JP2509354B2 - Method for manufacturing thin film EL panel - Google Patents

Method for manufacturing thin film EL panel

Info

Publication number
JP2509354B2
JP2509354B2 JP1341162A JP34116289A JP2509354B2 JP 2509354 B2 JP2509354 B2 JP 2509354B2 JP 1341162 A JP1341162 A JP 1341162A JP 34116289 A JP34116289 A JP 34116289A JP 2509354 B2 JP2509354 B2 JP 2509354B2
Authority
JP
Japan
Prior art keywords
film
insulating layer
substrate
upper insulating
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1341162A
Other languages
Japanese (ja)
Other versions
JPH03203194A (en
Inventor
佳弘 遠藤
正明 平井
章夫 猪原
博 岸下
久 上出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1341162A priority Critical patent/JP2509354B2/en
Publication of JPH03203194A publication Critical patent/JPH03203194A/en
Application granted granted Critical
Publication of JP2509354B2 publication Critical patent/JP2509354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、発光層の上下に絶縁層を設けたいわゆる
三層構造を有する薄膜ELパネルの製造方法に関する。
The present invention relates to a method for manufacturing a thin film EL panel having a so-called three-layer structure in which insulating layers are provided above and below a light emitting layer.

<従来の技術> 従来、この種の薄膜ELパネルの製造方法としては、た
とえば第4図(a)乃至(c)に示す方法がある。すな
わち、ガラス基板11の表面にITO(インジウム錫酸化
物)からなる透明導電膜を形成し、フォトエッチングし
て、平行な帯状の透明電極12を形成する(第4図
(a))。次に、第3図(a)に示すように、基板11
を、表面を下向きにして基板ホルダ20に取り付け、膜を
形成しない周辺領域を枠状のマスク21で覆う。そして、
形成する膜の密着強度が大きくなるように上記基板11を
加熱した状態で、第4図(b)に示すように、電子ビー
ム蒸着法またはスパッタ法によって、Si3N4膜を有する
下部絶縁層13と、ZnS:Mnからなる発光層14と、Si3N4
を有する上部絶縁層15とを形成する。最後に、電子ビー
ム蒸着法によって金属膜を形成し、フォトエッチングし
て、帯状の背面電極17と端子電極18を形成する(第4図
(c))。
<Prior Art> Conventionally, as a method of manufacturing a thin film EL panel of this type, for example, there is a method shown in FIGS. 4 (a) to 4 (c). That is, a transparent conductive film made of ITO (indium tin oxide) is formed on the surface of the glass substrate 11 and photo-etched to form parallel strip-shaped transparent electrodes 12 (FIG. 4 (a)). Next, as shown in FIG.
Is attached to the substrate holder 20 with the surface facing downward, and the peripheral region where no film is formed is covered with the frame-shaped mask 21. And
With the substrate 11 being heated so that the adhesion strength of the film to be formed is increased, as shown in FIG. 4 (b), a lower insulating layer having a Si 3 N 4 film is formed by an electron beam evaporation method or a sputtering method. A light emitting layer 14 made of ZnS: Mn and an upper insulating layer 15 having a Si 3 N 4 film are formed. Finally, a metal film is formed by an electron beam evaporation method and photoetched to form a strip-shaped back electrode 17 and a terminal electrode 18 (FIG. 4 (c)).

<発明が解決しようとする課題> ところで、上記マスク21および基板ホルダ20は、基板
11よりも熱容量が大きいものであり、しかも支持部材に
よってチャンバ壁面に取り付けられている。そのため、
上記基板11加熱時に、熱伝導によってチャンバ壁面に熱
が逃げて、第3図(b)に示すように、基板11の周辺領
域が中心付近よりも低温であるような温度分布が生じ
る。基板温度が低い領域は膜の成長レートが大きいの
で、上記従来の製造方法のようにこの状態で下部絶縁層
13,発光層14,上部絶縁層15を形成する場合、これら三層
の膜厚は、第3図(c)に示すように、膜形成領域E0
周辺領域すなわちマスク21の近傍にて厚く、中心付近に
て薄いような分布となる。この分布は、特に基板温度に
より膜付着係数が大きく変化するZnS:Mn発光層14で顕著
である。上記膜厚と発光輝度とは略比例する関係がある
ので、膜厚が上記分布となった場合、第3図(d)に示
すように、発光輝度は、膜形成領域E0すなわちパネルの
表示領域D0にて、鍋底状の分布を示し、輝度差B0を生じ
る。このように、従来の製造方法によって製造されたEL
パネルは発光特性の点で問題があった。
<Problems to be Solved by the Invention> By the way, the mask 21 and the substrate holder 20 are
It has a larger heat capacity than 11, and is attached to the chamber wall surface by a supporting member. for that reason,
When the substrate 11 is heated, heat is radiated to the chamber wall surface due to heat conduction, and a temperature distribution is generated such that the peripheral region of the substrate 11 is lower in temperature than the central region as shown in FIG. 3B. Since the film growth rate is high in the region where the substrate temperature is low, the lower insulating layer is maintained in this state as in the conventional manufacturing method described above.
13, when the light emitting layer 14 and the upper insulating layer 15 are formed, the thickness of these three layers is large in the peripheral region of the film forming region E 0 , that is, in the vicinity of the mask 21, as shown in FIG. 3C. , The distribution becomes thin near the center. This distribution is particularly remarkable in the ZnS: Mn light emitting layer 14 in which the film attachment coefficient largely changes depending on the substrate temperature. Since the film thickness and the emission luminance have a substantially proportional relationship, when the film thickness has the above distribution, the emission luminance is the film formation region E 0, that is, the display of the panel, as shown in FIG. 3 (d). In the area D 0 , a pan-bottomed distribution is shown, and a brightness difference B 0 occurs. Thus, the EL manufactured by the conventional manufacturing method
The panel had a problem in terms of light emission characteristics.

さらに、上記従来の方法にはマスク21へ付着した絶縁
膜や発光層の膜片による基板の汚染という問題がある。
基板の汚染は薄膜ELパネルの欠陥の原因となる。
Further, the above-mentioned conventional method has a problem that the substrate is contaminated by the insulating film or the light emitting layer film attached to the mask 21.
Substrate contamination causes defects in thin film EL panels.

そこで、この発明の目的は、均一な発光特性を持ち、
欠陥の少ない薄膜ELパネルの製造方法を提供することで
ある。
Therefore, an object of the present invention is to have uniform emission characteristics,
It is an object of the present invention to provide a method for manufacturing a thin film EL panel with few defects.

<課題を解決するための手段> 上記目的を達成するために、この発明は、ガラス基板
上に透明電極と下部絶縁層と発光層と上部絶縁層と背面
電極を順次積層して形成する薄膜ELパネルの製造方法に
おいて、上記基板上の略全面に下部絶縁層、発光層、上
部絶縁層の三層を形成し、続いて上記上部絶縁層上に有
機膜を形成した後、周辺領域に存する上記下部絶縁層、
発光層、上部絶縁層、有機膜を機械的研削手法で除去し
て、透明電極の端部を露出させ、その後、上記上部絶縁
層上に残った有機膜を除去することを特徴としている。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides a thin film EL formed by sequentially laminating a transparent electrode, a lower insulating layer, a light emitting layer, an upper insulating layer and a back electrode on a glass substrate. In the method of manufacturing a panel, a lower insulating layer, a light emitting layer, and an upper insulating layer are formed on almost the entire surface of the substrate, and then an organic film is formed on the upper insulating layer. Lower insulating layer,
The light emitting layer, the upper insulating layer, and the organic film are removed by a mechanical grinding method to expose the end portion of the transparent electrode, and then the organic film remaining on the upper insulating layer is removed.

上記有機膜は溶剤等によって容易に除去でき、かつ上
部絶縁層に汚れを残さない材料で形成するのが望まし
い。
It is desirable that the organic film is formed of a material that can be easily removed by a solvent and does not leave stains on the upper insulating layer.

<作用> 基板上の略全面に発光層を形成する場合、蒸着または
スパッタを行う際にマスクを使用しないので、従来のマ
スクに付着した絶縁層や発光層の膜片による基板の汚染
という問題が解消される上、マスクを使用する場合に比
して、基板加熱時に基板の周辺領域と中心付近との温度
差が小さくなる。したがって形成される膜は、膜形成領
域の周辺部にて厚く中心付近にて薄い傾向に変わりはな
いが、膜厚バラツキが小さくなる。
<Operation> When a light emitting layer is formed on almost the entire surface of a substrate, a mask is not used when performing vapor deposition or sputtering. Therefore, there is a problem that the substrate is contaminated by a film piece of an insulating layer or a light emitting layer attached to a conventional mask. In addition, the difference in temperature between the peripheral region and the center of the substrate during the heating of the substrate becomes smaller than that when a mask is used. Therefore, the formed film has the same tendency of being thick in the peripheral portion of the film forming region and thin in the vicinity of the center, but the variation in the film thickness is reduced.

さらに、膜厚の変動が大きい膜形成領域の周辺部を除
去してしまうため、結果として、発光輝度の分布の広が
りが極めて小さくなり、均一な発光特性が得られる。
Further, since the peripheral portion of the film formation region where the film thickness varies greatly is removed, as a result, the spread of the emission luminance distribution becomes extremely small, and uniform emission characteristics can be obtained.

また、機械的手法を用いての研削加工時、有機膜が上
部絶縁層上を覆っているので、研摩剤や、研削された三
層膜や基板ガラスの微粒子は有機膜に付着する。そし
て、有機膜に付着した微粒子は有機膜の除去工程におい
て、有機膜と共に除去される。このように、上部絶縁層
に直接マスクを被せて研削加工を行なう場合に発生し得
る上部絶縁層上の汚染が有機膜によって防止されるの
で、上部絶縁層上に形成されることになる背面電極には
ピンホールができにくく、また上部絶縁層との密着性は
よく、かつ電界の印加が均一になるため、発光特性の均
一な欠陥の少ない薄膜ELパネルの製造が可能となる。
Further, during the grinding process using the mechanical method, the organic film covers the upper insulating layer, so that the abrasive, the ground three-layer film, and the fine particles of the substrate glass adhere to the organic film. Then, the fine particles attached to the organic film are removed together with the organic film in the step of removing the organic film. As described above, since the organic film prevents contamination on the upper insulating layer that may occur when the upper insulating layer is directly covered with a mask and is ground, the rear electrode to be formed on the upper insulating layer. Since it is difficult to form pinholes, the adhesiveness with the upper insulating layer is good, and the electric field is uniformly applied, it is possible to manufacture a thin film EL panel having uniform emission characteristics and few defects.

<実施例> 以下、本発明を図示の実施例により詳細に説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to illustrated examples.

第1図は本発明の一実施例である薄膜ELパネルの製造
方法を示した工程図である。以下、第1図に従って説明
する。
FIG. 1 is a process chart showing a method of manufacturing a thin film EL panel which is an embodiment of the present invention. Hereinafter, description will be made with reference to FIG.

まず、第1図(a)に示すように、アルミノシリケ
ートガラス等のガラス基板1の表面に、ITOから成り膜
厚1000〜2000Åの透明導電膜を形成し、フォトエッチン
グによって平行な帯状の透明電極2を形成する。
First, as shown in FIG. 1 (a), a transparent conductive film made of ITO and having a film thickness of 1000 to 2000Å is formed on the surface of a glass substrate 1 such as aluminosilicate glass, and parallel strip-shaped transparent electrodes are formed by photoetching. Form 2.

次に、第2図(a)に示すように、この基板1を表
面を下向きにして基板ホルダー20に取り付け、マスク21
を取り付けないで、そのまま上記基板1を所定温度に加
熱する。この状態で、スパッタ法または電子ビーム蒸着
法等の手法により、SiO2やSi3N4等から成る下部絶縁層
3を透明電極2を含む基板1の略全面にわたって〜2000
Åの厚さに形成する。続いて、同様の手法によって、Zn
S:Mnから成り膜厚が〜8000Åの発光層4と、Si3N4やAl2
O3等から成り膜厚〜2000Åの上部絶縁層5を基板1の略
全面に重層形成する。さらに、上部絶縁層5上全面にス
ピンナーやロールコーターを用いてポジタイプのフォト
レジスト(以下、ポジレジストと言う。)を厚さ1〜3
μ塗布することにより、有機膜の一例としてのポジレジ
スト膜6を形成する。(第1図(b))。
Next, as shown in FIG. 2 (a), the substrate 1 is attached to the substrate holder 20 with the surface thereof facing downward, and the mask 21
Without attaching, the substrate 1 is heated to a predetermined temperature as it is. In this state, the lower insulating layer 3 made of SiO 2 , Si 3 N 4 or the like is spread over substantially the entire surface of the substrate 1 including the transparent electrode 2 by a method such as a sputtering method or an electron beam evaporation method.
Form to a thickness of Å. Then, using a similar method, Zn
Light-emitting layer 4 consisting of S: Mn with a thickness of ~ 8000Å and Si 3 N 4 or Al 2
An upper insulating layer 5 made of O 3 or the like and having a film thickness of up to 2000 Å is formed over the substantially entire surface of the substrate 1. Further, a positive type photoresist (hereinafter referred to as a positive resist) having a thickness of 1 to 3 is formed on the entire surface of the upper insulating layer 5 by using a spinner or a roll coater.
By applying μ, the positive resist film 6 as an example of the organic film is formed. (FIG. 1 (b)).

次に、第1図(c)に示すように、上記重層形成さ
れた三層膜3,4,5およびポジレジスト膜6のうちパネル
の表示領域D1となる領域をマスク31で保護して、周辺領
域△の不要な部分を乾式ブラスト法や液体ホーニング法
のように研磨剤を高圧で吹き付ける方法によって完全に
除去する。この周辺領域△の膜除去工程中に、研摩剤や
研削された膜等の微粒子がマスク31とポジレジスト膜6
との間隙から入ることがあるが、ポジレジスト膜6によ
る保護のおかげで上部絶縁層5への微粒子の付着は防止
される。膜除去が完了すると、透明電極2の端部2aは、
第1図(d)に示すように、上記三層膜3,4,5およびポ
ジレジスト膜6から露出した状態となる。第1図(d)
はマスク31を取り外した後の状態を示したものである
が、マスク31を取り外したときにもポジレジスト膜6が
上部絶縁層5を覆っているので、基板周辺領域にある微
粒子によって上部絶縁層5が汚染されることはない。
Next, as shown in FIG. 1C, a mask 31 protects the three-layered films 3, 4, 5 and the positive resist film 6 which are formed as a multi-layered film and serves as a display area D 1 of the panel. Then, unnecessary portions of the peripheral area Δ are completely removed by a method of spraying an abrasive with a high pressure such as a dry blast method or a liquid honing method. During the film removing process in the peripheral area Δ, fine particles such as an abrasive or a ground film are removed from the mask 31 and the positive resist film 6.
However, due to the protection by the positive resist film 6, adhesion of fine particles to the upper insulating layer 5 is prevented. When the film removal is completed, the end 2a of the transparent electrode 2 is
As shown in FIG. 1D, the three-layer films 3, 4, 5 and the positive resist film 6 are exposed. Fig. 1 (d)
Shows the state after the mask 31 is removed. Since the positive resist film 6 covers the upper insulating layer 5 even when the mask 31 is removed, the upper insulating layer is covered by the particles in the peripheral region of the substrate. 5 is never contaminated.

マスク31を取り外した後、アセトン等の溶剤やNaOH等
のアルカリ水溶液でポジレジスト膜6を除去する。この
とき、ポジレジスト膜6上に付着している微粒子も同時
に除去される。
After removing the mask 31, the positive resist film 6 is removed with a solvent such as acetone or an alkaline aqueous solution such as NaOH. At this time, the fine particles adhering to the positive resist film 6 are also removed at the same time.

なお、上記三層膜を除去するために液体ホーニング法
を用いる場合、アランダム(商品名)等で#400〜#100
0程度の硬くてしかも比較的粒子の細かい研磨剤を用い
ることによって、1辺当り20sec程度で簡単に完全除去
することができる。
When using the liquid honing method to remove the above three-layer film, use # 400 to # 100 with Alundum (trade name) or the like.
By using a hard abrasive of about 0 and relatively fine particles, it is possible to easily and completely remove it in about 20 seconds per side.

最後に、第1図(e)に示すように、電子ビーム蒸
着法によってAlとNiによる積層金属膜を形成し、フォト
エッチングして、帯状の背面電極7および端子電極8を
形成する。このとき、端子電極8は、三層膜3,4,5から
露出した上記透明電極2の端部2aと導通する状態にな
る。
Finally, as shown in FIG. 1 (e), a laminated metal film made of Al and Ni is formed by an electron beam evaporation method and photoetched to form a strip-shaped back electrode 7 and a terminal electrode 8. At this time, the terminal electrode 8 is in a state of being electrically connected to the end portion 2a of the transparent electrode 2 exposed from the three-layer film 3, 4, 5.

このように、比較的簡単な手法で、基板1の略全面に
形成した三層膜3,4,5の不要部分を除去して、三層膜3,
4,5から露出した透明電極2の端部2aに導通する端子電
極8を形成することができる。また、このように薄膜EL
パネルを製造する際、上記工程において、マスク21を
取り付けないでそのまま基板1を加熱しているため、マ
スク21を使用する場合に比して、第2図(b)に示すよ
うに基板1の面内の温度差が小さくなっている。そのた
め、この状態で、三層膜を基板1上に略全面に形成する
場合、第2図(c)に示すように膜形成領域E1の周辺に
て膜厚が厚く中心付近にて薄い傾向に変わりはないが、
膜厚バラツキが小さくなる。さらに、上記工程にて、
所定の表示領域D1以外の周辺領域△の三層膜を除去して
いるので、第2図(d)に示すように、輝度差はいっそ
う小さくなる(輝度差B1)。したがって、薄膜ELパネル
の表示品位を向上させることができる。さらに、上記工
程において、上部絶縁層5上にはポジレジスト膜6を
塗布形成しているので、研削加工時あるいはマスク31の
取り外し時に上部絶縁層5が研摩剤等の微粒子によって
汚染されるのを防止することができる。しかも、ポジレ
ジスト膜6は溶剤によって簡単に除去できるという利点
がある。
As described above, the unnecessary portions of the three-layer films 3, 4, 5 formed on the substantially entire surface of the substrate 1 are removed by a relatively simple method to remove the three-layer film 3,
It is possible to form the terminal electrode 8 that conducts to the end portion 2a of the transparent electrode 2 exposed from 4 and 5. Also, like this, thin film EL
At the time of manufacturing the panel, in the above process, the substrate 1 is heated as it is without attaching the mask 21, and therefore, as shown in FIG. The temperature difference in the plane is small. Therefore, in this state, when the three-layer film is formed on substantially the entire surface of the substrate 1, the film thickness tends to be thick around the film formation region E 1 and thin near the center as shown in FIG. 2 (c). Is still the same,
Variations in film thickness are reduced. Furthermore, in the above process,
Since the three-layer film in the peripheral area Δ other than the predetermined display area D 1 is removed, the luminance difference becomes smaller (luminance difference B 1 ) as shown in FIG. 2 (d). Therefore, the display quality of the thin film EL panel can be improved. Further, in the above process, since the positive resist film 6 is applied and formed on the upper insulating layer 5, it is possible to prevent the upper insulating layer 5 from being contaminated by fine particles such as an abrasive during the grinding process or the removal of the mask 31. Can be prevented. Moreover, there is an advantage that the positive resist film 6 can be easily removed by a solvent.

なお、本実施例においては、膜除去の手法として液体
ホーニング法や乾式ブラスト法を使用したが、これに限
られるものではなく、他の機械的、物理的な方法を用い
てもよい。また、下部絶縁層、上部絶縁層、発光層の材
料は本実施例のものに限るものではない。また、本実施
例では、ポジタイプのフォトレジストを用いて有機膜6
を形成したが、除去が容易で上部絶縁層5上に汚れを残
さないものであれば他の材料であってもよい。ただし、
シリコンゴム等のゴム系のものは、機械的研削の妨げと
なるので使用には適さない。
In this embodiment, the liquid honing method and the dry blast method are used as the film removing method, but the method is not limited to this, and other mechanical or physical methods may be used. Further, the materials of the lower insulating layer, the upper insulating layer, and the light emitting layer are not limited to those of this embodiment. In addition, in this embodiment, the organic film 6 is formed by using a positive type photoresist.
However, another material may be used as long as it is easy to remove and does not leave stains on the upper insulating layer 5. However,
Rubber-based materials such as silicone rubber are not suitable for use because they interfere with mechanical grinding.

<効果> 以上より明らかなように、この発明によれば、マスク
を用いないで基板を加熱して基板の略全面に膜形成を行
い、さらに膜形成後、膜厚の変動が比較的大きい膜形成
領域の周辺部を除去して、膜厚バラツキが極めて小さい
領域のみを使用するため、輝度差を極めて小さく抑え
て、薄膜ELパネルの発光特性を向上させることができ
る。
<Effect> As is apparent from the above, according to the present invention, the substrate is heated without using a mask to form a film on substantially the entire surface of the substrate, and after the film is formed, the film thickness is relatively large. Since the peripheral portion of the formation region is removed and only the region where the film thickness variation is extremely small is used, it is possible to suppress the luminance difference to be extremely small and improve the light emission characteristics of the thin film EL panel.

さらに、膜形成時にマスクを使用しないので、基板ホ
ルダーの形状が簡単になり軽量化、共通化が図れ、生産
効率の向上にも役立つ。
Further, since no mask is used when forming the film, the shape of the substrate holder is simplified, the weight and weight of the substrate holder can be made common, and the production efficiency is improved.

また、1枚のガラス基板から複数枚のELパネルを作製
するいわゆる多数枚取りを行なう場合に、複数個の開口
部を持った様な複雑な形態のマスクを用いて膜形成しな
くても、この発明を適用して、すなわち基板全面に膜形
成し、端子部として使用する部分の膜を除去し、露出し
た透明電極の端部と端子電極との導通をとることによっ
て容易に行うことができる。
Further, in the case of performing so-called multi-cavity production for producing a plurality of EL panels from a single glass substrate, it is possible to form a film without using a complicated mask having a plurality of openings. By applying the present invention, that is, by forming a film on the entire surface of the substrate, removing the film of the portion used as the terminal portion, and establishing electrical continuity between the exposed end portion of the transparent electrode and the terminal electrode, it can be easily performed. .

また、本発明によれば、基板周辺領域の膜除去を行な
う前に上部絶縁層上に有機膜を形成してこの上部絶縁層
を保護するようにしているので、機械的研削処理工程に
おいて使用される研摩剤あるいは研削された膜や基板の
微粒子が上部絶縁層に直接付着してこの上部絶縁層を汚
染するのを防止することができる。有機膜に付着した微
粒子は、上記透明電極の端部に導通する端子電極を設け
る前に有機膜を除去することによって、薄膜上から除去
することができるので、上部絶縁層上に対して密着性よ
く、かつピンホールを生じさせることなく、背面電極を
形成することができ、電界の印加が均一になり、発光特
性の均一な欠陥の少ない薄膜ELパネルを製造することが
できる。
Further, according to the present invention, since the organic film is formed on the upper insulating layer to protect the upper insulating layer before removing the film in the peripheral region of the substrate, it is used in the mechanical grinding process. It is possible to prevent the abrasive or the fine particles of the ground film or substrate from directly adhering to the upper insulating layer and contaminating the upper insulating layer. Fine particles adhering to the organic film can be removed from above the thin film by removing the organic film before providing the terminal electrode that conducts to the end of the transparent electrode, so that the adhesion to the upper insulating layer is improved. The back electrode can be formed well without causing pinholes, the application of the electric field is uniform, and a thin film EL panel having uniform emission characteristics and few defects can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)乃至(e)はこの発明の一実施例である薄
膜ELパネルの製造方法を示す工程図、第2図(a)はこ
の発明における三層膜形成時の基板取り付け状態を示す
図、第2図(b)は上記基板の温度分布を示す図、第2
図(c)は上記三層膜の膜厚分布を示す図、第2図
(d)はこの発明により製造した薄膜ELパネルの発光輝
度の分布を示す図、第3図(a)は従来の製造方法にお
ける三層膜形成時の基板取り付け状態を示す図、第3図
(b)は上記基板の温度分布を示す図、第3図(c)は
上記三層膜の膜厚分布を示す図、第3図(d)は上記従
来の製造方法により製造した薄膜ELパネルの発光輝度の
分布を示す図、第4図(a)乃至(c)は従来の薄膜EL
パネルの製造方法の工程を示す図である。 1,11……ガラス基板、7,17……背面電極、 2,12……透明電極、8,18……端子電極、 3,13……下部絶縁層、20……基板ホルダー、 4,14……発光層、21,31……マスク、 5,15……上部絶縁層、32……研磨剤、 6……ポジレジスト膜、33……研磨剤噴射ガン。
FIGS. 1 (a) to 1 (e) are process diagrams showing a method for manufacturing a thin film EL panel according to an embodiment of the present invention, and FIG. 2 (a) shows a substrate mounting state when forming a three-layer film in the present invention. 2B shows the temperature distribution of the substrate, FIG.
FIG. 3 (c) is a diagram showing the thickness distribution of the above three-layer film, FIG. 2 (d) is a diagram showing the emission luminance distribution of the thin film EL panel manufactured according to the present invention, and FIG. 3 (a) is a conventional diagram. The figure which shows the board | substrate attachment state at the time of forming a three-layer film in a manufacturing method, FIG.3 (b) is a figure which shows the temperature distribution of the said board | substrate, FIG.3 (c) is a figure which shows the film thickness distribution of the said three-layer film. FIG. 3 (d) is a diagram showing the distribution of the emission luminance of a thin film EL panel manufactured by the above conventional manufacturing method, and FIGS. 4 (a) to 4 (c) are conventional thin film EL panels.
It is a figure which shows the process of the manufacturing method of a panel. 1,11 …… Glass substrate, 7,17 …… Back electrode, 2,12 …… Transparent electrode, 8,18 …… Terminal electrode, 3,13 …… Lower insulating layer, 20 …… Substrate holder, 4,14 ...... Light emitting layer, 21,31 …… Mask, 5,15 …… Upper insulating layer, 32 …… Abrasive agent, 6 …… Positive resist film, 33 …… Abrasive agent spray gun.

フロントページの続き (72)発明者 岸下 博 大阪府大阪市阿倍野区長池町22番22号 シヤープ株式会社内 (72)発明者 上出 久 大阪府大阪市阿倍野区長池町22番22号 シヤープ株式会社内Front page continued (72) Inventor Hiroshi Kishishita 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka, Japan Inside Sharp Corporation (72) Inventor Hisakami Uede, 22-22 Nagaike-cho, Abeno-ku, Osaka, Osaka Prefecture

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス基板上に透明電極と下部絶縁層と発
光層と上部絶縁層と背面電極を順次積層して形成する薄
膜ELパネルの製造方法において、 上記基板上の略全面に下部絶縁層、発光層、上部絶縁層
の三層を形成し、続いて上記上部絶縁層上に有機膜を形
成した後、周辺領域に存する上記下部絶縁層、発光層、
上部絶縁層、有機膜を機械的研削手法で除去して、透明
電極の端部を露出させ、その後、上記上部絶縁層上に残
った有機膜を除去することを特徴とする薄膜ELパネルの
製造方法。
1. A method for manufacturing a thin film EL panel, which comprises sequentially forming a transparent electrode, a lower insulating layer, a light emitting layer, an upper insulating layer and a back electrode on a glass substrate, wherein the lower insulating layer is formed on substantially the entire surface of the substrate. A light emitting layer and an upper insulating layer are formed, and then an organic film is formed on the upper insulating layer, and then the lower insulating layer and the light emitting layer in the peripheral region are formed.
Manufacturing of a thin film EL panel characterized by removing the upper insulating layer and the organic film by a mechanical grinding method to expose the end of the transparent electrode, and then removing the organic film remaining on the upper insulating layer. Method.
JP1341162A 1989-12-29 1989-12-29 Method for manufacturing thin film EL panel Expired - Fee Related JP2509354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341162A JP2509354B2 (en) 1989-12-29 1989-12-29 Method for manufacturing thin film EL panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341162A JP2509354B2 (en) 1989-12-29 1989-12-29 Method for manufacturing thin film EL panel

Publications (2)

Publication Number Publication Date
JPH03203194A JPH03203194A (en) 1991-09-04
JP2509354B2 true JP2509354B2 (en) 1996-06-19

Family

ID=18343820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341162A Expired - Fee Related JP2509354B2 (en) 1989-12-29 1989-12-29 Method for manufacturing thin film EL panel

Country Status (1)

Country Link
JP (1) JP2509354B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299053A (en) * 2001-04-02 2002-10-11 Denso Corp Method of manufacturing el display element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031146A1 (en) 2001-10-12 2003-04-17 Mold-Masters Limited Valve pin with thermocouple

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299053A (en) * 2001-04-02 2002-10-11 Denso Corp Method of manufacturing el display element

Also Published As

Publication number Publication date
JPH03203194A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
JPH0679512B2 (en) Method for manufacturing thin film EL panel
KR100345972B1 (en) Organic electroluminescent display device and method of forming the same
JP3948082B2 (en) Method for manufacturing organic electroluminescence element
JP3340440B2 (en) Spacer structure for flat panel display and method of manufacturing the same
US6019657A (en) Dual-layer metal for flat panel display
JPH1197182A (en) Luminous display pannel
JPH10134964A (en) Display device and its manufacture
US5147519A (en) Method of manufacturing elastomers containing fine line conductors
KR100510225B1 (en) Fluorescent material layer with metal back, method of forming the fluorescent material layer, and image display device
JP2509354B2 (en) Method for manufacturing thin film EL panel
JP2529755B2 (en) Method for manufacturing thin film EL panel
US5723170A (en) Method of forming fluorescent screen of cathode ray tube
JP3823482B2 (en) Method for manufacturing organic electroluminescent device
JPH03208297A (en) Manufacture of thin film electroluminescence (el) panel
KR20080059835A (en) Sputter apparatus
JPH056319B2 (en)
JPH02213087A (en) Manufacture of thin film el panel
JPH0424639Y2 (en)
JP2002304945A (en) Method for forming phosphor screen with metallic back and image display device
JP2000119872A (en) Peeling device and production of substrate
JPH0685353B2 (en) Method for forming thin film EL element
JPH113655A (en) Manufacture of back plate of cathode-ray tube
KR19990015850A (en) Triode type field emission display device
JPH0976155A (en) Thick film pattern forming method
JPH03119690A (en) Manufacture of thin-film electroluminescence element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees