JP2508506B2 - Spherical fine powder manufacturing method and manufacturing apparatus - Google Patents

Spherical fine powder manufacturing method and manufacturing apparatus

Info

Publication number
JP2508506B2
JP2508506B2 JP61172875A JP17287586A JP2508506B2 JP 2508506 B2 JP2508506 B2 JP 2508506B2 JP 61172875 A JP61172875 A JP 61172875A JP 17287586 A JP17287586 A JP 17287586A JP 2508506 B2 JP2508506 B2 JP 2508506B2
Authority
JP
Japan
Prior art keywords
melting
laser beam
cooling
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61172875A
Other languages
Japanese (ja)
Other versions
JPS6333507A (en
Inventor
秀昭 吉田
和彦 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61172875A priority Critical patent/JP2508506B2/en
Publication of JPS6333507A publication Critical patent/JPS6333507A/en
Application granted granted Critical
Publication of JP2508506B2 publication Critical patent/JP2508506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 [従来技術] 本発明は球状微粉体の製造に関し、特に高密度のプリ
ント回路等を形成するのに好適な球状金属微粉体の製造
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] The present invention relates to the production of spherical fine powder, and more particularly to the production of spherical metal fine powder suitable for forming high-density printed circuits and the like.

[従来技術と問題点] 高密度プリント回路を形成するには、金属微粉末を含
有するペーストを絶縁基盤上に塗布して目的の回路パタ
ーンを形成している。このプリント回路に使用される金
属微粉末には概ね数千オングストロームから十数μ程度
の微細な粒子が用いられている。従来、この微細な金属
粒子は、(イ)金属酸化物を還元する方法、(ロ)金属
塩水溶液を電解する方法、(ハ)金属粒子を機械的に粉
砕する方法などによって製造されているが、得られる金
属粒子は粒子表面が酸化されている場合が多く、また、
粒子形状がフレーク状ないし不定形であるため回路パタ
ーンの線幅や線間隔を小さくすることが出来ないため、
高密度の微細な回路を形成できないという問題がある。
[Prior Art and Problems] To form a high-density printed circuit, a paste containing metal fine powder is applied on an insulating substrate to form a desired circuit pattern. The fine metal powder used in this printed circuit is a fine particle of about several thousand angstroms to about ten and several μ. Conventionally, these fine metal particles are produced by (a) a method of reducing a metal oxide, (b) a method of electrolyzing a metal salt aqueous solution, (c) a method of mechanically crushing metal particles. In many cases, the surface of the obtained metal particles is oxidized, and
Since the particle shape is flaky or amorphous, it is not possible to reduce the line width and line spacing of the circuit pattern.
There is a problem that high-density minute circuits cannot be formed.

一方、球状の金属粒を製造する方法としては、ガスア
トマイズ法、回転電極法などが従来から知られている
が、これらの方法では粒径20μ以下の微粒子を製造する
のが難しい。高密度の回路を形成するには20μ以下の微
細な金属粒子が必要であり、上記製造方法では粒度が大
き過ぎて適さない。
On the other hand, as a method for producing spherical metal particles, a gas atomizing method, a rotating electrode method and the like have been conventionally known, but it is difficult to produce fine particles having a particle size of 20 μm or less by these methods. In order to form a high-density circuit, fine metal particles of 20 μm or less are necessary, and the above-mentioned manufacturing method is not suitable because the particle size is too large.

また、金属粉末をアークによる加熱し焼結させて仮製
球にした後に、これを基板上に置いてレーザ光を照射し
て溶融させ、形状を球形に整える方法も知られているが
(特開昭58−151402号)、この方法は2段階の加熱を必
要とするため工程が繁雑であり、しかも粒径の比較的大
きい粒子を製造するものであって、数μ程度の微細粒子
を製造するには適さない。
There is also known a method in which metal powder is heated by an arc and sintered to form a temporary sphere, which is then placed on a substrate and irradiated with a laser beam to be melted to adjust the shape into a spherical shape (special feature. (Kaisho No. 58-151402), this method requires heating in two steps, and therefore the process is complicated, and it produces relatively large particles, and produces fine particles of about several μm. Not suitable for.

さらに、固体金属原料にレーザ光を照射して、金属を
気化させ、この金属蒸気を冷却して金属粉末を製造する
方法も知られているが(特開昭61−1365606号)、この
方法によって得られる粒子は粒径がオングストローム領
域の超微粒子であり、プリント回路用としては適さな
い。また表面を溶融する場合と異なり気化蒸気を急冷す
るために粒子形状も不定形になり易い。
Furthermore, a method of irradiating a solid metal raw material with a laser beam to vaporize the metal and cooling the metal vapor to produce a metal powder is known (Japanese Patent Laid-Open No. 61-1365606). The obtained particles are ultrafine particles having a particle size in the angstrom region and are not suitable for printed circuits. Further, unlike the case of melting the surface, the vaporized vapor is rapidly cooled, so that the particle shape is likely to be indefinite.

[発明の解決課題] 本発明は従来の製造方法における上記問題を解決した
金属微粒子の製造方法を提供することを目的とする。本
発明によれば、粒径が数μオーダであって形状が球形に
整い、酸素含有量が少なく、プリント回路の製造に最適
な金属微粒子を容易に製造する製造方法が提供される。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing metal fine particles, which solves the above problems in the conventional production method. According to the present invention, there is provided a manufacturing method for easily manufacturing fine metal particles having a particle size on the order of several μm, a spherical shape, a low oxygen content, and which is most suitable for manufacturing a printed circuit.

[発明の構成] すなわち、本発明は、以下の構成からなる球状金属微
粉体の製造方法およびその装置を提供する。
[Structure of the Invention] That is, the present invention provides a method and an apparatus for manufacturing a spherical metal fine powder having the following structure.

(1)異形ないしフレーク状の原料金属粉体を還元性ガ
ス流によってレーザビーム照射部に導き、表面酸化膜を
還元しつつ、レーザビームが照射されているノズルから
噴射して該金属粉体を溶融し、急冷することにより、平
均粒径2.1〜0.05μmの球状の金属粉体とすることを特
徴とする球状微粉体の製造方法。
(1) The irregular or flaky raw material metal powder is guided to the laser beam irradiation part by a reducing gas flow, and while reducing the surface oxide film, the metal powder is sprayed from a nozzle irradiated with the laser beam to obtain the metal powder. A method for producing a spherical fine powder, which comprises melting and quenching to obtain a spherical metal powder having an average particle diameter of 2.1 to 0.05 μm.

(2)原料金属粉体の溶融冷却室と、該溶融冷却室に連
通した捕集室とを有し、該溶融冷却室はガス流を導く孔
を有する隔壁によって溶融部と冷却部に区画されてお
り、該溶融部にはレーザビーム照射部および該レーザビ
ームの焦点領域に原料金属粉体を供給する還元性ガスの
供給路が設けられており、上記冷却部には冷却手段が設
けられていることを特徴とする球状微粉体の製造装置。
(2) It has a melting and cooling chamber for the raw material metal powder and a collection chamber communicating with the melting and cooling chamber, and the melting and cooling chamber is divided into a melting part and a cooling part by a partition having a hole for guiding a gas flow. The melting section is provided with a laser beam irradiation section and a reducing gas supply path for supplying the raw material metal powder to the focal region of the laser beam, and the cooling section is provided with cooling means. An apparatus for producing spherical fine powder characterized in that

[具体的な説明] 以下に、図面を参照して本発明を詳細に説明する。[Detailed Description] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る製造装置の概略図であり、第2
図はレーザ照射部の概略図である。
FIG. 1 is a schematic view of a manufacturing apparatus according to the present invention, and FIG.
The figure is a schematic view of a laser irradiation unit.

(1)製造装置 図示するように、本装置は、原料の金属粉体を溶融し
て冷却するための溶融冷却室10と、該溶融冷却室10に連
通した捕集室20とを有する。該溶融冷却室10の内部は隔
壁11によって溶融部10aと冷却部10bとに区画されてお
り、該溶融部10aと冷却部10bは隔壁11の孔17によって連
通している。上記溶融部10aにはレーザビームの照射部1
2が設けられており、該照射部12にはレーザ発振装置13
が接続している。また、溶融部10aの底部には未溶融の
粉体を回収するための回収器19が付設されている。一
方、冷却部10bの外周には溶融した金属粉体を冷却する
ための冷却パイプ18が設けられており、また捕集室20の
内部には金属粉体を捕集するためのフィルターユニット
が収納され、その外周には冷却パイプ23が配設されてい
る。さらに捕集室20には、その底部に取出口21が設けら
れており、その上部には排気ダクトが連設されている。
(1) Manufacturing Apparatus As shown in the figure, this apparatus has a melting and cooling chamber 10 for melting and cooling the raw material metal powder, and a collection chamber 20 communicating with the melting and cooling chamber 10. The inside of the melting and cooling chamber 10 is divided into a melting portion 10a and a cooling portion 10b by a partition wall 11, and the melting portion 10a and the cooling portion 10b communicate with each other through a hole 17 in the partition wall 11. The melting portion 10a has a laser beam irradiation portion 1
2 is provided, and the irradiation unit 12 has a laser oscillator 13
Is connected. Further, a collector 19 for collecting the unmelted powder is attached to the bottom of the melting section 10a. On the other hand, a cooling pipe 18 for cooling the molten metal powder is provided on the outer periphery of the cooling unit 10b, and a filter unit for collecting the metal powder is housed inside the collection chamber 20. A cooling pipe 23 is arranged on the outer periphery of the cooling pipe 23. Further, the collection chamber 20 is provided with an outlet 21 at the bottom thereof, and an exhaust duct is continuously provided at the top thereof.

一方、第2図に示すように、照射部12にはレーザビー
ムを収束させるためのレンズ14と、該レーザビームの焦
点領域に原料粉体を供給するガス供給路15が設けられて
いる。該ガス供給路15はレーザビームの焦点付近に開口
する円錐状のノルズ16を有しており、原料粉体はキャリ
アーガスである還元性ガスによって該ノズル16からレー
ザビームとほぼ同軸方向に噴出される。なお、原料粉体
の噴出方向はレーザビームと同軸に限らない。
On the other hand, as shown in FIG. 2, the irradiation unit 12 is provided with a lens 14 for converging the laser beam and a gas supply path 15 for supplying the raw material powder to the focal region of the laser beam. The gas supply path 15 has a conical nord 16 that opens near the focal point of the laser beam, and the raw material powder is jetted from the nozzle 16 in a direction substantially coaxial with the laser beam by a reducing gas that is a carrier gas. It The ejection direction of the raw material powder is not limited to the coaxial with the laser beam.

(2)製造方法 本性製造方法では、異形ないしフレーク状の金属粉体
を原料とする。ここで異形ないしフレーク状とは不定形
を含む非球形の形状であることを云う。原料粉体は還元
性のキャリアーガスによってガス供給路15を通じ、レー
ザビームが照射されているノルズ16から冷却部10aに向
かって噴射される。還元性ガスとしては、後述の実施例
に示すように水素ガスあるいは水素ガスと窒素またはア
ルゴンなどの不活性ガスとの混合ガスが用いられる。還
元ガスを用いることにより金属粉体の表面酸化膜が還元
除去され、レーザビームによる溶融が均一になされ整っ
た球形になる。後述の比較例に示すように、単なる不活
性ガス雰囲気下では球形にならない。
(2) Manufacturing method In the natural manufacturing method, a deformed or flaky metal powder is used as a raw material. Here, the irregular shape or the flake shape means an aspherical shape including an indefinite shape. The raw material powder is sprayed by a reducing carrier gas through the gas supply passage 15 from the nozzle 16 irradiated with the laser beam toward the cooling unit 10a. As the reducing gas, hydrogen gas or a mixed gas of hydrogen gas and an inert gas such as nitrogen or argon is used as shown in Examples described later. By using the reducing gas, the surface oxide film of the metal powder is reduced and removed, and the melting by the laser beam becomes uniform and becomes a regular spherical shape. As shown in a comparative example described later, it does not become spherical in a mere inert gas atmosphere.

原料粉体の粒径は、プリント回路用金属粒子として用
いるものは、平均粒径が数μオーダのものが適当であ
り、これにより粒径が大きいものは好ましくない。また
金属粉体を用いずに、金属塊にレーザ光を直接照射して
気化させ、気化蒸気を冷却する方法では粒径が微細過ぎ
て適当ではない。
Regarding the particle size of the raw material powder, the one used as the metal particles for the printed circuit preferably has an average particle size on the order of several μm, and thus a large particle size is not preferable. Further, a method of directly irradiating a metal lump with laser light to vaporize it without using metal powder and cooling the vaporized vapor is not suitable because the grain size is too fine.

上記原料粉体はレーザビームが照射されているノズル
から噴射される。このようなガス流の噴射を行わず、単
に金属粉体にレーザ光を照射した場合には、粒子が結合
して粗大化し易く、また溶融冷却も不均一になるので粒
径が数μに整った球状の粒子が得られない。
The raw material powder is ejected from a nozzle which is irradiated with a laser beam. When the metal powder is simply irradiated with laser light without such gas flow injection, the particles are likely to combine and coarsen, and the melt cooling becomes nonuniform, so the particle size is adjusted to several μ. Spherical particles cannot be obtained.

キャリアーガス中の最適な原料粉体量およびガス流速
はレーザ出力により異なるが、例えば、5KWの炭酸ガス
レーザの場合には、原料粉体量は3vol%以下が適当であ
る。これより多いと原料粉体が十分に溶融されず球状化
しない粒子量が増し、また粒子相互が結合し易くなる。
ガス流速はノズル口において1000cm/sec以上が適当であ
る。この流速であれば粒子相互の結合を生じ難く、平均
粒径数μの微粉体を得ることができる。
The optimum amount of raw material powder in the carrier gas and the gas flow rate differ depending on the laser output. For example, in the case of a 5 KW carbon dioxide laser, the amount of raw material powder is appropriately 3 vol% or less. If the amount is larger than this, the raw material powder is not sufficiently melted and the amount of particles that are not spheroidized increases, and the particles are easily bonded to each other.
A suitable gas flow rate is 1000 cm / sec or more at the nozzle port. With this flow rate, particles are unlikely to bond with each other, and fine powder having an average particle size of several μ can be obtained.

ノズル16のレーザビームが照射されている部分に導入
された原料粉体はノズル部発振装置13から発振されたレ
ーザビームによって溶融される。この場合、レーザビー
ムによって加熱されるのはビームの焦点近傍に限られ、
溶融後は直ちに噴射されたガス流によって冷却部に導か
れ急速に冷却されるので、溶融された粒子相互が結合し
て粗大化することがない。
The raw material powder introduced into the portion of the nozzle 16 irradiated with the laser beam is melted by the laser beam oscillated from the nozzle oscillation device 13. In this case, heating by the laser beam is limited to near the beam focus,
Immediately after melting, the injected gas flow guides the gas to the cooling section where it is rapidly cooled, so that the melted particles do not combine with each other and become coarse.

なお、レーザビームに代えてプラズマ加熱した場合に
は、加熱領域がレーザビームよりも広いため、溶融した
粒子が冷却域に搬送される間に粒子相互が結合して粗大
化する欠点がある。また、プラズマ加熱ではキャリアガ
スの温度も高くなるので加熱領域を外れてもキャリアガ
スの雰囲気温度によって粒子が相互に結合して粗大化す
る問題もある。レーザビームにはこのような問題がな
い。
When plasma heating is used instead of the laser beam, the heating region is wider than the laser beam, and there is a drawback that the particles are fused with each other and are coarsened while being conveyed to the cooling region. Further, since the temperature of the carrier gas also rises in the plasma heating, there is a problem that even if the carrier gas is out of the heating region, the particles are bound to each other due to the ambient temperature of the carrier gas and become coarse. The laser beam does not have such a problem.

レーザビームによって溶融された金属粒子は隔壁11の
孔17を通じて冷却部10bに導かれ、100℃前後に冷却され
た後に捕集部20において捕集される。なお、キャリアー
ガスは排気ダクト22を経て外部に排出され、必要に応じ
て再利用される。また未溶融の粉体は溶融部の底部に設
けた回収器19によって回収される。
The metal particles melted by the laser beam are guided to the cooling unit 10b through the holes 17 of the partition wall 11, cooled to about 100 ° C., and then collected in the collection unit 20. The carrier gas is discharged to the outside through the exhaust duct 22 and reused as needed. Further, the unmelted powder is collected by the collecting device 19 provided at the bottom of the melting portion.

[実施例および比較例] 実施例1〜5 第1図に示す製造装置(出力5KW、ビーム径3イン
チ、焦点距離8インチ)を用い、第1表に示す原料粉体
について、同表の条件下で球状粉体を製造した。この粉
体の性状を同表に併せて示した。この結果から明らかな
ように、本実施例の粉体は何れも形状が球形に整ってお
り、酸素量も大幅に少ない。
[Examples and Comparative Examples] Examples 1 to 5 Using the manufacturing apparatus (output 5KW, beam diameter 3 inches, focal length 8 inches) shown in FIG. Below, a spherical powder was produced. The properties of this powder are also shown in the same table. As is clear from this result, all the powders of this example are spherical in shape, and the amount of oxygen is significantly small.

比較例1〜4 第1表に示す条件下で、原料粉体の球状化を試みた。
この結果を同表に纏めて示した。比較例1の粉体は球形
にならず、比較例2では異形と球状粒子が混在し、しか
も何れも粒子径が粗大化する。また比較例3、4の粒子
は溶融冷却が適切ではなく球状粒子が得られない。
Comparative Examples 1 to 4 Under the conditions shown in Table 1, the spheroidizing of the raw material powder was tried.
The results are summarized in the same table. The powder of Comparative Example 1 does not have a spherical shape, and in Comparative Example 2, irregularly shaped particles and spherical particles are mixed, and the particle diameters of both particles are coarse. Further, the particles of Comparative Examples 3 and 4 are not appropriately melt-cooled and spherical particles cannot be obtained.

[発明の効果] 本発明の製造方法によれば、異形ないしフレーク状の
金属粉体を原料として粒径の整った球状粒子を容易に得
ることができる。しかも平均粒径が約2〜0.05μmであ
るのでプリント回路の製造に使用される金属粉体として
好適である。
[Effects of the Invention] According to the production method of the present invention, spherical particles having a uniform particle size can be easily obtained from a deformed or flaky metal powder as a raw material. Moreover, since the average particle size is about 2 to 0.05 μm, it is suitable as a metal powder used for manufacturing a printed circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る製造装置の概略断面図、第2図は
該装置の照射部の部分断面図である。 図面中、10……溶融冷却部、10a……溶融部、10b……冷
却部、 12……レーザビーム照射部、15……ガス供給路、 18、23……冷却パイプ、20……捕集室
FIG. 1 is a schematic sectional view of a manufacturing apparatus according to the present invention, and FIG. 2 is a partial sectional view of an irradiation part of the apparatus. In the drawing, 10 ... Melting / cooling section, 10a ... Melting section, 10b ... Cooling section, 12 ... Laser beam irradiation section, 15 ... Gas supply path, 18, 23 ... Cooling pipe, 20 ... Collection Room

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異形ないしフレーク状の原料金属粉体を還
元性ガス流によってレーザビーム照射部に導き、表面酸
化膜を還元しつつ、レーザビームが照射されているノズ
ルから噴射して該金属粉体を溶融し、急冷することによ
り、平均粒径2.1〜0.05μmの球状の金属粉体とするこ
とを特徴とする球状微粉体の製造方法。
1. A metal powder of irregular or flaky raw material powder is guided to a laser beam irradiation section by a reducing gas flow to reduce a surface oxide film, and is jetted from a nozzle irradiated with a laser beam. A method for producing a spherical fine powder, characterized in that the body is melted and rapidly cooled to obtain a spherical metal powder having an average particle diameter of 2.1 to 0.05 μm.
【請求項2】原料金属粉体の溶融冷却室と、該溶融冷却
室に連通した捕集室とを有し、該溶融冷却室はガス流を
導く孔を有する隔壁によって溶融部と冷却部に区画され
ており、該溶融部にはレーザビーム照射部および該レー
ザビームの焦点領域に原料金属粉体を供給する還元性ガ
スの供給路が設けられており、上記冷却部には冷却手段
が設けられていることを特徴とする球状微粉体の製造装
置。
2. A melting and cooling chamber for the raw material metal powder, and a collection chamber communicating with the melting and cooling chamber, wherein the melting and cooling chamber is divided into a melting section and a cooling section by partition walls having holes for introducing a gas flow. The melting section is provided with a laser beam irradiation section and a reducing gas supply path for supplying the raw material metal powder to the focal region of the laser beam, and the cooling section is provided with cooling means. An apparatus for producing spherical fine powder, characterized in that
JP61172875A 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus Expired - Lifetime JP2508506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172875A JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172875A JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS6333507A JPS6333507A (en) 1988-02-13
JP2508506B2 true JP2508506B2 (en) 1996-06-19

Family

ID=15949925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172875A Expired - Lifetime JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2508506B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731111A (en) * 1987-03-16 1988-03-15 Gte Products Corporation Hydrometallurical process for producing finely divided spherical refractory metal based powders
US5761779A (en) * 1989-12-07 1998-06-09 Nippon Steel Corporation Method of producing fine metal spheres of uniform size
WO1991008850A1 (en) * 1989-12-07 1991-06-27 Nippon Steel Corporation Method of manufacturing minute metallic balls uniform in size
KR20010016692A (en) * 1999-08-02 2001-03-05 최만수 Method for manufacturing fine spherical particles by controlling particle coalescence using laser beam heating
CN107876783B (en) * 2017-12-08 2020-05-22 西安交通大学 Laser additive manufacturing metal powder preparation method based on laser fixed-point interval scanning
CN110893468A (en) * 2019-12-26 2020-03-20 安徽工业大学 Method and device for preparing spherical metal powder by combined atomization
CN114260454A (en) * 2021-12-24 2022-04-01 四川大学 Preparation method of high-quality spherical metal powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151402A (en) * 1981-10-26 1983-09-08 Pilot Pen Co Ltd:The Method for spheroidizing abrasion resistant alloy
JPS60224706A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Production of ultrafine metallic particles
JPS61136606A (en) * 1984-12-06 1986-06-24 Toyobo Co Ltd Production of ultrafine powder

Also Published As

Publication number Publication date
JPS6333507A (en) 1988-02-13

Similar Documents

Publication Publication Date Title
US5439502A (en) Method for making silver powder by aerosol decomposition
CN108161019B (en) Powder making method of induction heating and radio frequency plasma combined atomization powder making system
US7431750B2 (en) Nanostructured metal powder and method of fabricating the same
US4671906A (en) Method and apparatus for production of minute metal powder
US5609921A (en) Suspension plasma spray
US5421854A (en) Method for making palladium and palladium oxide powders by aerosol decomposition
EP0662521B1 (en) Method for making silver-palladium alloy powders by areosol decomposition
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
US4731110A (en) Hydrometallurigcal process for producing finely divided spherical precious metal based powders
US4474604A (en) Method of producing high-grade metal or alloy powder
JP2014515792A5 (en)
CN111590083B (en) Preparation method of spherical nanocrystalline alloy powder
KR102037350B1 (en) Method of producing titanium-based powder using rf plasma
JP2508506B2 (en) Spherical fine powder manufacturing method and manufacturing apparatus
EP0127795B1 (en) Device and method for making and collecting fine metallic powder
CN115740471B (en) Ultrasonic-assisted plasma-electric arc composite atomization powder preparation equipment and powder preparation method
JPS63307201A (en) Wet metallurgical method for producing finely divided iron base powder
KR102178435B1 (en) METHOD FOR MANUFACTURING Ti64 POWDER HAVING HIGH PURITY BY USING RF PLASMA APPARATUS
CN113369483A (en) Double-flow plasma metal powder atomizing device and method
JP3099539B2 (en) Manufacturing method of artificial diamond powder
JP2967434B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
TWI618589B (en) Device and method for manufacturing material particles
JPH06116609A (en) Production of metal powder
JPS61264108A (en) Production of pulverous powder by laser beam
US20140023777A1 (en) Method for producing wiring board having through hole or non-through hole