JP3823482B2 - Method for manufacturing organic electroluminescent device - Google Patents

Method for manufacturing organic electroluminescent device Download PDF

Info

Publication number
JP3823482B2
JP3823482B2 JP27651597A JP27651597A JP3823482B2 JP 3823482 B2 JP3823482 B2 JP 3823482B2 JP 27651597 A JP27651597 A JP 27651597A JP 27651597 A JP27651597 A JP 27651597A JP 3823482 B2 JP3823482 B2 JP 3823482B2
Authority
JP
Japan
Prior art keywords
electrode
organic
partition wall
cathode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27651597A
Other languages
Japanese (ja)
Other versions
JPH1197173A (en
Inventor
顕治 古川
勇昇 泉澤
俊弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP27651597A priority Critical patent/JP3823482B2/en
Publication of JPH1197173A publication Critical patent/JPH1197173A/en
Application granted granted Critical
Publication of JP3823482B2 publication Critical patent/JP3823482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセント材料からなる有機層を有する有機エレクトロルミネッセント素子の製造法に関するものである。
【0002】
【従来の技術】
有機エレクトロルミネッセント(以下、ELと記す)素子の構成は、基板に支持された、一方が透明もしくは半透明である一対の電極(陽極と陰極)間に、発光層を挟持した構成である。具体的には(1)陽極/発光層/陰極、(2)陽極/正孔輸送層/発光層/陰極、(3)陽極/発光層/電子輸送層/陰極、(4)陽極/正孔輸送層/発光層/電子輸送層/陰極などの構成のものが知られている。必要に応じて、正孔注入輸送層や電子注入輸送層などを介在させることもある。
【0003】
ところで、有機EL素子を高密度の表示素子として利用するためには、ドット状の微小な画素をマトリックス状に配置することが不可欠であり、そのためには電極の微細なパターン化が必要となる。すなわち、互いに絶縁された複数の帯状の陽極と陰極を直交するように配置することにより、前記両電極間に挟まれた部分が発光領域となり、画素となる。
一般的には、発光を取り出す側に透明電極であるインジウムチンオキサイド(以後、ITOと記す)膜を設置し、陽極とする(以後、第一電極を陽極とし、第二電極を陰極とした場合について記述する)。その上に、上記したような各種の有機薄膜を積層し、最後に陰極として仕事関数の低い金属を蒸着し、有機EL素子としている。
【0004】
支持基板上に設置されたITO膜は代表的な微細加工法であるフォトリソグラフィ法により、微細なパターンを得ることができる。従って、問題となるのは陰極の微細パターン化である。
まず考えられるのは、電極を蒸着する際にマスクを用いてパターン化するマスク蒸着法である。しかしながら、この方法においては、微細なパターン、特に帯間の間隙が数十μm以下のものを作成することは、非常に難しい。すなわち、被蒸着基板とマスクとの密着性がマスクのだれなどにより十分に保たれないため、蒸着金属が回り込むことになり、十分な帯状電極間の絶縁がとれず、陰極の微細パターンを得ることができないという問題がある。
また、機械的な切削による微細加工法も古くから知られているが、この方法は強度的にかなり弱い金属薄膜からなる陰極を加工するには適しておらず、電極加工精度が不十分なために、電極が取りきれず、ショートしたり、また下地のITO膜を傷つけ、ITO電極が断線する場合があるなどの欠点がある。
【0005】
特開平2−66873号公報には、陽極と同様なフォトリソグラフィ法により、微細なパターンを得ることが開示されているが、レジスト塗布、ベーキング、露光、現像、エッチング及びレジスト剥離などの数多くの工程を必要とし、電極材料の劣化や有機材料層への水分のしみこみなどの諸問題のために、実用的な有機EL素子は得られない。同様なウェットエッチング法が、特開平6−151062号公報にも開示されている。
【0006】
特開平5−3077号公報には、レーザービームを使用して陰極材料を熱加工して取り除く方法が開示されている。しかし、陰極は鏡面であるため大部分のレーザー光を反射する。したがって、熱加工するためには強いレーザーを用いる必要があり、従って加工時に発する熱が多くなり、発光層や他の有機材料に悪影響を及ぼす。そのため、特開平9−50888号公報には耐熱性を有するレーザー保護層を設置することにより熱の影響を弱める工夫がなされているが、熱の影響を弱める効果が小さく、必ずしも満足のいく方法ではない。
【0007】
特開平8−22371号公報には、レーザーアブレーション法によるパターン化が開示されているが、飛散する金属屑を遠くにとばすために真空中で操作を行う必要があり、飛散した金属屑により真空槽が汚れるという欠点があり、製造方法としては必ずしも満足のいくものではない。
特開平5−275172号公報には、所定の間隔に配置された帯状の透明電極に直交するように絶縁体からなる隔壁を設け、この隔壁に直交する方向から陰極材料を斜め蒸着し、隔壁による陰の部分には電極材料が付着しないようにして、互いに絶縁された帯状の陰電極を設置する方法が開示されている。しかしこの方法では、隔壁の高さをかなり高くしないと十分な絶縁性がとれないという問題点を有している。
【0008】
特開平8−315981号公報には、オーバーハング部を有する隔壁を設け、基板を回転しながら有機層を蒸着した後、基板回転を止め陰電極を蒸着すると、隔壁のオーバーハング部の影の部分には陰電極は蒸着されず、電気的に分離された帯状の陰電極が形成されるようになる。しかしこの方法では第二電極の分離は出来るが、影部分に電極材料が回り込み、有機層の積層が十分でない部分で陽極とショートするという問題点を有している。
【0009】
特開平8−202287号公報には、特開平5−275172号公報と同様に、帯状に配置された透明電極と直交する絶縁体よりなる隔壁を形成した後、各種有機層と陰電極を基板に対してほぼ垂直方向から基板全面に蒸着し、隔壁上の陰電極をドクターブレードまたは研磨により除去して、隔壁部分で電気的に隔離された帯状の陰電極を得ることができる。しかし、研磨により陰電極を削り取る場合に、研磨時に使用する溶媒が有機層に悪影響を及ぼし、また残存する研磨剤により発光ムラが生ずるという問題点がある。また、ドクターブレードにより陰電極を削り取る方法では、ブレードと基板との間隔を非常に精度よく設定しないと発光部分を削り取ったり、削り残りが生じ、隔壁上の電極材料のみを削り取ることは困難であり、削りかすが基板上に散乱し、ショートや断線の原因になるという問題点を有している。
【0010】
【発明が解決しようとする課題】
本発明は、このような従来の有機EL素子のパターン化法が持つ問題点を改良し、電気的に絶縁した複数本の帯状の微細なパターンの第二電極を有し、ショートのない有機EL素子を簡便に製造する方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明は、複数本形成されている電導体からなる第一電極層と、該第一電極上に該第一電極と直交するよう帯状に複数本形成されている絶縁体からなる隔壁が構成された基板上に、単層もしくは複数層の有機層、および該有機層の上に第二電極を全面に形成して、一部の第二電極材料は剥離せずに残し、該隔壁の上部分のみに存在する第二電極材料を剥離する有機EL素子の製造方法であって、隔壁上の第二電極材料を剥離する際に、粘着剤を所望の厚さに塗布した平板またはロールを第二電極材料を積層した有機EL素子表面に密着させることにより、画素部分に粘着剤が接触することなく、隔壁上の第二電極材料を容易かつ完全に剥離して、第二電極を帯状に形成する有機EL素子の製造方法である。
【0012】
本発明の有機EL素子は、基板に支持されていることが好ましい。該基板については特に制限はなく、従来有機EL素子に慣用されているもの、例えばガラス、透明プラスチック、石英などを用いることができる。また、粘着剤を塗布する平板やロールの材料は所望の機械的精度に加工できるものであれば特に制限されるものでない。
本発明の有機EL素子の電極および有機層構成は、(1)陽極/発光層/陰極、(2)陽極/正孔輸送層/発光層/陰極、(3)陽極/発光層/電子輸送層/陰極、(4)陽極/正孔輸送層/発光層/電子輸送層/陰極など通常使用される構成であればいかなる構成でもかまわない。この有機EL素子の電極は、前記の第一電極が陽極の場合は第二電極が陰極となり、第一電極が陰極の場合は第二電極は陽極になる。
【0013】
次に、本発明の有機EL素子を製造する好適な方法について説明する。
例として、前記(1)の陽極/発光層/陰極からなる有機EL素子の製造法について説明すると、まずガラスなどの透明な基板上に、陽極用物質からなる薄膜を、1μm以下、好ましくは100〜800nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製する。電極材料としては、ITO、ZnO、CuSなどの無機系材料もしくは有機系透明導電性材料が用いられる。この透明電極のパターン化は、リソグラフィーなどの慣用的な微細加工により行われる。
この帯状に陽極が形成された基板上に交差するように帯状の絶縁性隔壁を形成する。隔壁は、スクリーン印刷法、光反応性樹脂を用いたフォトリソグラフィー法、マスク蒸着法等で形成することができる。隔壁の材料としては、フォトレジストなどの有機系高分子材料やSiOxなどの無機系材料が用いられる。
【0014】
次いで帯状の陽極と隔壁を形成させた基板上に発光層を設ける。発光層の形成方法としては、例えば、スピンコート法や蒸着法などが知られており、以下にその方法について記す。
蒸着法を採用する場合、その蒸着条件は、使用する発光層に用いる有機化合物の種類などにより異なるが、一般にボート加熱温度50〜400℃、真空度10-5〜10-3Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜+300℃、膜厚5nmないし5μmの範囲で適宜選ぶ事が望ましい。
【0015】
さらに、スピンコート法を採用する場合、その条件は、使用する材料の種類、溶媒の種類などにより異なるが、一般に溶液濃度0.001〜90重量部、スピンナー回転数100〜100000回転/分、基板温度−50〜300℃、これらの条件により膜厚を5nmないし5μmの範囲になる様に調整することが望ましい。さらに、スピンコート後、窒素、アルゴンなどの不活性気体雰因気下、30〜400℃で10分〜24時間熱処理を施すことが望ましい。
この発光層の形成後、その上に陰極用物質からなる薄膜を、1μm以下の厚さに、例えば蒸着やスパッタリング等の方法により形成させ、発光層全面に陰極を設ける。陰極を形成した後の有機EL素子の断面図を図1及び図2に示す。図1はITO電極に沿った方向の断面図である。図2はITO電極に対して直交方向の断面図である。
【0016】
陰極を形成した基板の上に、粘着剤を塗布したロールを基板上に転がすと隔壁上の電極材料が粘着剤に付着し、隔壁上の陰極を剥離することが出来る。所望の厚さの粘着剤を塗布した平板を用いても、隔壁上の陰極の剥離は可能である。隔壁の高さは有機層と金属電極の厚さの和より大きく、かつITO電極の厚さよりも大きい。また粘着剤の厚みが重要であり、該厚みは、隔壁の厚さ以下で、かつITO電極の厚さより厚いことが必要である。すなわち、粘着層の厚みが隔壁の厚み以上であると、粘着剤を有機EL素子に接触した際、表示部分の電極も剥離してしまう危険がある。またITO電極の厚さより薄いと、ITO電極上にない部分を剥離出来ない危険がある。
【0017】
本発明の有機EL素子の製造の際に用いる粘着剤としては、たとえば通常のセロテープ等に使用されている粘着剤、接着剤、フォトレジスト、高分子溶液の半乾燥状態のものなど、作業する温度で粘着性のあるものであれば特に限定されるものではない。
上記の一連の操作により、所望の有機EL素子が得られる。図3に陰電極の剥離した様子をITO電極に沿った方向の断面図で示す。このように除去した陰電極は粘着剤に粘着しており、削りかすが飛散しないため作業環境悪化させることなく、削りかすに起因する問題点を回避できる。なお、この有機薄膜EL素子の作製においては、作製順序を逆にして、陰極、発光層、陽極の順に作製し、隔壁上の陽極の剥離を施して製造することも可能である。
【0018】
上記の剥離は隔壁上の電極だけを剥離することについて説明したが、隔壁上の陰極を剥離する際に隔壁上の有機層が剥がれたとしても各画素部分には影響を与えないので、本発明の有機EL素子を製造するにはなんら問題はない。
このようにして製造された有機EL素子の陽極、有機層、陰極の大気中の酸素、湿気、ゴミなどによる劣化を防止するために、陽極、有機層、陰極部分全体を封止することが望ましい。
本発明の製造法で得られる有機EL素子は、有機層を介して、第一電極と第二電極が帯状に形成されている。これより、第一電極と第二電極とでマトリクスが形成され、第一電極駆動回路と第二電極駆動回路により、このマトリクスで構成される画素が順次駆動することにより、画素部分の発光層が画像信号に基づいて順次発光制御されるようになる。
【0019】
【作用】
本発明の製造法によれば、電極間隙狭い帯状の第二電極を精密加工法により電極間のショートを回避できるので、本発明によって製造される有機EL素子の表示品位は高いものとなる。
【0020】
【実施例】
次に本発明を実施例に基づいて更に詳しく説明するが、本発明は実施例に限定されるものではない。
実施例1
帯状にITOがパターニングされたガラス基板を十分洗浄した後、ヘキスト製レジストAZTFP−Nをスピンコートした。次に、ホットプレート上にてプリベークを行ってから、レジスト上に幅30μmの帯状にレジストの隔壁が出来るように加工したフォトマスクを乗せて露光を行った。露光した基板を現像液の中に入れ、レジストの現像を行い、基板をホットプレート上に置きポストベークを施し、所望の帯状ITOと交差する帯状の高さ3μmの隔壁を形成した。
【0021】
この基板を市販の蒸着装置の基板ホルダーに固定し、N,N'-ジフェニル-N,N'-ビス-(3-メチルフェニル)-4,4'-ジアミンを8×10-4Paの真空度で蒸着速度0.1〜0.2nm/秒で石英製るつぼから基板上に蒸着して、膜厚50nmの正孔注入輸送層を製膜させた。つづいて、8×10-4Paの真空度でトリス(8-ヒドロキシキノリノ)アルミニウムを石英製るつぼから0.3〜0.4nm/秒で共蒸着法により膜厚50nmの発光層を正孔注入輸送層上に製膜させた。ついで、その上に陰極電極として1×10-3Paの真空度でマグネシウムをグラファイト製るつぼから蒸着速度1〜1.2nm/秒および銀をグラファイト製るつぼから蒸着速度0.08〜0.11nm/秒で150nmの厚さでマグネシウム−銀電極を共蒸着することにより有機EL素子を作成した。
よく洗浄したガラスにキシレンで希釈したヘキスト製レジストAZTFP−Nをスピンコートして1μmの厚さに粘着剤を塗布した。このガラス板を未加工の有機EL素子に密着させた後、ガラス板を剥がした。そうすると隔壁の形状と一致する形状で陰極がガラス基板上に付着し、隔壁上のみの陰極電極のみが剥がれたことが確認できた。隔壁上の陰極が剥がされた素子の各画素にITOを陽極にして直流電圧を印加すると、直流電圧を印加した画素のみが発光し、各画素間が短絡していないことが確認できた。
【0022】
実施例2
実施例1と同様に希釈したフォトレジスト溶液を回転しているアルミニウム製ロールに滴下して1μmの厚さの粘着剤層を付けた。このロールを実施例1の陰極の蒸着まで終了した有機EL素子上で転がした。そうすると隔壁の幅と一致する陰極が帯状にロールに付着した。隔壁上の陰極が剥がされた素子の各画素にITOを陽極にして直流電圧を印加すると、直流電圧を印加した画素のみが発光し、各画素間が短絡していないことが確認できた。
【0023】
実施例3
実施例1の隔壁を施した基板に発光層としてポリビニルカルバゾールを0.5重量部、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾールを0.5重量部、化合物40を0.02重量部を1,2−ジクロロエタンに溶解し、スピンコート法により100nmの厚さに製膜し、蒸着装置の基板ホルダーに固定した。次いで、その上に実施例1と同様にマグネシウム−銀陰極電極を作成した。このようにして作成した基板上で、実施例2と同様に1μmの厚さに粘着剤を塗布したアルミニウム製のロールを転がした。隔壁上の陰極が剥がされた素子の各画素にITOを陽極にして直流電圧を印加すると、直流電圧を印加した画素のみが発光し、各画素間が短絡していないことが確認できた。
【0024】
比較例1
高さ1μmの帯状の隔壁を施した基板を実施例1と同様の方法で作成した。この基板上に実施例1と同様に有機層と陰極を蒸着した。このようにして作成した基板上で、実施例2と同様に3μmの厚さに粘着剤を塗布したアルミニウム製のロールを転がした。すると、画素上の陰極も剥がれてしまい各画素を発光させることが出来なかった。
【0025】
【発明の効果】
本発明の有機EL素子の製造法は、陰電極を微細加工する上で簡単な工程で、飛散する削りかすもなく、しかも確実に隔壁上の陰電極のみを剥離することができ、ショートのない表示品位の高い有機EL素子を簡便に作製でき、その工業的価値は高い。
【図面の簡単な説明】
【図1】 全面に金属蒸着を施した有機EL素子の構成の一例で、ITO電極に沿った方向の断面図である。
【図2】 全面に金属蒸着を施した有機EL素子の構成の一例で、ITO電極に直交方向の断面図である。
【図3】 本発明の方法により、金属電極に微細加工を施した有機EL素子のITOに沿った方向の断面図である。
【符号の説明】
1.ガラス基板
2.ITO電極
3.隔壁
4.有機化合物層
5.金属電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an organic electroluminescent element having an organic layer made of an organic electroluminescent material.
[0002]
[Prior art]
The structure of an organic electroluminescent (hereinafter referred to as EL) element is a structure in which a light emitting layer is sandwiched between a pair of electrodes (anode and cathode) that are supported by a substrate and one of which is transparent or translucent. . Specifically, (1) anode / light emitting layer / cathode, (2) anode / hole transport layer / light emitting layer / cathode, (3) anode / light emitting layer / electron transport layer / cathode, (4) anode / hole A structure having a transport layer / light emitting layer / electron transport layer / cathode is known. If necessary, a hole injection / transport layer, an electron injection / transport layer, or the like may be interposed.
[0003]
By the way, in order to use the organic EL element as a high-density display element, it is indispensable to arrange the dot-like minute pixels in a matrix, and for that purpose, the electrode needs to be finely patterned. That is, by arranging a plurality of strip-like anodes and cathodes that are insulated from each other so as to be orthogonal to each other, a portion sandwiched between the two electrodes becomes a light emitting region, which becomes a pixel.
Generally, an indium tin oxide (hereinafter referred to as ITO) film, which is a transparent electrode, is installed on the side from which light emission is extracted to serve as an anode (hereinafter, the first electrode serves as the anode and the second electrode serves as the cathode) Describe). On top of that, various organic thin films as described above are laminated, and finally a metal having a low work function is deposited as a cathode to form an organic EL element.
[0004]
The ITO film placed on the supporting substrate can obtain a fine pattern by a photolithography method which is a typical fine processing method. Therefore, the problem is the fine patterning of the cathode.
The first conceivable method is a mask vapor deposition method in which an electrode is vapor-deposited and patterned using a mask. However, in this method, it is very difficult to create a fine pattern, particularly one having a gap between bands of several tens of μm or less. In other words, the adhesion between the substrate to be deposited and the mask is not sufficiently maintained due to the dripping of the mask, etc., so that the deposited metal wraps around, and sufficient insulation between the strip electrodes cannot be taken, and a fine pattern of the cathode can be obtained. There is a problem that can not be.
In addition, the micromachining method by mechanical cutting has been known for a long time, but this method is not suitable for machining a cathode made of a metal thin film that is quite weak in strength, and the electrode machining accuracy is insufficient. In addition, there are drawbacks that the electrode cannot be completely removed and short-circuited, or that the underlying ITO film is damaged and the ITO electrode may be disconnected.
[0005]
Japanese Patent Laid-Open No. 2-66873 discloses that a fine pattern is obtained by a photolithography method similar to that for an anode, but a number of processes such as resist coating, baking, exposure, development, etching, and resist stripping. Therefore, a practical organic EL element cannot be obtained due to various problems such as deterioration of the electrode material and moisture permeation into the organic material layer. A similar wet etching method is also disclosed in JP-A-6-151062.
[0006]
Japanese Patent Application Laid-Open No. 5-3077 discloses a method of removing a cathode material by thermal processing using a laser beam. However, since the cathode is a mirror surface, most of the laser light is reflected. Therefore, it is necessary to use a strong laser for thermal processing, so that heat generated during processing increases, which adversely affects the light emitting layer and other organic materials. Therefore, in Japanese Patent Application Laid-Open No. 9-50888, there is devised to reduce the influence of heat by installing a heat-resistant laser protective layer, but the effect of reducing the influence of heat is small, and it is not always a satisfactory method. Absent.
[0007]
Japanese Patent Application Laid-Open No. 8-22371 discloses patterning by a laser ablation method, but it is necessary to perform operation in a vacuum in order to disperse scattered metal debris far away. However, the manufacturing method is not always satisfactory.
In Japanese Patent Laid-Open No. 5-275172, a partition wall made of an insulator is provided so as to be orthogonal to a strip-shaped transparent electrode arranged at a predetermined interval, and a cathode material is obliquely deposited from a direction orthogonal to the partition wall. A method of disposing a strip-like negative electrode insulated from each other so that no electrode material adheres to the shadow portion is disclosed. However, this method has a problem in that sufficient insulation cannot be obtained unless the height of the partition walls is increased considerably.
[0008]
In JP-A-8-315981, a partition wall having an overhang portion is provided, and after the organic layer is deposited while rotating the substrate, the substrate rotation is stopped and the negative electrode is deposited. In this case, the negative electrode is not deposited, and an electrically isolated strip-like negative electrode is formed. However, this method can separate the second electrode, but has the problem that the electrode material wraps around the shadow portion and shorts with the anode at the portion where the organic layer is not sufficiently laminated.
[0009]
In Japanese Patent Laid-Open No. 8-202287, as in Japanese Patent Laid-Open No. 5-275172, after forming a partition made of an insulator perpendicular to a transparent electrode arranged in a strip shape, various organic layers and a negative electrode are used as a substrate. On the other hand, vapor deposition is performed on the entire surface of the substrate from a substantially vertical direction, and the negative electrode on the partition wall is removed by a doctor blade or polishing to obtain a strip-like negative electrode electrically isolated by the partition wall portion. However, when the negative electrode is scraped off by polishing, there is a problem that the solvent used at the time of polishing has an adverse effect on the organic layer, and light emission unevenness is caused by the remaining abrasive. Also, with the method of scraping the negative electrode with a doctor blade, unless the distance between the blade and the substrate is set very accurately, it is difficult to scrape only the electrode material on the partition wall by scraping the light emitting part or leaving unscratched parts. However, the shavings are scattered on the substrate, which causes a short circuit or disconnection.
[0010]
[Problems to be solved by the invention]
The present invention improves the problems of such a conventional patterning method for organic EL elements, and has a plurality of electrically insulated strip-like finely patterned second electrodes, and there is no short circuit. It aims at providing the method of manufacturing an element simply.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention includes a first electrode layer formed of a plurality of conductors and a plurality of strips formed on the first electrode so as to be orthogonal to the first electrode. A single-layer or multiple-layer organic layer is formed on a substrate on which a partition wall made of an insulator is formed, and a second electrode is formed over the organic layer, and a part of the second electrode material does not peel off. The organic EL element manufacturing method for removing the second electrode material existing only in the upper part of the partition wall, wherein when the second electrode material on the partition wall is stripped, the pressure-sensitive adhesive has a desired thickness. By adhering the applied flat plate or roll to the surface of the organic EL element on which the second electrode material is laminated, the second electrode material on the partition wall can be easily and completely peeled without the adhesive contacting the pixel portion, It is a manufacturing method of the organic EL element which forms a 2nd electrode in strip shape.
[0012]
The organic EL element of the present invention is preferably supported on a substrate. There is no restriction | limiting in particular about this board | substrate, For example, what is conventionally used for the organic EL element, for example, glass, a transparent plastic, quartz etc. can be used. Moreover, the material of the flat plate and roll which apply | coats an adhesive will not be restrict | limited especially if it can process to desired mechanical precision.
The electrode and organic layer structure of the organic EL device of the present invention are (1) anode / light emitting layer / cathode, (2) anode / hole transport layer / light emitting layer / cathode, and (3) anode / light emitting layer / electron transport layer. / Cathode, (4) Anode / hole transport layer / light emitting layer / electron transport layer / cathode, etc., as long as they are usually used, any configuration may be used. When the first electrode is an anode, the second electrode is a cathode when the first electrode is an anode, and the second electrode is an anode when the first electrode is a cathode.
[0013]
Next, a suitable method for producing the organic EL device of the present invention will be described.
As an example, the method for producing an organic EL device comprising the anode / light-emitting layer / cathode described in (1) above will be described. First, a thin film made of an anode material is formed on a transparent substrate such as glass and the like, preferably 1 μm or less, preferably 100 An anode is manufactured by forming the film in a range of ˜800 nm by a method such as vapor deposition or sputtering. As the electrode material, an inorganic material such as ITO, ZnO, or CuS or an organic transparent conductive material is used. The patterning of the transparent electrode is performed by conventional fine processing such as lithography.
A strip-shaped insulating partition is formed so as to intersect the substrate on which the anode is formed in the strip shape. The partition wall can be formed by a screen printing method, a photolithography method using a photoreactive resin, a mask vapor deposition method, or the like. As a material for the partition wall, an organic polymer material such as a photoresist or an inorganic material such as SiO x is used.
[0014]
Next, a light emitting layer is provided on the substrate on which the strip-shaped anode and the partition are formed. As a method for forming the light emitting layer, for example, a spin coating method or a vapor deposition method is known, and the method will be described below.
When employing the vapor deposition method, the vapor deposition conditions vary depending on the type of organic compound used in the light emitting layer to be used, but generally the boat heating temperature is 50 to 400 ° C., the degree of vacuum is 10 −5 to 10 −3 Pa, and the vapor deposition rate is 0. It is desirable to select appropriately within a range of 0.01 to 50 nm / second, a substrate temperature of −50 to + 300 ° C., and a film thickness of 5 nm to 5 μm.
[0015]
Furthermore, when the spin coating method is employed, the conditions vary depending on the type of material used, the type of solvent, and the like, but generally the solution concentration is 0.001 to 90 parts by weight, the spinner rotation speed is 100 to 100,000 rotations / minute, the substrate It is desirable to adjust the film thickness to a range of 5 nm to 5 μm according to these conditions at a temperature of −50 to 300 ° C. Further, after spin coating, it is desirable to perform heat treatment at 30 to 400 ° C. for 10 minutes to 24 hours in an atmosphere of an inert gas such as nitrogen or argon.
After the formation of the light emitting layer, a thin film made of a cathode material is formed thereon with a thickness of 1 μm or less by a method such as vapor deposition or sputtering, and a cathode is provided on the entire surface of the light emitting layer. 1 and 2 show cross-sectional views of the organic EL element after the cathode is formed. FIG. 1 is a cross-sectional view in the direction along the ITO electrode. FIG. 2 is a cross-sectional view perpendicular to the ITO electrode.
[0016]
When a roll coated with an adhesive is rolled onto the substrate on which the cathode is formed, the electrode material on the partition wall adheres to the adhesive and the cathode on the partition wall can be peeled off. Even if a flat plate coated with a desired thickness of the adhesive is used, the cathode on the partition can be peeled off. The height of the partition wall is larger than the sum of the thickness of the organic layer and the metal electrode, and larger than the thickness of the ITO electrode. Further, the thickness of the pressure-sensitive adhesive is important, and the thickness needs to be equal to or less than the thickness of the partition wall and larger than the thickness of the ITO electrode. That is, when the thickness of the pressure-sensitive adhesive layer is equal to or greater than the thickness of the partition wall, when the pressure-sensitive adhesive is brought into contact with the organic EL element, there is a risk that the electrode in the display portion is also peeled off. If the thickness is smaller than the ITO electrode, there is a risk that a portion not on the ITO electrode cannot be peeled off.
[0017]
Examples of the pressure-sensitive adhesive used in the production of the organic EL device of the present invention include pressure-sensitive adhesives, adhesives, photoresists, and semi-dried polymer solutions that are used in ordinary cellophane, etc. As long as it is sticky, it is not particularly limited.
A desired organic EL element is obtained by the above series of operations. FIG. 3 shows a state where the negative electrode is peeled off in a sectional view along the ITO electrode. The negative electrode thus removed adheres to the pressure-sensitive adhesive, and the shavings do not scatter. Therefore, problems caused by the shavings can be avoided without deteriorating the working environment. In the production of the organic thin film EL element, it is also possible to produce the organic thin film EL element by reversing the production order, producing the cathode, the light emitting layer, and the anode in this order, and peeling off the anode on the partition wall.
[0018]
Although the above-described peeling has been described for peeling only the electrodes on the barrier ribs, even if the organic layer on the barrier ribs is peeled off when the cathode on the barrier ribs is peeled off, each pixel portion is not affected. There is no problem in manufacturing the organic EL element.
In order to prevent deterioration of the anode, organic layer, and cathode of the organic EL device thus manufactured due to oxygen, moisture, dust, etc. in the atmosphere, it is desirable to seal the entire anode, organic layer, and cathode portion. .
In the organic EL device obtained by the production method of the present invention, the first electrode and the second electrode are formed in a band shape via an organic layer. As a result, a matrix is formed by the first electrode and the second electrode, and pixels formed by this matrix are sequentially driven by the first electrode driving circuit and the second electrode driving circuit, so that the light emitting layer of the pixel portion is formed. The light emission is sequentially controlled based on the image signal.
[0019]
[Action]
According to the manufacturing method of the present invention, the short electrode between the electrodes can be avoided by the precision processing method for the band-shaped second electrode having a narrow electrode gap, so that the display quality of the organic EL device manufactured by the present invention is high.
[0020]
【Example】
EXAMPLES Next, although this invention is demonstrated in more detail based on an Example, this invention is not limited to an Example.
Example 1
After thoroughly cleaning the glass substrate on which ITO was patterned in a band shape, Hoechst resist AZTFP-N was spin-coated. Next, after pre-baking on a hot plate, exposure was performed by placing a photomask processed so as to form a resist partition in a strip shape having a width of 30 μm on the resist. The exposed substrate was put in a developing solution, the resist was developed, the substrate was placed on a hot plate and post-baked, and a strip-shaped partition wall having a height of 3 μm intersecting with a desired strip-shaped ITO was formed.
[0021]
This substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus, and N, N′-diphenyl-N, N′-bis- (3-methylphenyl) -4,4′-diamine is vacuumed at 8 × 10 −4 Pa. Vapor deposition was performed on the substrate from a quartz crucible at a deposition rate of 0.1 to 0.2 nm / second to form a 50 nm-thick hole injecting and transporting layer. Subsequently, tris (8-hydroxyquinolino) aluminum was formed from a crucible made of quartz at a vacuum degree of 8 × 10 −4 Pa at 0.3 to 0.4 nm / sec. A film was formed on the injection transport layer. Next, magnesium was deposited on the graphite as a cathode electrode at a vacuum degree of 1 × 10 −3 Pa from a graphite crucible at a deposition rate of 1 to 1.2 nm / second, and silver was deposited from a graphite crucible at a deposition rate of 0.08 to 0.11 nm / second. An organic EL device was prepared by co-evaporation of a magnesium-silver electrode with a thickness of 150 nm per second.
Hoechst resist AZTFP-N diluted with xylene was spin-coated on a well-washed glass, and an adhesive was applied to a thickness of 1 μm. After this glass plate was brought into close contact with the unprocessed organic EL element, the glass plate was peeled off. Then, it was confirmed that the cathode adhered to the glass substrate in a shape corresponding to the shape of the partition wall, and only the cathode electrode only on the partition wall was peeled off. When a direct current voltage was applied to each pixel of the element from which the cathode on the partition wall was peeled off using ITO as an anode, it was confirmed that only the pixel to which the direct current voltage was applied emitted light and that there was no short circuit between the pixels.
[0022]
Example 2
The diluted photoresist solution was dropped onto a rotating aluminum roll in the same manner as in Example 1 to give a 1 μm thick adhesive layer. This roll was rolled on the organic EL element which was completed up to the cathode deposition in Example 1. Then, a cathode corresponding to the width of the partition adhered to the roll in a strip shape. When a direct current voltage was applied to each pixel of the element from which the cathode on the partition wall was peeled off using ITO as an anode, it was confirmed that only the pixel to which the direct current voltage was applied emitted light and that there was no short circuit between the pixels.
[0023]
Example 3
As a light emitting layer, 0.5 parts by weight of polyvinylcarbazole, 0.5 parts by weight of 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, and a compound as a light emitting layer on the substrate provided with the partition wall of Example 1 0.02 parts by weight of 40 was dissolved in 1,2-dichloroethane, formed into a film having a thickness of 100 nm by a spin coating method, and fixed to a substrate holder of a vapor deposition apparatus. Next, a magnesium-silver cathode electrode was formed thereon in the same manner as in Example 1. On the board | substrate produced in this way, the roll made from aluminum which apply | coated the adhesive to the thickness of 1 micrometer similarly to Example 2 was rolled. When a direct current voltage was applied to each pixel of the element from which the cathode on the partition wall was peeled off using ITO as an anode, it was confirmed that only the pixel to which the direct current voltage was applied emitted light and that there was no short circuit between the pixels.
[0024]
Comparative Example 1
A substrate with a 1 μm-high strip-like partition was prepared in the same manner as in Example 1. On this substrate, an organic layer and a cathode were deposited in the same manner as in Example 1. On the board | substrate produced in this way, the roll made from aluminum which apply | coated the adhesive to the thickness of 3 micrometers similarly to Example 2 was rolled. Then, the cathode on the pixel was peeled off, and each pixel could not emit light.
[0025]
【The invention's effect】
The manufacturing method of the organic EL device of the present invention is a simple process for finely processing the negative electrode, and it is possible to surely peel off only the negative electrode on the partition wall without causing a short circuit. An organic EL element with high display quality can be easily produced, and its industrial value is high.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view along an ITO electrode in an example of a configuration of an organic EL element in which metal deposition is performed on the entire surface.
FIG. 2 is an example of a configuration of an organic EL element in which metal deposition is performed on the entire surface, and is a cross-sectional view in a direction orthogonal to an ITO electrode.
FIG. 3 is a cross-sectional view in a direction along ITO of an organic EL element obtained by finely processing a metal electrode by the method of the present invention.
[Explanation of symbols]
1. 1. Glass substrate ITO electrode3. Septum 4. 4. Organic compound layer Metal electrode

Claims (3)

互いに対向する複数本の帯状に配置された第一電極と第二電極とからなる電極対と、該電極対間に有機層とを有し、該電極対に挟まれた複数の部分を発光領域とするエレクトロルミネッセント素子の製造法において、複数本の帯状の第一電極と該電極と直交するように絶縁体からなる複数本の帯状隔壁を配置した基板上に、単層もしくは複数層の有機層、ついで該有機層上の表面全体に第二電極を形成した後、隔壁の上部分に存在する第二電極材料を、粘着剤を用いて剥離する工程を含むことを特徴とする有機エレクトロルミネッセント素子の製造方法。An electrode pair comprising a plurality of first and second electrodes arranged in a strip shape facing each other, an organic layer between the electrode pair, and a plurality of portions sandwiched between the electrode pairs as light emitting regions In the method for manufacturing an electroluminescent element, a single layer or a plurality of layers are formed on a substrate on which a plurality of strip-shaped first electrodes and a plurality of strip-shaped partition walls made of an insulator are arranged so as to be orthogonal to the electrodes. An organic layer comprising a step of forming a second electrode on the entire surface of the organic layer and then the organic layer, and then peeling the second electrode material existing on the upper portion of the partition wall using an adhesive; Manufacturing method of luminescent element. 第二電極を有機層の表面全体に形成させた後、請求項1記載の隔壁の上部分に存在する第二電極材料を粘着剤を塗布した平板もしくはロールを用いて剥離させることを特徴とする有機エレクトロルミネッセント素子の製造方法。After the second electrode is formed on the entire surface of the organic layer, the second electrode material present on the upper portion of the partition wall according to claim 1 is peeled off using a flat plate or a roll coated with an adhesive. Manufacturing method of organic electroluminescent element. 請求項2記載において平板上またはロール上に塗布した粘着剤の厚さが隔壁の高さより厚くないものを用いて、隔壁の上部分に存在する第二電極材料を剥離させることを特徴とする有機エレクトロルミネッセント素子の製造方法。The organic material according to claim 2, wherein the second electrode material existing on the upper part of the partition wall is peeled off using a pressure-sensitive adhesive applied on a flat plate or a roll that is not thicker than the height of the partition wall. Manufacturing method of electroluminescent element.
JP27651597A 1997-09-24 1997-09-24 Method for manufacturing organic electroluminescent device Expired - Fee Related JP3823482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27651597A JP3823482B2 (en) 1997-09-24 1997-09-24 Method for manufacturing organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27651597A JP3823482B2 (en) 1997-09-24 1997-09-24 Method for manufacturing organic electroluminescent device

Publications (2)

Publication Number Publication Date
JPH1197173A JPH1197173A (en) 1999-04-09
JP3823482B2 true JP3823482B2 (en) 2006-09-20

Family

ID=17570555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27651597A Expired - Fee Related JP3823482B2 (en) 1997-09-24 1997-09-24 Method for manufacturing organic electroluminescent device

Country Status (1)

Country Link
JP (1) JP3823482B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050117615A (en) 2003-09-16 2005-12-15 씨엘디 주식회사 Organic electroluminescence display and method of making the same
JP4747868B2 (en) * 2006-02-10 2011-08-17 セイコーエプソン株式会社 Manufacturing method of electro-optical device
JP5239189B2 (en) * 2007-03-27 2013-07-17 凸版印刷株式会社 Method for manufacturing organic electroluminescence display device
JP2008268802A (en) * 2007-04-25 2008-11-06 Toppan Printing Co Ltd Organic electroluminescent display device and manufacturing method thereof
JP2009230956A (en) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd Manufacturing method of organic electroluminescent display device
KR101959488B1 (en) * 2015-09-08 2019-03-18 주식회사 엘지화학 Method of manufacturing an optical device

Also Published As

Publication number Publication date
JPH1197173A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3369616B2 (en) Light emitting device
JP3948082B2 (en) Method for manufacturing organic electroluminescence element
US6302756B1 (en) Organic electroluminecent display device suitable for a flat display and method of forming the same
KR100345972B1 (en) Organic electroluminescent display device and method of forming the same
JP6016407B2 (en) Manufacturing method of organic EL display device
JPH09330792A (en) Organic electroluminenscent display device and manufacture thereof
JPH11339958A (en) Manufacture of electroluminescent element
US20140197394A1 (en) Organic light emitting device and manufacturing method therefor
US8062834B2 (en) Method for manufacturing transparent electrode pattern and method for manufacturing electro-optic device having the transparent electrode pattern
JP3823482B2 (en) Method for manufacturing organic electroluminescent device
JP3599964B2 (en) Light emitting display and method of manufacturing the same
JPH0473886A (en) Organic electroluminescent element
JP2848384B1 (en) Organic EL display device and manufacturing method thereof
JPH11312583A (en) Manufacture of el element
JPH11111455A (en) Manufacture of organic electroluminescent element
JP4747868B2 (en) Manufacturing method of electro-optical device
KR100215798B1 (en) Electroluminescence element manufacturing method
JP2000106275A (en) Manufacture of organic electroluminescent display device
JP2003297549A (en) Organic el display and its manufacturing method
JP2000228287A (en) Organic electroluminescent element and its manufacture
KR100417922B1 (en) Organic Electro Luminescent Display Panel and manufacturing method thereof
JPH0424639Y2 (en)
JP2000306682A (en) Organic el element and its manufacture
JP2000113980A (en) Manufacture of el element
JPH056319B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees