JP2509655B2 - Multiple control heat storage type heat source device - Google Patents
Multiple control heat storage type heat source deviceInfo
- Publication number
- JP2509655B2 JP2509655B2 JP63022793A JP2279388A JP2509655B2 JP 2509655 B2 JP2509655 B2 JP 2509655B2 JP 63022793 A JP63022793 A JP 63022793A JP 2279388 A JP2279388 A JP 2279388A JP 2509655 B2 JP2509655 B2 JP 2509655B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- heat source
- source device
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数台制御蓄熱式熱源装置に係り、特に複
数台の蓄熱式熱源装置による部分負荷運転の高効率化に
好適な複数台制御蓄熱式熱源装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a multiple-unit control regenerative heat source device, and in particular, a multiple-unit control suitable for increasing the efficiency of partial load operation by a plurality of regenerative heat source devices. The present invention relates to a heat storage type heat source device.
〔従来の技術〕 近年、電力需要の増大にともなつて、電力負荷の昼夜
間格差が拡大する傾向にあり、電力需要の平準化対策と
して蓄熱式熱源装置の複数台制御方式の開発が進められ
ている。[Prior art] In recent years, with the increase in power demand, there is a tendency for the difference in power load between daytime and nighttime to expand, and the development of a multiple-unit control system for heat storage heat source devices has been promoted as a measure for leveling power demand. ing.
従来の蓄熱式熱源装置の複数台による部分負荷運転と
しては、例えば、高田秋一著「ターボ冷凍機」、昭和51
年12月10日、日本冷凍協会発行、p.232〜234「部分負荷
での並列運転」記載の技術が知られている。Examples of conventional partial load operation using a plurality of heat-storage-type heat source devices include, for example, Shuichi Takada “Turbo-chiller”, Showa 51
The technology described in "Parallel operation with partial load", p.232-234, published by Japan Refrigeration Association on December 10, is known.
この技術は、負荷側から戻つてきた冷温水が、複数の
熱源装置に分流してゆく直前の配管中にサーモスタツト
を設け、その感温部温度が設定値となるように熱源装置
の台数を制御するようになつている。This technology is equipped with a thermostat in the pipe just before the cold and hot water returned from the load side is split into multiple heat source devices, and the number of heat source devices is adjusted so that the temperature of the temperature sensing part becomes a set value. It has come to control.
上記従来技術で蓄熱式熱源装置の台数制御を行うこと
も可能であるが、上記従来技術では、熱源装置の入口温
度を一定に制御するために、部分負荷時の熱源機器の発
停が多くなり成績係数(COP)が低下するという問題が
あつた。Although it is possible to control the number of heat storage type heat source devices in the above conventional technique, in the above conventional technique, in order to control the inlet temperature of the heat source device to be constant, the start and stop of the heat source device during partial load increases. There was a problem that the coefficient of performance (COP) decreased.
本発明は、上記従来技術の問題点を解決するためにな
されたもので、部分負荷運転時の熱源機器の発停回数を
低減させ、成績係数(COP)向上を図りうる複数台制御
蓄熱式熱源装置を提供することを、その目的とするもの
である。The present invention has been made to solve the above-mentioned problems of the conventional technology, and reduces the number of times of starting and stopping the heat source device during partial load operation and improves the coefficient of performance (COP). The purpose is to provide a device.
上記目的を達成するために、本発明に係る複数台制御
蓄熱式熱源装置の構成は、熱源機器と、この熱源機器に
接続する蓄熱槽と、これらを制御する手段とを備えた蓄
熱式熱源装置を、負荷側配管系に複数台接続してなる複
数台制御蓄熱式熱源装置において、上記複数台の蓄熱式
熱源装置の各蓄熱槽内に、それぞれ作動温度が異なる温
度スイツチを設け、これら各温度スイツチによつて上記
複数台の蓄熱式熱源機器の発停を制御するようにしたも
のである。In order to achieve the above object, the configuration of a multiple-unit control heat storage heat source device according to the present invention is a heat storage heat source device including a heat source device, a heat storage tank connected to the heat source device, and a means for controlling these. , In a plurality of control heat storage type heat source device connected to the load side piping system, in each heat storage tank of the plurality of heat storage type heat source device, a temperature switch with different operating temperature is provided, respectively A switch is used to control the start / stop of the plurality of heat storage type heat source devices.
なお付記すると、上記目的は、複数台設置された蓄熱
式熱源装置の各蓄熱槽内に作動温度の異なる温度スイツ
チを設置し、これによつて、各蓄熱式熱源装置に配設さ
れた熱源機器の発停を制御することによつて達成され
る。In addition, the above-mentioned purpose is to install a temperature switch having a different operating temperature in each heat storage tank of the heat storage type heat source device installed in plural units, whereby the heat source device installed in each heat storage type heat source device is installed. It is achieved by controlling the start and stop of.
なお、温度スイツチは、作動温度が設定できるものを
用い、蓄熱槽毎に設定値を変えることによつても実現で
きる。It should be noted that the temperature switch can be realized by using an operating temperature that can be set and changing the set value for each heat storage tank.
複数台の蓄熱式熱源装置の各蓄熱槽内に設けた温度ス
イツチは、例えば、第1の蓄熱式熱源装置では、蓄熱槽
温度44℃で熱源機器がONし、46℃で熱源機器がOFFとな
り、第2の蓄熱式熱源装置では蓄熱槽温度42℃で熱源機
器がONし、44℃でOFFとなるようにON,OFFの設定値をず
らして設定する。The temperature switch provided in each heat storage tank of the multiple heat storage heat source devices is, for example, in the first heat storage heat source device, the heat source device is turned on at the heat storage tank temperature of 44 ° C and turned off at 46 ° C. In the second heat storage type heat source device, the ON and OFF set values are shifted so that the heat source device is turned on at the heat storage tank temperature of 42 ° C and turned off at 44 ° C.
蓄熱終了時点では、両蓄熱槽とも55℃程度の同じ温度
の温水が蓄えられる。At the end of heat storage, hot water of the same temperature of about 55 ℃ is stored in both heat storage tanks.
また、空調が開始されると、蓄熱が消費されるため徐
々に蓄熱槽温度が低下するが、第1の蓄熱式熱源装置の
方が設定温度が高いため、第1の熱源機器の起動が先に
なる。Further, when the air conditioning is started, the heat storage tank temperature is gradually decreased because the heat storage is consumed, but since the set temperature of the first heat storage heat source device is higher, the first heat source device is started first. become.
ここで、負荷が少なく、第1の蓄熱式熱源装置の蓄熱
槽温度の上昇が第2の蓄熱式熱源装置の蓄熱槽温度の降
下速度より大きい場合は1台ずつ熱源機器の起動が行な
われる。負荷が大きく、第1の蓄熱槽温度の上昇速度よ
り第2の蓄熱槽温度の降下速度が大きい場合は2台同時
運転が行なわれ、結果的に台数制御が行なわれる。その
ほか、熱源機器の発停を蓄熱槽温度で制御し、熱源機器
をONする温度とOFFする温度に差を設けることにより発
停回数を低減し、成績係数の向上を図るものである。Here, when the load is small and the increase in the temperature of the heat storage tank of the first heat storage heat source device is higher than the rate of decrease in the temperature of the heat storage tank of the second heat storage heat source device, the heat source devices are started one by one. When the load is large and the rate of decrease of the temperature of the second heat storage tank is higher than the rate of increase of the temperature of the first heat storage tank, the two units are simultaneously operated, and as a result, the number of units is controlled. In addition, the start / stop of heat source equipment is controlled by the temperature of the heat storage tank, and the number of start / stop operations is reduced by providing a difference between the temperature at which the heat source equipment is turned on and the temperature at which it is turned off, thereby improving the coefficient of performance.
以下、本発明の一実施例を第1図および第2図を参照
して説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図は、本発明の一実施例に適用する蓄熱式熱源装
置の系統図、第2図は、本発明の一実施例に係る複数台
制御蓄熱式熱源装置の系統図である。FIG. 1 is a system diagram of a heat storage type heat source device applied to one embodiment of the present invention, and FIG. 2 is a system diagram of a multiple unit control heat storage type heat source device according to one embodiment of the present invention.
第1図に示す装置は、本実施例に適用される蓄熱式熱
源装置の1ユニツトの系統を示すものである。The apparatus shown in FIG. 1 shows a one-unit system of the heat storage type heat source apparatus applied to this embodiment.
第1図において、1は、熱源機器に係る空冷ヒートポ
ンプ式のチラーユニツト、2は、このチラーユニツト1
とブライン配管8を介して接続する蓄熱槽、3は、ブラ
イン配管8のブラインと負荷側の冷温水配管10の水とを
熱交換せしめるブライン/水熱交換器、4はブラインポ
ンプ、5,6は、ブライン流路切替弁、7は冷温水三方
弁、9は、ブライン配管8に接続して蓄熱槽2の槽内に
蛇管状に配設された蓄熱用熱交換器、11は、蓄熱槽2内
部の中央付近に設けた温度スイツチである。In FIG. 1, 1 is an air-cooled heat pump type chiller unit for heat source equipment, 2 is this chiller unit 1
And a heat storage tank 3 connected via a brine pipe 8 to a brine / water heat exchanger for exchanging heat between the brine in the brine pipe 8 and the water in the cold / hot water pipe 10 on the load side, 4 brine pumps, 5 and 6 Is a brine flow path switching valve, 7 is a cold / hot water three-way valve, 9 is a heat storage heat exchanger that is connected to the brine pipe 8 and is arranged in a serpentine shape in the heat storage tank 2, and 11 is a heat storage tank. 2 A temperature switch provided near the center of the inside.
次に、この蓄熱式熱源装置1ユニツトの動作について
説明する。Next, the operation of this heat storage type heat source device 1 unit will be described.
(1)冷房蓄熱運転 第1図では、ブライン,水の流れ方向を実線矢印で示
している。(1) Cooling heat storage operation In FIG. 1, the flow directions of brine and water are indicated by solid arrows.
冷房蓄熱運転時は、ブライン配管8のブライン流路切
替弁5を閉じ、ブライン流路切替弁6を開き、チラーユ
ニツト1で冷却したブラインを蓄熱槽2内の蓄熱用熱交
換器9に流通させ、蓄熱用熱交換器9のまわりに着氷さ
せることにより蓄熱を行う。このとき、冷温水の流れは
停止している。During the cooling heat storage operation, the brine flow passage switching valve 5 of the brine pipe 8 is closed, the brine flow passage switching valve 6 is opened, and the brine cooled in the chiller unit 1 is circulated to the heat storage heat exchanger 9 in the heat storage tank 2. Heat is stored by icing around the heat storage heat exchanger 9. At this time, the flow of cold and warm water has stopped.
(2)冷房空調運転 第1図では、ブライン,水の流れ方向を一点鎖線矢印
で示している。(2) Cooling / air-conditioning operation In FIG. 1, the flow directions of brine and water are indicated by alternate long and short dash lines.
冷房空調運転時は、ブライン配管8のブライン流路切
替弁5を開き、ブライン流路切替弁6を閉じ、冷温水三
方弁の三方を開く。During the cooling and air conditioning operation, the brine flow passage switching valve 5 of the brine pipe 8 is opened, the brine flow passage switching valve 6 is closed, and the three sides of the cold / hot water three-way valve are opened.
チラーユニツト1で冷却されたブラインを、ブライン
/水熱交換器3へ送り、ここで負荷から戻つてきた12℃
程度の冷温水と熱交換して冷温水の温度を9℃程度まで
冷却し冷温水配管10bにより負荷である空調機等へ供給
する。このとき、冷温水の一部を冷温水配管10aを介し
て蓄熱槽2に散布して入力し、冷温水配管10bの冷温水
三方弁7の出口が7℃になるように三方弁7を制御す
る。The brine cooled in the chiller unit 1 is sent to the brine / water heat exchanger 3, where it is returned from the load at 12 ° C.
The temperature of the cold / hot water is cooled to about 9 ° C. by exchanging heat with the cold / warm water, and the cold / hot water is supplied to the load such as an air conditioner through the hot / cold water pipe 10b. At this time, a part of the cold / hot water is sprayed and input to the heat storage tank 2 via the cold / hot water pipe 10a, and the three-way valve 7 is controlled so that the outlet of the cold / hot water three-way valve 7 of the cold / hot water pipe 10b becomes 7 ° C. To do.
(3)暖房蓄熱運転 第1図では、ブライン,水の流れ方向を実線矢印で示
している。(3) Heating heat storage operation In FIG. 1, the flow directions of brine and water are indicated by solid arrows.
暖房蓄熱運転時は、ブライン配管8のブライン流路切
替弁5を閉じ、ブライン流路切換弁6を開き、チラーユ
ニツト1で加熱されたブラインを蓄熱槽2内の蓄熱用熱
交換器9に流通させ、蓄熱槽2内の水を55℃程度まで加
熱することで蓄熱を行う。このとき、冷温水の流れは停
止している。During the heating heat storage operation, the brine flow path switching valve 5 of the brine pipe 8 is closed, the brine flow path switching valve 6 is opened, and the brine heated in the chiller unit 1 is circulated to the heat storage heat exchanger 9 in the heat storage tank 2. , Heat is stored by heating the water in the heat storage tank 2 to about 55 ° C. At this time, the flow of cold and warm water has stopped.
(4)暖房空調運転 第1図では、ブライン,水の流れ方向を破線矢印で示
している。(4) Heating / air-conditioning operation In Fig. 1, the flow directions of brine and water are indicated by broken line arrows.
暖房空調運転時は、ブライン配管8のブライン流路切
替弁5を閉じ、ブライン流路切替弁6を開き、冷温水三
方弁7の蓄熱槽2接続側、負荷側の二方を開く。During the heating and air conditioning operation, the brine flow path switching valve 5 of the brine pipe 8 is closed, the brine flow path switching valve 6 is opened, and the two sides of the cold / hot water three-way valve 7, which are the storage tank 2 connection side and the load side, are opened.
蓄熱槽2内部の中央付近に、43℃で接点がON,45℃で
接点がOFFとなる温度スイツチ11を取り付け、破線で示
すように信号線を接続して制御回路を構成する。A temperature switch 11 that turns on the contact at 43 ° C. and turns off the contact at 45 ° C. is attached near the center inside the heat storage tank 2, and the signal line is connected as shown by the broken line to form a control circuit.
そして、冷温水は冷温水三方弁7で制御せず、すべて
蓄熱槽2を経由し負荷へ送る方式とする。The cold / hot water is not controlled by the cold / hot water three-way valve 7 and is all sent to the load via the heat storage tank 2.
このようにして、蓄熱槽2の温度が43℃に低下するま
で空冷ヒートポンプ式のチラーユニツト1は起動せず、
43℃まで低下しいつたん起動すると蓄熱槽2の温度が45
℃に達するまで連続運転を続ける。In this way, the air-cooled heat pump chiller unit 1 does not start until the temperature of the heat storage tank 2 drops to 43 ° C,
When the temperature drops to 43 ℃ and starts immediately, the temperature of the heat storage tank 2 becomes 45
Continue continuous operation until the temperature reaches ℃.
例えば、本実施例のチラーユニツト1の加熱能力が68
700kcal/h、蓄熱槽2の水張り量が9.72m3の場合、連続
運転可能時間は、 となり、最低17分間は連続運転でき、発停回数を著しく
低減できる。For example, the chiller unit 1 of this embodiment has a heating capacity of 68.
When 700kcal / h and the water filling amount of the heat storage tank 2 is 9.72m 3 , the continuous operation time is Therefore, continuous operation is possible for at least 17 minutes, and the number of starts and stops can be significantly reduced.
なお、温度スイツチは、ONとOFFの設定温度差が大き
いほど連続運転時間を長くでき、発停回数を少くでき
る。As for the temperature switch, the larger the set temperature difference between ON and OFF, the longer the continuous operation time and the smaller the number of times of starting and stopping.
次に、本実施例の核心である複数台設置の場合の暖房
空調運転について第2図を参照して説明する。Next, the heating and air conditioning operation in the case of installing a plurality of units, which is the core of the present embodiment, will be described with reference to FIG.
第2図において、12は、第1の蓄熱式熱源装置、13
は、第1の熱源機器に係る空冷ヒートポンプ式のチラー
ユニツト、14は、第1の蓄熱槽、15は、第1のブライン
/水熱交換器、16は、第1のブライン配管、17は、第1
の蓄熱槽14内に設けた第1の温度スイツチである。In FIG. 2, reference numeral 12 denotes a first heat storage type heat source device, and 13
Is an air-cooled heat pump type chiller unit relating to a first heat source device, 14 is a first heat storage tank, 15 is a first brine / water heat exchanger, 16 is a first brine pipe, and 17 is a first 1
The first temperature switch provided in the heat storage tank 14 of FIG.
また、18は、第2の蓄熱式熱源装置、19は、第2の熱
源機器に係る空冷ヒートポンプ式のチラーユニツト、20
は、第2の蓄熱槽、21は、第2のブライン/水熱交換
器、22は、第2のブライン配管、23は、第2の蓄熱槽20
内に設けた第2の温度スイツチである。Further, 18 is a second heat storage type heat source device, 19 is an air-cooled heat pump type chiller unit relating to the second heat source device, 20
Is a second heat storage tank, 21 is a second brine / water heat exchanger, 22 is a second brine pipe, and 23 is a second heat storage tank 20.
It is a second temperature switch provided inside.
さらに、24は、第3の蓄熱式熱源装置、25は、第3の
熱源機器に係る空冷ヒートポンプ式のチラーユニツト、
26は、第3の蓄熱槽、27は、第3のブライン/水熱交換
器、28は、第3のブライン配管、29は、第3の蓄熱槽26
内に設けた第3の温度スイツチである。Further, 24 is a third heat storage type heat source device, 25 is an air-cooled heat pump type chiller unit relating to the third heat source device,
26 is a third heat storage tank, 27 is a third brine / water heat exchanger, 28 is a third brine pipe, 29 is a third heat storage tank 26
It is a third temperature switch provided inside.
30は、負荷に係る、例えば空調機に接続する冷温水配
管で、第1,2,3の蓄熱式熱源装置に冷温水配管30−1,30
−2,30−3が分岐接続している。30 is a hot / cold water pipe related to the load, for example, connected to an air conditioner, and the cold / hot water pipes 30-1, 30 are connected to the first, second, and third heat storage heat source devices.
-2,30-3 are branch connected.
第1,2,3の蓄熱式熱源装置12,18,24の各ユニツト内の
配管系構成は、第1図のユニツトと同等である。The piping system configuration in each unit of the first, second, and third heat storage type heat source devices 12, 18, and 24 is the same as that of the unit shown in FIG.
第1,2,3の蓄熱槽14,20,26の内部に設けた第1,2,3の温
度スイツチ17,23,29は、下記の条件に設定する。The first, second and third temperature switches 17, 23 and 29 provided inside the first, second and third heat storage tanks 14, 20, and 26 are set under the following conditions.
第1の温度スイツチ17: 44℃…ON,46℃……OFF、 第2の温度スイツチ23: 42℃…ON,44℃…OFF、 第3の温度スチツチ29: 40℃…ON,42℃…OFF、 次に、第2図の複数台制御蓄熱式熱源装置の暖房空調
運転時の動作について説明する。1st temperature switch 17: 44 ℃… ON, 46 ℃… OFF, 2nd temperature switch 23: 42 ℃… ON, 44 ℃… OFF, 3rd temperature switch 29: 40 ℃… ON, 42 ℃… OFF, Next, the operation of the multiple unit control heat storage type heat source device of FIG. 2 during the heating and air conditioning operation will be described.
蓄熱完了時には、各蓄熱槽14,20,26とも55℃の温水が
蓄えられている。When the heat storage is completed, hot water of 55 ° C is stored in each of the heat storage tanks 14, 20, and 26.
空調が開始されると、負荷から冷温水配管30を経て戻
つてきた冷温水が、3台のユニツトに冷温水配管30−1,
30−2,30−3を介して分流され、各蓄熱槽14,20,26の温
度が低下してゆく。When the air conditioning is started, the cold / hot water returned from the load via the cold / hot water piping 30 is returned to the three units by the cold / hot water piping 30-1,
The heat is divided through 30-2 and 30-3, and the temperature of each heat storage tank 14, 20, and 26 decreases.
ここで、各蓄熱槽14,20,26の温度が44℃まで低下する
と、第1の蓄熱式熱源装置12のチラーユニツト13が起動
し、第1の蓄熱槽14の温度を上昇してゆく。Here, when the temperature of each heat storage tank 14, 20, 26 is lowered to 44 ° C., the chiller unit 13 of the first heat storage heat source device 12 is activated, and the temperature of the first heat storage tank 14 is increased.
このとき、負荷が大きく、第1の蓄熱槽の昇温速度よ
り第2の蓄熱槽20の降温速度の方が大きい場合、第1の
チラーユニツト13の運転中に、第2の蓄熱槽20の温度が
42℃に低下し、第2のチラーユニツト19が起動する。At this time, if the load is large and the temperature lowering rate of the second heat storage tank 20 is higher than the temperature rising rate of the first heat storage tank, the temperature of the second heat storage tank 20 is increased during the operation of the first chiller unit 13. But
The temperature drops to 42 ° C and the second chiller unit 19 starts.
さらに負荷が大きい場合には、第1,第2のチラーユニ
ツト13,19が運転中に、第3の蓄熱槽26が40℃に低下
し、第3のチラーユニツト25も起動する。When the load is further heavy, the third heat storage tank 26 is lowered to 40 ° C. while the first and second chiller units 13 and 19 are operating, and the third chiller unit 25 is also activated.
上記の説明を、加熱能力68,700kcal/H、蓄熱槽水張り
量9.72m3の場合を例に定量的に説明する。The above description will be described quantitatively by taking as an example the case where the heating capacity is 68,700 kcal / H and the water filling amount in the heat storage tank is 9.72 m 3 .
(1)空冷ヒートポンプ式チラーユニツト1台運転負荷
熱量が103050kcal/Hの場合、第1ないし第3の蓄熱式熱
源装置の各ユニツト12,18,24が負担する負荷熱量は3435
0kcal/Hとなる。(1) One air-cooled heat pump chiller unit operating When the load heat quantity is 103050 kcal / H, the load heat quantity that each unit 12, 18, 24 of the first to third heat storage heat source devices bears is 3435
It becomes 0 kcal / H.
また、第1の蓄熱槽14の温度が44℃まで低下して第1
のチラーユニツト13が起動すると、第1の蓄熱槽14に入
力される熱量は68,700kcal/Hであるので、その差は 68700−34350=34350kcal/H となり、第1の蓄熱槽14の昇温速度は、 となる。In addition, the temperature of the first heat storage tank 14 drops to 44 ° C
When the chiller unit 13 is started up, the amount of heat input to the first heat storage tank 14 is 68,700 kcal / H, so the difference is 68700−34350 = 34350 kcal / H, and the heating rate of the first heat storage tank 14 is , Becomes
一方、第2,第3の蓄熱槽は、34350kcal/Hずつ蓄熱を
消費しているので、第2,第3の蓄熱槽20,26の降温速度
は、同様に3.53℃/Hとなる。On the other hand, since the second and third heat storage tanks consume heat at 34350 kcal / H, the temperature lowering rate of the second and third heat storage tanks 20 and 26 is similarly 3.53 ° C./H.
したがつて、第1の蓄熱槽14の昇温速度は、第2およ
び第3の蓄熱槽20,26の降温速度に等しくなるので、負
荷熱量が103050kcal/H以下であれば空冷ヒートポンプ式
チラーユニツトは1台ずつしか運転しない。Therefore, the rate of temperature rise of the first heat storage tank 14 is equal to the rate of temperature decrease of the second and third heat storage tanks 20 and 26, so if the load heat quantity is 103050 kcal / H or less, the air-cooled heat pump chiller unit is Only drive one at a time.
(2)空冷ヒートポンプ式チラーユニツト2台運転負荷
熱量が137400kcal/Hの場合、第1ないし第3の蓄熱式熱
源装置の各ユニツト12,18,24が負担する負荷熱量は4580
0kcal/Hとなる。(2) Operation of two air-cooled heat pump chiller units When the load heat quantity is 137400 kcal / H, the load heat quantity that each unit 12, 18, 24 of the first to third heat storage heat source devices bears is 4580
It becomes 0 kcal / H.
また、第1の蓄熱槽14の温度が44℃まで低下して第1
のチラーユニツト13が起動すると、第1の蓄熱槽14に入
力される熱量は同様に68,700kcal/Hであるので、その差
は 68700−45800=22900kcal/H となり、第1の蓄熱槽14の昇温速度は、 となる。In addition, the temperature of the first heat storage tank 14 drops to 44 ° C
When the chiller unit 13 is started up, the amount of heat input to the first heat storage tank 14 is also 68,700 kcal / H, so the difference is 68700−45800 = 22900 kcal / H, and the temperature rise of the first heat storage tank 14 Speed is Becomes
一方、第2,第3の蓄熱槽は、45800kcal/Hずつ蓄熱を
消費しているので、その降温速度は、 となる。On the other hand, since the second and third heat storage tanks consume 45800 kcal / H of heat storage, the rate of temperature decrease is Becomes
したがつて、負荷熱量が137400kcal/Hの場合、第1の
蓄熱槽14の昇温速度×2が、第2,第3の蓄熱槽20,26の
降温速度に等しくなるので、この場合、第1のチラーユ
ニツト13の加熱により第1の蓄熱槽14の温度が45℃にな
つたとき、第2の蓄熱槽20の温度が42℃になり第2のチ
ラーユニツト19の運転が開始され、さらに第2の蓄熱槽
温度が43℃になると、第1の蓄熱槽14の温度は46℃に達
し第1のチラーユニツト13は停止する一方、第3の蓄熱
槽26の温度が40℃となり第3のチラーユニツト25が起動
する。Therefore, when the load heat quantity is 137400 kcal / H, the rate of temperature rise of the first heat storage tank × 2 becomes equal to the rate of temperature decrease of the second and third heat storage tanks 20 and 26. When the temperature of the first heat storage tank 14 reaches 45 ° C. due to the heating of the first chiller unit 13, the temperature of the second heat storage tank 20 reaches 42 ° C., and the operation of the second chiller unit 19 is started. When the temperature of the first heat storage tank 14 reaches 43 ° C., the temperature of the first heat storage tank 14 reaches 46 ° C. and the first chiller unit 13 stops, while the temperature of the third heat storage tank 26 becomes 40 ° C. and the third chiller unit 25 Will start.
このように負荷熱量が103050kcal/H以上で;137400kca
l/H以下の場合は、空冷ヒートポンプ式チラーユニツト
は2台ずつの運転となる。Thus, when the heat load is 103050 kcal / H or more; 137400 kca
If it is less than 1 / H, two air-cooled heat pump chiller units will be operated.
(3)空冷ヒートポンプ式チラーユニツト3台運転以上
の検討結果から、負荷熱量が137400kcal/H以上では、空
冷ヒートポンプ式チラーユニツトは3台同時運転とな
る。(3) Operation of 3 units of air-cooled heat pump type chiller unit From the results of the above examination, 3 units of the air-cooled heat pump type chiller unit are operated simultaneously when the load heat amount is 137400 kcal / H or more.
以上のように、本実施例によれば、チラーユニツトの
発停を従来の1/2以下に低減でき、また簡便な方法で台
数制御ができるので、成績係数(COP)を従来の10%程
度向上することができる。As described above, according to the present embodiment, the start / stop of the chiller unit can be reduced to half or less of the conventional one, and the number of units can be controlled by a simple method, so that the coefficient of performance (COP) is improved by about 10% of the conventional one. can do.
なお、前述の実施例は、蓄熱式熱源装置を3ユニツト
備えた装置の例を説明したが本発明はこれに限らず、3
ユニツト以外の複数ユニツトにも適用できることは言う
までもない。In addition, although the above-mentioned embodiment explained the example of the device provided with three units of the heat storage type heat source device, the present invention is not limited to this, and three
It goes without saying that it can be applied to multiple units other than the unit.
また、熱源機器は空冷ヒートポンプ式チラーユニツト
の例を説明したが、本発明はチラーユニツトに限定され
るものでなく、同様の効果が期待される範囲で他の熱源
機器を採用することを妨げない。Further, the heat source device has been described as an example of the air-cooled heat pump type chiller unit, but the present invention is not limited to the chiller unit, and other heat source devices can be adopted within a range in which the same effect is expected.
さらに、本発明は、冷房空調運転において、蓄熱を使
い切つたのちの制御に利用することも可能である。Furthermore, the present invention can also be used for control after exhaustion of heat storage in cooling air conditioning operation.
以上述べたように、本発明によれば、部分負荷運転時
の熱源機器の発停回数を低減させ、成績係数(COP)向
上を計りうる複数台制御蓄熱式熱源装置を提供すること
ができる。As described above, according to the present invention, it is possible to provide a multi-unit controlled heat storage type heat source device capable of reducing the number of times of starting and stopping the heat source device during partial load operation and improving the coefficient of performance (COP).
第1図は、本発明の一実施例に適用する蓄熱式熱源装置
の系統図、第2図は、本発明の一実施例に係る複数台制
御蓄熱式熱源装置の系統図である。 1……チラーユニツト、2……蓄熱槽、3……ブライン
/水熱交換器、8……ブライン配管、9……蓄熱用熱交
換器、10……冷温水配管、11……温度スハツチ、12……
第1の蓄熱式熱源装置、13……第1のチラーユニツト、
14……第1の蓄熱槽、17……第1の温度スイツチ、18…
…第2の蓄熱式熱源装置、19……第2のチラーユニツ
ト、20……第2の蓄熱槽、23……第2の温度スイツチ、
24……第3の蓄熱式熱源装置、25……第3のチラーユニ
ツト、26……第3の蓄熱槽、29……第3の温度スイツ
チ、30,30−1,30−2,30−3……冷温水配管。FIG. 1 is a system diagram of a heat storage type heat source device applied to one embodiment of the present invention, and FIG. 2 is a system diagram of a multiple unit control heat storage type heat source device according to one embodiment of the present invention. 1 ... Chiller unit, 2 ... Heat storage tank, 3 ... Brine / water heat exchanger, 8 ... Brine piping, 9 ... Heat storage heat exchanger, 10 ... Cold / hot water piping, 11 ... Temperature switch, 12 ......
1st heat storage type heat source device, 13 ... 1st chiller unit,
14 ... First heat storage tank, 17 ... First temperature switch, 18 ...
… Second heat storage type heat source device, 19 …… Second chiller unit, 20 …… Second heat storage tank, 23 …… Second temperature switch,
24 …… Third heat storage type heat source device, 25 …… Third chiller unit, 26 …… Third heat storage tank, 29 …… Third temperature switch, 30,30-1,30-2,30-3 ...... Cold and hot water piping.
Claims (1)
槽と、これらを制御する手段とを備えた蓄熱式熱源装置
を、負荷側配管系に複数台接続してなる複数台制御蓄熱
式熱源装置において、上記複数台の蓄熱式熱源装置の各
蓄熱槽内に、それぞれ作動温度が異なる温度スイツチを
設け、これら各温度スイツチによつて上記複数台の蓄熱
式熱源機器の発停を制御するように構成したことを特徴
とする複数台制御蓄熱式熱源装置。1. A plurality of heat storage type heat storage devices comprising a heat source device, a heat storage tank connected to the heat source device, and a means for controlling the heat storage device, wherein a plurality of heat storage type heat source devices are connected to a load side piping system. In the heat source device, temperature switches having different operating temperatures are provided in the heat storage tanks of the plurality of heat storage type heat source devices, and the start and stop of the plurality of heat storage type heat source devices are controlled by these temperature switches. A multi-unit controlled regenerative heat source device having the above structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63022793A JP2509655B2 (en) | 1988-02-04 | 1988-02-04 | Multiple control heat storage type heat source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63022793A JP2509655B2 (en) | 1988-02-04 | 1988-02-04 | Multiple control heat storage type heat source device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01200127A JPH01200127A (en) | 1989-08-11 |
JP2509655B2 true JP2509655B2 (en) | 1996-06-26 |
Family
ID=12092557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63022793A Expired - Fee Related JP2509655B2 (en) | 1988-02-04 | 1988-02-04 | Multiple control heat storage type heat source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2509655B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3405426B2 (en) * | 1995-03-31 | 2003-05-12 | 高砂熱学工業株式会社 | Refrigerator unit control device |
JP2009047368A (en) * | 2007-08-21 | 2009-03-05 | Orion Mach Co Ltd | Cooling system |
-
1988
- 1988-02-04 JP JP63022793A patent/JP2509655B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01200127A (en) | 1989-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102941791B (en) | Integrated thermal cycling system of electric vehicle | |
JP2000335230A (en) | Heating device for vehicle | |
JP2509655B2 (en) | Multiple control heat storage type heat source device | |
JP2004317093A (en) | Heat pump hot water supply and heating apparatus | |
JP3047831B2 (en) | Heat pump system | |
JP2901918B2 (en) | Method of controlling ice melting operation of ice thermal storage system | |
JP3050114B2 (en) | Control method of ice storage type chiller | |
JP3439004B2 (en) | Air conditioning system, air conditioner and air conditioning method | |
JPH0320708Y2 (en) | ||
JPH0260950B2 (en) | ||
JPH08145437A (en) | Storage type cooler/heater, and controlling method therefor | |
CN110370889A (en) | A method of Fuel Cell Vehicle Powertrain waste heat is used for air-conditioning heating | |
CN221197582U (en) | Split triple-generation multi-energy system and heat pump air conditioner | |
JP3164451B2 (en) | Air conditioner | |
CN219076956U (en) | Passenger cabin and battery integrated thermal management system and traffic vehicle | |
JPS60236A (en) | Room cooling, heating and hot-water supplying device utilizing internal-combustion engine | |
JPH0117008Y2 (en) | ||
JP3667921B2 (en) | Refrigerant heating type air conditioner | |
JPS58218416A (en) | Air conditioner for automobile, particularly for passenger car | |
JP2950639B2 (en) | Ice storage heat source device and water supply method thereof | |
JP3000907B2 (en) | Operation control method of ice storage type chiller | |
JP2972374B2 (en) | Air conditioning system using absorption chiller / heater | |
JP2790016B2 (en) | Heat pump water heater | |
JPS63207709A (en) | Air conditioner for vehicle | |
JPH06147684A (en) | Controlling method for number of absorption refrigerator and cold/hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |