機の能力を吸入側の冷媒圧力に基づいて制御するようにした容量制御の装置が周知である。
【0003】
そして、容量制御されるようにした圧縮機は、吸入側の冷媒圧力が予め設定した下限値を切ったときには、吸入側冷媒圧力が上昇しても所定時間だけは停止させ、消費エネルギーの削減を図ると共に、圧縮機が起動/停止を頻繁に繰り返して装置寿命を縮めることがないようにしている。
【0004】
また、圧縮機を所定時間停止すると、被冷凍部の温度が上昇し冷凍負荷は増大するので、圧縮機がインバータ制御される電動機により駆動される冷凍装置においては、再起動時の圧縮機は最大周波数近辺まで周波数を上げて運転されることが多い。
【0005】
また、複数台の圧縮機を備えて冷媒の圧縮能力を高めるようにした冷凍装置においては、冷凍負荷の大きさに基づいて必要最小限度の能力を備えた圧縮機だけを運転する台数制御が行われている。
【0006】
【発明が解決しようとする課題】
吸入側の冷媒圧力が予め設定した下限値を切ったときに、圧縮機を所定時間停止させるようにした冷凍装置においては、例えば冬季に最適な運転が行われるように停止時間を設定すると、気温が上がり負荷が大きくなる夏季には能力不足に陥り、十分な冷却ができなくなると云った問題点がある。
【0007】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、吸入側圧力に基づいて冷媒を圧縮する能力が変更されると共に、吸入側圧力が所定の下限値で圧縮機の運転を所定停止時間停止する機能を備えた冷凍装置において、外気温度、圧縮機の吐出側冷媒圧力、店内温度に基づいて停止時間を求め、当該停止時間の内の最も短い時間を前記所定停止時間として自動的に変更する制御手段を備えたことを特徴とする冷凍装置を提供することにより、前記した従来技術の課題を解決するものである。
【0008】
【発明の実施の形態】
〔第1の実施形態〕
以下、本発明の第1の実施形態を図1〜図6に基づいて説明する。
【0009】
例示した冷凍装置は、冷媒を圧縮して吐出する圧縮機1と、圧縮機1から供給された冷媒が図示しない送風機によって供給される外気などに放熱して凝縮する凝縮器2と、凝縮器2から供給される冷媒液が減圧弁3を介して供給され、蒸発する際に庫内などの空気から熱を奪ってそれを冷却する蒸発器4とが、冷媒管により順次配管接続されて冷凍サイクルを構成したものである。
【0010】
そして、圧縮機1は、電動モータ5によって冷媒の圧縮能力が可変制御される。すなわち、この冷凍装置においては、周波数変換機6により商用電力7が所望の周波数に変換され、その周波数変換された商用電力7が電動モータ5に与えられて電動モータ5が所望の回転数に制御され、それにより圧縮機1の回転数が制御されるように構成されている。
【0011】
制御器8は、この冷凍装置の制御器であり、図示しないマイコンや記憶手段などを備えて構成され、圧力センサ9および温度センサ10が検出したデータに基づいて、例えば図2に示したようにして圧縮機1の冷媒を圧縮する能力が制御されるようになっている。
【0012】
すなわち、制御器8は、図示しない記憶手段に図3に示した圧縮機1の運転中に行う判定の基準データと、圧縮機1の運転停止中に行う判定の基準データとを記憶しておき、圧縮機1の運転中は圧力センサ9が検出した圧縮機1の吸入側の冷媒圧力Pに基づいて圧縮機1の冷媒圧縮能力を変更するのか、維持するのかを判定し、圧縮機1の運転停止中は運転停止を継続するのか、再起動するのかを判定する。
【0013】
なお、以下の説明は、圧縮機1を駆動する電動モータ5が、20〜80Hzの周波数で運転するように設計されているとして説明する。
【0014】
そして、圧縮機1の運転中に行うゾーン判定の結果、圧力センサ9が検出した冷媒圧力Pが能力増強ゾーンにあるときには、周波数変換機6が商用電力7を定格最大周波数の80Hzに周波数変更していない限り、周波数変換機6により商用電力7の周波数を所定数、例えば2Hz/秒だけ増やしてゾーン判定に戻り、周波数変換機6が既に商用電力7を定格最大周波数の80Hzに周波数変更しているときにはそのままゾーン判定に戻り、冷媒圧力Pが能力維持ゾーンにあるときにはそのままゾーン判定に戻り、冷媒圧力Pが能力削減ゾーンにあるときには、周波数変換機6が商用電力7を定格最小周波数の20Hzに周波数変更していない限り、周波数変換機6により商用電力7の周波数を所定数、例えば2Hz/秒だけ減らしてゾーン判定に戻り、周波数変換機6が既に商用電力7を定格最小周波数の20Hzに周波数変更しているときには電動モータ5、すなわち圧縮機1の運転を停止する。
【0015】
また、圧力センサ9が検出した冷媒圧力Pが運転停止ゾーンにあるときにも、電動モータ5を停止して圧縮機1の運転を停止し、その停止している時間が予め設定した所定時間を越したか否かを判定し、所定時間が経過していないときはその判定を繰り返し、所定時間が経過するのを待って冷媒圧力Pが再起動ゾーンにあるか否かを改めて判定し、冷媒圧力Pが再起動ゾーンにないときにはその判定を繰り返し、冷媒圧力Pが再起動ゾーンに入るのを待って電動モータ5を再起動して圧縮機1を再起動させ、ゾーン判定に戻る。
【0016】
圧縮機1を停止させておく時間は、温度センサ10が検出する外気温度に基づいて、例えば図4のように制御器8により自動的に変更される。すなわち、外気温度が20℃以下のときは3分間停止し、30℃以上のときは1分間停止し、20℃と30℃の間にあるときは温度が上昇するほど短くなるように自動的に選択される。
【0017】
すなわち、外気の温度が高く、圧縮機1の運転を停止すると被冷凍部の温度が直ぐに上がり始める夏季などでは圧縮機1の停止時間は短く選定され、外気の温度が低く、圧縮機1の運転を停止しても被冷凍部の温度が上がり難く、運転を再開すると被冷凍部の温度が直ぐに下がる冬季などでは圧縮機1の停止時間は長く選定されるので、このような制御が行われる冷凍装置においては、夏季に冷却不足になることがないし、冬季に電動機5および圧縮機1が起動/停止を頻繁に繰り返してエネルギー消費を増大させたり、装置寿命を縮めると云ったこともない。
【0018】
なお、温度センサ10が検出する外気温度に代えて、図4の横軸下部分に記載したように、圧力センサ11が検出する圧縮機1吐出側の冷媒圧力(図4では高圧圧力と表示)を選定し、その冷媒圧力が例えば2.0MPa以下のときは圧縮機1を3分間停止し、2.2MPa以上のときは1分間停止し、2.0MPaと2.2MPaの間にあるときは圧力が高いほど圧縮機1の停止時間を短縮するように制御器8を構成しても良い。
【0019】
また、冷凍装置が空調可能な店内に設置されるショーケースなどである場合は、その店内温度が例えば20℃以下のときは圧縮機1を3分間停止し、25℃以上のときは1分間停止し、20℃と25℃の間にあるときは温度が高いほど圧縮機1の停止時間を短縮するように制御器8を構成することもできる。
【0020】
さらに、外気温度、圧縮機1吐出側冷媒圧力、店内温度それぞれに基づいて、圧縮機1を停止させる時間を図4の関係式などから求め、その内の最も短い時間をそのときの圧縮機1の停止時間として自動的に変更し、負荷が増大したときにも能力不足に陥ることがないように制御器8を構成することもできる。
【0021】
また、図2の制御フローに基づく運転制御により運転が停止された圧縮機1を再起動するときには、圧縮機1を制御器8により例えば図5に示したように制御する。
【0022】
すなわち、20〜80Hzの周波数で運転するように設計された電動モータ5により駆動される圧縮機1の成績係数は、図6に示したように定格最大周波数80Hzの60%程度の50Hz付近が最も高いので、再起動から所定時間、例えば3分間は周波数変換機6による商用電力7の周波数変換は、上限周波数を例えば50Hzに制限して圧縮機1の運転を行う。
【0023】
このような制御にすることにより、周波数変換機6で商用電力7を周波数変換して電動モータ5に与える最大周波数を抑えることができ、しかも圧縮機1の運転時間はそれほど増加しないので、電動モータ5に与える商用電力7の周波数をただ単に圧縮機1の吸入側冷媒圧力に基づいて周波数制御する従来の冷凍装置(周波数変換機6で周波数変換して電動モータ5に与える商用電力7の周波数の変化例を図5に破線で示した)に比べて、電力消費を約30%も削減することができるようになった。
【0024】
また、電動モータ5に与える最大周波数に制限を加えて電動モータ5、圧縮機1の回転数を抑えるようにしたので、騒音および振動も従来の冷凍装置に比較して顕著に小さくなった。
【0025】
〔第2の実施形態〕
本発明の第2の実施形態を、主に図7と図8に基づいて説明する。
前記図2に示した制御フローに基づく運転制御により運転が停止された圧縮機1を再起動するときには、再起動時の圧縮機1を制御器8により図7に示したように停止時間を1〜3分に可変にして制御することもできる。
【0026】
すなわち、圧縮機1の再起動時に商用電力7の周波数を周波数変換機6が周波数変換して電動モータ5に与える周波数の上限を制限する時間は、例えば図8に示したように、温度センサ10が検出する外気温度が20℃以下のときは起動から3分間とし、30℃以上のときは起動から1分間とし、20℃と30℃の間にあるときは温度が高いほどその時間が短くなるように自動的に変更する。
【0027】
このような制御が行われる冷凍装置においては、夏季の過負荷時にも冷却不足に一層ならないようにする対応が可能になり、年間を通じて常に最適の運転を行うことができる。
【0028】
なお、圧縮機1の再起動時に前記周波数の上限を制限する時間は、前記図4のときと同様に、圧力センサ11が検出する圧縮機1の吐出側冷媒圧力または店内温度に基づいて、図8のように自動的に変更されるようにしても良いし、さらに外気温度、圧縮機1吐出側冷媒圧力、店内温度それぞれに基づいて前記制限時間を図8の関係式などから求め、その内の最も短い時間をそのときの制限時間として自動的に変更し、負荷が増大したときにも能力不足に陥ることがないように制御器8を構成することもできる。
【0029】
〔参考例〕
本発明と関連する発明の参考例を、主に図9に基づいて説明する。
図9に例示した冷凍装置が、前記図1に示した冷凍装置と機器構成上相違する点は、能力の異なる3台の圧縮機、例えば7.5kWの圧縮機1Aと、10kWの圧縮機1Bと、15kWの圧縮機1Cとが並列に設置され、それに伴って電動モータ5がそれぞれの圧縮機に1台づつ設置されている点にある。なお、周波数変換機は設置されていない。
【0030】
そして、図9に示した冷凍装置の制御器8は、圧力センサ9が検出する圧縮機1A、1B、1Cの吸入側の冷媒圧力Pに基づいて、必要最小限度の能力が確保される台数の圧縮機を起動させると共に、その冷媒圧縮能力を冷媒圧力Pに基づいて制御する、台数制御機能を備えている。
【0031】
3台の圧縮機1A、1B、1Cは、圧力センサ9が検出する吸入側の冷媒圧力Pに基づいて、前記第1の実施形態、第2の実施形態などのように制御される。
【0032】
すなわち、図9に示した冷凍装置においても、その制御器8の図示しない記憶手段に、圧力センサ9が検出する圧縮機1A、1B、1Cの吸入側の冷媒圧力Pをその大きさで、前記図3の場合と同様に、運転中に行う判定基準としての能力増強ゾーン、能力維持ゾーン、能力削減ゾーン、運転停止ゾーンと、運転停止中に行う判定基準としての停止継続ゾーン、再起動ゾーンとに区分けして記憶しておき、
【0033】
圧縮機1A、1B、1Cが運転中であれば、圧力センサ9が検出した冷媒圧力Pに基づいて、先ず圧縮機1A、1B、1Cの能力を維持するのか、どのように変更するのかを判定し、前記図2のようにゾーン判定の結果、圧力センサ9が検出した冷媒の圧力Pが能力増強ゾーンにあるときには、全圧縮機運転までステップアップしていない限り、例えば1分で1ステップ容量アップするだけ圧縮機の運転台数を増やしてゾーン判定に戻り、全圧縮機運転までステップアップしているときにはそのままゾーン判定に戻り、能力維持ゾーンにあるときにはそのままゾーン判定に戻り、能力削減ゾーンにあるときには、全圧縮機停止までステップダウンしていない限り、例えば1分で1ステップ容量ダウンするだけ圧縮機の運転台数を減らしてゾーン判定に戻り、全圧縮機停止までステップダウンしているときには各電動モータ5、すなわち3台の圧縮機1A、1B、1Cの運転を停止する。
【0034】
また、圧力センサ9が検出した冷媒圧力Pが運転停止ゾーンにあるときにも、各電動モータ5を停止して圧縮機1A、1B、1Cの運転を停止し、その停止している時間が予め設定した所定時間を越したか否かを判定し、所定時間が経過していないときはその判定を繰り返し、所定時間が経過するのを待って冷媒圧力Pが再起動ゾーンにあるか否かを改めて判定し、冷媒圧力Pが再起動ゾーンにないときにはその判定を繰り返し、冷媒圧力Pが再起動ゾーンに入るのを待って所要の電動モータ5を再起動して対応する圧縮機を再起動させ、ゾーン判定に戻る。
【0035】
また、この制御器8には、必要に応じて前記制御を停止し、圧力センサ9が検出した圧縮機1A、1B、1Cの吸入側の冷媒圧力Pに基づいて、3台の圧縮機を同時に起動したり、停止したりすることもできるように構成されている。
【0036】
したがって、この図9に示した参考例の冷凍装置においては、複数の圧縮機を同時に起動させることができるので、冷凍能力を急激に増加させることができる。
【0037】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0038】
例えば第1および第2の実施形態の冷凍装置においては、商用電力7の周波数を増やしてゾーン判定に戻るときと、商用電力7の周波数を減らしてゾーン判定に戻るときは、圧力センサ9が検出した冷媒圧力Pが能力維持ゾーンに近いほど周波数の変更速度を小さくし、前記冷媒圧力Pが能力維持ゾーンから離れるほど周波数の変更速度を大きくするように制御しても良い。
【0039】
また、参考例の冷凍装置においては、能力の異なる3台の圧縮機を設けるようにしたが、能力の同じ圧縮機を3台並列に設けても良い。また、複数台設置する圧縮機は、3台より少なくても多くてももちろん構わない。
【0040】
【発明の効果】
以上説明したように、請求項1の発明によれば、外気の温度が高く、圧縮機の運転を停止すると被冷凍部の温度が直ぐに上がり始める夏季などでは圧縮機の停止時間を短くし、外気の温度が低く、圧縮機の運転を停止しても被冷凍部の温度が上がり難く、運転を再開すると被冷凍部の温度が直ぐに下がる冬季などでは圧縮機の停止時間を長くすることで、夏季に冷却不足になることがないようにし、且つ、冬季に圧縮機が起動/停止を頻繁に繰り返してエネルギー消費が増大したり、装置寿命が縮まることがないようにすることができる。
【0041】
また、外気温度、圧縮機の吐出側冷媒圧力、店内温度に基づいて停止時間を求め、当該停止時間の内の最も短い時間を前記所定停止時間として自動的に変更することで、冷凍装置の負荷が増大した時でも能力不足に陥ることがない。
【図面の簡単な説明】
【図1】 第1および第2の実施形態の装置構成を示す説明図である。
【図2】 第1の実施形態における制御例を示す説明図である。
【図3】 吸入側冷媒圧力の大きさと、圧縮機の制御の方向を示す説明図である。
【図4】 圧縮機の停止時間を決める方法を示す説明図である。
【図5】 再起動時における圧縮機の制御例を示す説明図である。
【図6】 圧縮機の成績係数を示す説明図である。
【図7】 第2の実施形態における再起動時の圧縮機の制御例を示す説明図である。
【図8】 第2の実施形態において周波数制限時間を決める方法を示す説明図である。
【図9】 参考例の構成を示す説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus including a compressor capable of changing the ability to compress a refrigerant.
[0002]
[Prior art]
As this type of refrigeration apparatus, a capacity control apparatus is known in which the capacity of a compressor is controlled based on the refrigerant pressure on the suction side.
[0003]
The capacity-controlled compressor, when the suction-side refrigerant pressure falls below a preset lower limit, stops only for a predetermined time even if the suction-side refrigerant pressure rises, thereby reducing energy consumption. At the same time, the compressor is not repeatedly started / stopped to shorten the device life.
[0004]
In addition, if the compressor is stopped for a predetermined time, the temperature of the portion to be frozen rises and the refrigeration load increases. Therefore, in a refrigeration system driven by an electric motor controlled by an inverter, the compressor at restart is maximum. It is often operated with the frequency increased to near the frequency.
[0005]
In addition, in a refrigeration system equipped with a plurality of compressors to increase the refrigerant compression capacity, the number control for operating only the compressors having the necessary minimum capacity is performed based on the size of the refrigeration load. It has been broken.
[0006]
[Problems to be solved by the invention]
In a refrigeration system in which the compressor is stopped for a predetermined time when the refrigerant pressure on the suction side falls below a preset lower limit value, for example, if the stop time is set so that optimum operation is performed in winter, In the summer when the load increases and the load increases, there is a problem that the capacity is insufficient and sufficient cooling cannot be performed.
[0007]
[Means for Solving the Problems]
In the present invention, as a specific means for solving the above-described problems of the prior art, the ability to compress the refrigerant based on the suction side pressure is changed, and the operation of the compressor is predetermined with the suction side pressure being a predetermined lower limit value. In a refrigeration apparatus having a function of stopping the stop time, the stop time is obtained based on the outside air temperature, the discharge refrigerant pressure of the compressor, and the in-store temperature, and the shortest stop time is automatically set as the predetermined stop time. By providing a refrigeration apparatus comprising a control means for changing to the above, the problems of the prior art described above are solved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A first embodiment of the present invention will be described below with reference to FIGS.
[0009]
The illustrated refrigeration apparatus includes a compressor 1 that compresses and discharges refrigerant, a condenser 2 that radiates and condenses refrigerant supplied from the compressor 1 to outside air supplied by a blower (not shown), and a condenser 2. The refrigerant liquid supplied from the refrigerant is supplied via the pressure reducing valve 3, and when it evaporates, the evaporator 4 that takes heat away from the air in the warehouse and cools it is sequentially connected by a refrigerant pipe to the refrigeration cycle. Is configured.
[0010]
In the compressor 1, the refrigerant compression capacity is variably controlled by the electric motor 5. That is, in this refrigeration apparatus, the commercial power 7 is converted to a desired frequency by the frequency converter 6, and the commercial power 7 that has been frequency-converted is supplied to the electric motor 5 to control the electric motor 5 to a desired rotational speed. Thus, the rotational speed of the compressor 1 is controlled.
[0011]
The controller 8 is a controller of this refrigeration apparatus, and includes a microcomputer and storage means (not shown). Based on data detected by the pressure sensor 9 and the temperature sensor 10, for example, as shown in FIG. Thus, the ability of the compressor 1 to compress the refrigerant is controlled.
[0012]
That is, the controller 8 stores reference data for determination performed during operation of the compressor 1 illustrated in FIG. 3 and reference data for determination performed during operation stop of the compressor 1 in a storage unit (not illustrated). During the operation of the compressor 1, it is determined whether to change or maintain the refrigerant compression capacity of the compressor 1 based on the refrigerant pressure P on the suction side of the compressor 1 detected by the pressure sensor 9. During operation stop, it is determined whether the operation stop is continued or restarted.
[0013]
In the following description, it is assumed that the electric motor 5 that drives the compressor 1 is designed to operate at a frequency of 20 to 80 Hz.
[0014]
When the refrigerant pressure P detected by the pressure sensor 9 is in the capacity enhancement zone as a result of the zone determination performed during the operation of the compressor 1, the frequency converter 6 changes the frequency of the commercial power 7 to the rated maximum frequency of 80 Hz. Unless otherwise, the frequency converter 6 increases the frequency of the commercial power 7 by a predetermined number, for example, 2 Hz / second, and returns to zone determination, and the frequency converter 6 has already changed the commercial power 7 to the rated maximum frequency of 80 Hz. When the refrigerant pressure P is in the capacity maintenance zone, the process returns to the zone determination, and when the refrigerant pressure P is in the capacity reduction zone, the frequency converter 6 sets the commercial power 7 to the rated minimum frequency of 20 Hz. As long as the frequency is not changed, the frequency converter 6 reduces the frequency of the commercial power 7 by a predetermined number, for example, 2 Hz / sec. Returning to the constant, to stop the operation of the electric motor 5, i.e. the compressor 1 when the frequency converter 6 has already changed frequency commercial power 7 to 20Hz nominal minimum frequency.
[0015]
Even when the refrigerant pressure P detected by the pressure sensor 9 is in the operation stop zone, the electric motor 5 is stopped to stop the operation of the compressor 1, and the stop time is set to a predetermined time. And when the predetermined time has not elapsed, the determination is repeated. After the predetermined time has elapsed, it is determined again whether or not the refrigerant pressure P is in the restart zone. When the pressure P is not in the restart zone, the determination is repeated, and after waiting for the refrigerant pressure P to enter the restart zone, the electric motor 5 is restarted to restart the compressor 1 and return to the zone determination.
[0016]
The time for which the compressor 1 is stopped is automatically changed by the controller 8 based on the outside air temperature detected by the temperature sensor 10, for example, as shown in FIG. That is, it stops for 3 minutes when the outside air temperature is 20 ° C. or lower, stops for 1 minute when it is 30 ° C. or higher, and automatically decreases so that the temperature rises when it is between 20 ° C. and 30 ° C. Selected.
[0017]
That is, when the temperature of the outside air is high and the operation of the compressor 1 is stopped, the stop time of the compressor 1 is selected to be short, such as in summer when the temperature of the portion to be frozen immediately increases, and the temperature of the outside air is low and the operation of the compressor 1 is performed. Since the temperature of the section to be frozen is difficult to rise even when the operation is stopped, the stop time of the compressor 1 is selected to be long in the winter season when the temperature of the section to be frozen immediately decreases when the operation is resumed. In the apparatus, there is no shortage of cooling in the summer, and the motor 5 and the compressor 1 are frequently repeatedly started / stopped in the winter to increase energy consumption or shorten the life of the apparatus.
[0018]
Instead of the outside air temperature detected by the temperature sensor 10, the refrigerant pressure on the discharge side of the compressor 1 detected by the pressure sensor 11 (indicated as high pressure in FIG. 4) as described in the lower part of the horizontal axis in FIG. When the refrigerant pressure is 2.0 MPa or less, for example, the compressor 1 is stopped for 3 minutes, when it is 2.2 MPa or more, it is stopped for 1 minute, and when it is between 2.0 MPa and 2.2 MPa The controller 8 may be configured to shorten the stop time of the compressor 1 as the pressure increases.
[0019]
Also, in the case of a showcase installed in a store where the refrigeration system can be air-conditioned, the compressor 1 is stopped for 3 minutes when the store temperature is, for example, 20 ° C. or lower, and it is stopped for 1 minute when the store temperature is 25 ° C. or higher. However, when the temperature is between 20 ° C. and 25 ° C., the controller 8 can be configured to shorten the stop time of the compressor 1 as the temperature increases.
[0020]
Further, the time for stopping the compressor 1 is obtained from the relational expression of FIG. 4 based on the outside air temperature, the compressor 1 discharge side refrigerant pressure, and the in-store temperature, and the shortest time among them is determined as the compressor 1 at that time. It is also possible to automatically change the stop time of the controller 8 so that the controller 8 does not run out of capacity even when the load increases.
[0021]
Further, when the compressor 1 whose operation has been stopped by the operation control based on the control flow of FIG. 2 is restarted, the compressor 1 is controlled by the controller 8 as shown in FIG.
[0022]
In other words, the coefficient of performance of the compressor 1 driven by the electric motor 5 designed to operate at a frequency of 20 to 80 Hz is most likely around 50 Hz, which is about 60% of the rated maximum frequency of 80 Hz, as shown in FIG. Since it is high, the frequency conversion of the commercial power 7 by the frequency converter 6 is performed for a predetermined time, for example, 3 minutes after restarting, and the compressor 1 is operated with the upper limit frequency limited to, for example, 50 Hz.
[0023]
By adopting such control, the maximum frequency given to the electric motor 5 by converting the frequency of the commercial power 7 by the frequency converter 6 can be suppressed, and the operation time of the compressor 1 does not increase so much. 5 is a conventional refrigeration system that simply controls the frequency of the commercial power 7 applied to the electric motor 5 based on the suction side refrigerant pressure of the compressor 1 (the frequency of the commercial power 7 applied to the electric motor 5 by converting the frequency by the frequency converter 6). Compared with a change example (shown by a broken line in FIG. 5), the power consumption can be reduced by about 30%.
[0024]
Further, since the maximum frequency applied to the electric motor 5 is limited to suppress the rotation speeds of the electric motor 5 and the compressor 1, noise and vibration are significantly reduced as compared with the conventional refrigeration apparatus.
[0025]
[Second Embodiment]
A second embodiment of the present invention will be described mainly based on FIGS.
When restarting the compressor 1 whose operation has been stopped by the operation control based on the control flow shown in FIG. 2, the compressor 1 at the time of restart is set to 1 stop time by the controller 8 as shown in FIG. 7. It can also be controlled by changing it to -3 minutes.
[0026]
That is, the time for which the frequency converter 6 converts the frequency of the commercial power 7 when the compressor 1 is restarted and limits the upper limit of the frequency given to the electric motor 5 is, for example, as shown in FIG. When the outside air temperature detected is 20 ° C or lower, it is 3 minutes from the start-up, when it is 30 ° C or higher, it is 1 minute from the start-up, and when it is between 20 ° C and 30 ° C, the higher the temperature, the shorter the time To change automatically.
[0027]
In the refrigeration apparatus in which such control is performed, it is possible to cope with further lack of cooling even during an overload in summer, and optimal operation can always be performed throughout the year.
[0028]
The time for limiting the upper limit of the frequency when the compressor 1 is restarted is based on the discharge-side refrigerant pressure of the compressor 1 detected by the pressure sensor 11 or the in-store temperature, as in FIG. 8, the time limit may be obtained from the relational expression of FIG. 8 based on the outside air temperature, the compressor 1 discharge-side refrigerant pressure, and the in-store temperature. It is also possible to automatically change the shortest time as the time limit at that time, and to configure the controller 8 so as not to fall short of capacity even when the load increases.
[0029]
[Reference example]
A reference example of the invention related to the present invention will be described mainly based on FIG.
The refrigeration apparatus illustrated in FIG. 9 differs from the refrigeration apparatus illustrated in FIG. 1 in terms of equipment configuration in that three compressors having different capacities, for example, a 7.5 kW compressor 1A and a 10 kW compressor 1B. And a 15 kW compressor 1 </ b> C are installed in parallel, and accordingly, one electric motor 5 is installed in each compressor. There is no frequency converter installed.
[0030]
Then, the controller 8 of the refrigeration apparatus shown in FIG. 9 has a number of units for which the necessary minimum capacity is secured based on the refrigerant pressure P on the suction side of the compressors 1A, 1B, 1C detected by the pressure sensor 9. A unit control function for starting the compressor and controlling the refrigerant compression capacity based on the refrigerant pressure P is provided.
[0031]
The three compressors 1 </ b> A, 1 </ b> B, 1 </ b> C are controlled as in the first embodiment, the second embodiment, and the like based on the suction-side refrigerant pressure P detected by the pressure sensor 9.
[0032]
That is, also in the refrigeration apparatus shown in FIG. 9, the refrigerant pressure P on the suction side of the compressors 1A, 1B, and 1C detected by the pressure sensor 9 is stored in the storage means (not shown) of the controller 8 according to the magnitude. As in the case of FIG. 3, the capacity enhancement zone, capacity maintenance zone, capacity reduction zone, operation stop zone as judgment criteria performed during operation, stop continuation zone, restart zone as judgment criteria performed during operation stop, And memorize it
[0033]
If the compressors 1A, 1B, and 1C are in operation, based on the refrigerant pressure P detected by the pressure sensor 9, first determine whether to maintain the capacity of the compressors 1A, 1B, and 1C, or how to change them. As shown in FIG. 2, when the refrigerant pressure P detected by the pressure sensor 9 is in the capacity enhancement zone as a result of the zone determination, for example, one step capacity is obtained in one minute unless the compressor is stepped up. Increase the number of compressors to be operated as much as possible, and return to zone determination.When stepping up to full compressor operation, return to zone determination as it is, return to zone determination when in the capacity maintenance zone, and enter the capacity reduction zone. Sometimes, unless the compressor is stepped down until the compressor stops, the number of compressors operated can be reduced by reducing the compressor capacity by one step in one minute. Returning to decision, to stop the electric motor 5, i.e. three compressors 1A, 1B, the operation of 1C when they are stepped down to stop the entire compressor.
[0034]
Further, even when the refrigerant pressure P detected by the pressure sensor 9 is in the operation stop zone, the electric motors 5 are stopped to stop the operation of the compressors 1A, 1B, and 1C, and the stop time is previously determined. It is determined whether or not the set predetermined time has been exceeded. When the predetermined time has not elapsed, the determination is repeated, and after waiting for the predetermined time to elapse, it is determined whether or not the refrigerant pressure P is in the restart zone. When the refrigerant pressure P is not in the restart zone, the determination is repeated. After the refrigerant pressure P enters the restart zone, the required electric motor 5 is restarted to restart the corresponding compressor. Return to zone determination.
[0035]
Further, the controller 8 stops the control as necessary, and simultaneously connects the three compressors based on the refrigerant pressure P on the suction side of the compressors 1A, 1B, and 1C detected by the pressure sensor 9. It is configured so that it can be started and stopped.
[0036]
Therefore, in the refrigerating apparatus of the reference example shown in FIG. 9, since a plurality of compressors can be started simultaneously, the refrigerating capacity can be increased rapidly.
[0037]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0038]
For example, in the refrigeration apparatus of the first and second embodiments, the pressure sensor 9 detects when the frequency of the commercial power 7 is increased to return to zone determination and when the frequency of the commercial power 7 is decreased to return to zone determination. Control may be performed such that the frequency change speed decreases as the refrigerant pressure P closer to the capacity maintenance zone decreases, and the frequency change speed increases as the refrigerant pressure P moves away from the capacity maintenance zone.
[0039]
Moreover, in the refrigerating apparatus of the reference example , three compressors having different capacities are provided, but three compressors having the same capacities may be provided in parallel. Of course, the number of compressors installed in a plurality may be less or more than three.
[0040]
【The invention's effect】
As described above, according to the first aspect of the invention, the temperature of the outside air is high, and when the operation of the compressor is stopped, the stop time of the compressor is shortened in the summer and the like when the temperature of the portion to be frozen immediately starts to rise. The temperature of the refrigerated part is difficult to rise even when the compressor operation is stopped, and the temperature of the refrigerated part decreases immediately when the operation is restarted. In addition, it is possible to prevent the compressor from being insufficiently cooled and to prevent the compressor from being frequently started / stopped in winter to increase energy consumption or shorten the life of the apparatus.
[0041]
In addition, the stop time is obtained based on the outside air temperature, the discharge side refrigerant pressure of the compressor, the in-store temperature, and the shortest time among the stop times is automatically changed as the predetermined stop time, so that the load of the refrigeration apparatus Even when the number of people increases, there is no shortage of ability.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a device configuration of first and second embodiments.
FIG. 2 is an explanatory diagram illustrating a control example in the first embodiment.
FIG. 3 is an explanatory diagram showing the magnitude of the suction side refrigerant pressure and the direction of control of the compressor.
FIG. 4 is an explanatory diagram showing a method of determining a compressor stop time.
FIG. 5 is an explanatory diagram showing a control example of the compressor at the time of restart.
FIG. 6 is an explanatory diagram showing a coefficient of performance of a compressor.
FIG. 7 is an explanatory diagram illustrating an example of control of the compressor at the time of restart in the second embodiment.
FIG. 8 is an explanatory diagram showing a method of determining a frequency limit time in the second embodiment.
FIG. 9 is an explanatory diagram showing a configuration of a reference example .

Claims (1)

吸入側圧力に基づいて冷媒を圧縮する能力が変更されると共に、吸入側圧力が所定の下限値で圧縮機の運転を所定停止時間停止する機能を備えた冷凍装置において、
外気温度、圧縮機の吐出側冷媒圧力、店内温度に基づいて停止時間を求め、
当該停止時間の内の最も短い時間を前記所定停止時間として自動的に変更する制御手段を備えたことを特徴とする冷凍装置。
In the refrigeration apparatus having a function of stopping the operation of the compressor for a predetermined stop time when the ability to compress the refrigerant based on the suction side pressure is changed and the suction side pressure is a predetermined lower limit value,
Based on the outside air temperature, the discharge side refrigerant pressure of the compressor, the in-store temperature, the stop time is obtained,
A refrigeration apparatus comprising control means for automatically changing the shortest of the stop times as the predetermined stop time .
JP2000093467A 2000-03-30 2000-03-30 Refrigeration equipment Expired - Fee Related JP3948879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093467A JP3948879B2 (en) 2000-03-30 2000-03-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093467A JP3948879B2 (en) 2000-03-30 2000-03-30 Refrigeration equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005044354A Division JP2005140498A (en) 2005-02-21 2005-02-21 Refrigeration device
JP2005044355A Division JP2005140499A (en) 2005-02-21 2005-02-21 Refrigeration device

Publications (2)

Publication Number Publication Date
JP2001280714A JP2001280714A (en) 2001-10-10
JP3948879B2 true JP3948879B2 (en) 2007-07-25

Family

ID=18608648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093467A Expired - Fee Related JP3948879B2 (en) 2000-03-30 2000-03-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3948879B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951383B2 (en) * 2007-03-29 2012-06-13 三洋電機株式会社 Refrigeration cycle equipment
ITPD20070127A1 (en) * 2007-04-05 2008-10-06 Mta Spa DRYER
KR101710330B1 (en) * 2010-12-03 2017-02-27 한온시스템 주식회사 System and method for controlling on/off of compressor
CN108019992A (en) * 2016-11-04 2018-05-11 顺富科技实业有限公司 The special refrigeration control device of cold air

Also Published As

Publication number Publication date
JP2001280714A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
EP2321594B1 (en) Discrete frequency operation for unit capacity control
JP3948919B2 (en) Method and apparatus for controlling at least one compressor of a cooling system with a variable speed drive
TW200538690A (en) System and method for capacity control in a multiple compressor chiller system
JP2000297765A (en) Compressor device
JP2012072920A (en) Refrigeration apparatus
JP3597053B2 (en) Air conditioner
JP3948879B2 (en) Refrigeration equipment
JP2000046423A (en) Natural circulation cooling apparatus
JP2005140498A (en) Refrigeration device
JPH01107056A (en) Air conditioner
KR100502304B1 (en) Control method for compressor in air conditioner
JP2005140499A (en) Refrigeration device
JPH0814672A (en) Freezer device
JP4827416B2 (en) Cooling system
JP2002089938A (en) Method of controlling air conditioner
JP2003050066A (en) Controller for air conditioner
JP4086719B2 (en) Air conditioner and control method of air conditioner
CN115303310A (en) Control method of air conditioning unit of railway vehicle, electronic device and storage medium
JP2510534B2 (en) Control equipment for refrigeration equipment
JP3998319B2 (en) Refrigeration equipment
CN108626935A (en) Refrigerator and its compressor frequency control method
JPH0623879Y2 (en) Air conditioner
JP3462551B2 (en) Speed control device for blower for condenser
JPH07310959A (en) Air conditioner
KR20040027190A (en) Control method for compressor in air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

LAPS Cancellation because of no payment of annual fees