JPS6333507A - Method and apparatus for producing fine spheroidal powder - Google Patents

Method and apparatus for producing fine spheroidal powder

Info

Publication number
JPS6333507A
JPS6333507A JP17287586A JP17287586A JPS6333507A JP S6333507 A JPS6333507 A JP S6333507A JP 17287586 A JP17287586 A JP 17287586A JP 17287586 A JP17287586 A JP 17287586A JP S6333507 A JPS6333507 A JP S6333507A
Authority
JP
Japan
Prior art keywords
raw material
powder
material powder
laser beam
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17287586A
Other languages
Japanese (ja)
Other versions
JP2508506B2 (en
Inventor
Hideaki Yoshida
秀昭 吉田
Kazuhiko Sugizaki
杉崎 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61172875A priority Critical patent/JP2508506B2/en
Publication of JPS6333507A publication Critical patent/JPS6333507A/en
Application granted granted Critical
Publication of JP2508506B2 publication Critical patent/JP2508506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily produce fine spheroidal powder by conveying raw material powder by nonoxidizing gas, projecting a laser beam to the gaseous flow thereof to melt the raw material powder and cooling the powder quickly. CONSTITUTION:The raw material powder is injected together with the nonoxidizing carrier gas through a supply path 15 into a melting part 10a of a melting and cooling chamber 10 from a nozzle 16. On the other hand, the laser beam oscillated from an oscillator 13 is converged by a lens 14 and melts the raw material powder near the focus to form fine spheroidal particles. The particles reduced to the very small sizes are introduced through a hole 17 of a partition wall 11 into the cooling part 10b where the particle are cooled down to about 100 deg.C; thereafter, the particles are captured in a capturing device 21 in a capturing part 20. The fine spheroidal metallic powder adequate for forming high-density printed circuits, etc., is thereby produced.

Description

【発明の詳細な説明】 [技術分野] 本発明は球状微粉体の製造に関し、特に高密度のプリン
ト回路等を形成するのに好適な球状金属微粉体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to the production of spherical fine powder, and particularly to a method for producing spherical fine metal powder suitable for forming high-density printed circuits and the like.

[従来技術と問題点」 高密度プリント回路を形成するには金属微粉体を含有す
る厚膜ペーストを絶縁基板上に塗布し、該厚膜ペースト
を利用して目的の回路パターンをプリントする。該厚膜
ペーストに含まれる金属微粉体を製造するには、従来、
a金属酸化物を還元する方法、b金属塩水溶液を電解す
る方法、cIl械的粉砕法などが知られており数千Aか
ら十数ル程度の微細粒子が製造される。
[Prior Art and Problems] To form a high-density printed circuit, a thick film paste containing fine metal powder is applied onto an insulating substrate, and the thick film paste is used to print a desired circuit pattern. Conventionally, in order to produce the metal fine powder contained in the thick film paste,
A method of reducing a metal oxide, b a method of electrolyzing an aqueous solution of a metal salt, a method of cIl mechanical pulverization, etc. are known, and fine particles ranging from several thousand A to a dozen or so L are produced.

ところが、上記方法により製造される微粒子はフレーク
状であり、または不定形であり、更には粒子表面が酸化
されている場合が多く1回路パターンの線幅や線間隔を
小さくすることが出来ないため、高密度の微細な回路パ
ターンを形成するには限界がある。
However, the fine particles produced by the above method are flaky or irregular in shape, and the particle surface is often oxidized, making it impossible to reduce the line width and line spacing of one circuit pattern. However, there are limits to the formation of high-density, fine circuit patterns.

他方、球状の微粉体を得るには、従来、ガスアトマイズ
法、回転電極法などが知られているが、これらの方法で
は20g以下の微粒子を製造するのが困難である。高密
度の回路パターンを製造するには20w以下の微細粒子
が必要であり、上記方法は粒度が大き過ぎて適さない。
On the other hand, gas atomization methods, rotating electrode methods, and the like are conventionally known for obtaining spherical fine powder, but it is difficult to produce fine particles of 20 g or less using these methods. In order to manufacture high-density circuit patterns, fine particles of 20 W or less are required, and the above method is not suitable because the particle size is too large.

以上のように現状の製造方法によって得られる微粉体は
形状異方性や表面酸化あるいは粒度の点で高密度プリン
ト回路の厚膜ペースト材料として不充分である。
As described above, the fine powder obtained by the current manufacturing method is insufficient as a thick film paste material for high-density printed circuits in terms of shape anisotropy, surface oxidation, and particle size.

[問題解決の知見] 本発明者等は、原料粉末を凝集しないように溶融すれば
球状化すること、および酸化した粉末はそのまま溶融し
ても球状化しないが表面の酸化層を還元すれば球状化し
うろことを見出した。
[Knowledge for solving the problem] The present inventors discovered that if the raw material powder is melted without agglomeration, it will become spheroidal, and that oxidized powder will not become spherical even if it is melted as is, but if the oxidized layer on the surface is reduced, it will become spherical. I discovered scales that turned into fish.

[発明の構成] 本発明は、非酸化性ガス雰囲気中でレーザビームを用い
て原料粉末を急速に溶融することにより原料粉末を微細
化し、球状微粉体を得るものであり、本発明によれば、
原料粉体を非酸化性ガスで搬送しつつ該ガス流にレーザ
ビームを照射して原料粉体を溶融、急冷することを特徴
とする球状微粉体の製造方法が提供される。
[Structure of the Invention] The present invention is to refine a raw material powder by rapidly melting the raw material powder using a laser beam in a non-oxidizing gas atmosphere to obtain a spherical fine powder. ,
A method for producing spherical fine powder is provided, which comprises transporting the raw material powder in a non-oxidizing gas and irradiating the gas flow with a laser beam to melt and rapidly cool the raw material powder.

また本発明によれば、原料粉体の溶融冷却室と、該溶融
冷却室に連通した捕集室とを有し、該溶融冷却室にはレ
ーザビーム照射部と、該レーザビームの焦点領域に原料
粉体を供給するガス供給路と、レーザビーム照射後のガ
ス流を冷却する冷却手段を有することを特徴とする球状
微粉体製造装置が提供される。
Further, according to the present invention, there is provided a melting and cooling chamber for the raw material powder and a collection chamber communicating with the melting and cooling chamber, and the melting and cooling chamber includes a laser beam irradiation section and a focal region of the laser beam. Provided is a spherical fine powder manufacturing apparatus characterized by having a gas supply path for supplying raw material powder and a cooling means for cooling the gas flow after laser beam irradiation.

第1図に本発明に係る球状微粉体製造装置の概略を示す
FIG. 1 schematically shows an apparatus for producing spherical fine powder according to the present invention.

図示するように本装置は、原料粉体の溶融冷却室10と
、該溶融冷却室10に連通した捕集室20とを有する。
As shown in the figure, this apparatus includes a melting and cooling chamber 10 for raw material powder, and a collection chamber 20 communicating with the melting and cooling chamber 10.

該溶融冷却室lOの内部には隔壁11が設けられており
、該隔壁11により上記溶融冷却室10の内部が溶融部
10aと冷却部10bとに区画されている。溶融部10
aにはレーザビームの照射部12が設けられており、該
照射部12はレーザ発振器13が接続する。照射部12
には第2図に示すようにレーザビームを収束させるレン
ズ14と、該レーザビームの焦点領域に原料粉体を供給
するガス供給路15とが設けられている6該ガス供給路
15はレーザビームの焦点付近に開口する円錐状のノズ
ル16を有しており、原料粉体はキャリアガスと共に該
ノズル16からレーザビームと略同軸方向に噴出される
。尚、原料粉体の噴出方向はレーザビームと同軸に限ら
ない。該溶融部10aの底部には未溶融の粉体を回収す
るだめの回収器19が付設されている0次に上記隔壁1
1にはレーザビームが照射された原料粉体ガス流を冷却
部10bに導く孔17が穿設されており、更に該冷却部
10bの外周には水冷パイプ18が配設されている。上
記冷却部10bには捕集室20が連設されており、該捕
集室20の内部にはフィルターユニットが収納される一
方その外周には水冷パイプ23が設けられている。また
捕集室底部には捕集器21が設けられており、捕集室上
部には排気ダクト22が連設されている。
A partition wall 11 is provided inside the melting cooling chamber IO, and the partition wall 11 divides the inside of the melting cooling chamber 10 into a melting section 10a and a cooling section 10b. Melting part 10
A is provided with a laser beam irradiation section 12, and a laser oscillator 13 is connected to the irradiation section 12. Irradiation section 12
As shown in FIG. 2, a lens 14 for converging the laser beam and a gas supply path 15 for supplying raw material powder to the focal region of the laser beam are provided. The laser beam has a conical nozzle 16 that opens near the focal point of the laser beam, and the raw material powder is ejected from the nozzle 16 along with a carrier gas in a direction substantially coaxial with the laser beam. Note that the direction in which the raw material powder is ejected is not limited to being coaxial with the laser beam. A collector 19 for collecting unmelted powder is attached to the bottom of the melting section 10a.
1 is provided with a hole 17 for guiding the flow of raw material powder gas irradiated with a laser beam to a cooling section 10b, and furthermore, a water cooling pipe 18 is disposed around the outer periphery of the cooling section 10b. A collection chamber 20 is connected to the cooling section 10b, and a filter unit is housed inside the collection chamber 20, and a water cooling pipe 23 is provided around the outer circumference of the collection chamber 20. A collector 21 is provided at the bottom of the collection chamber, and an exhaust duct 22 is connected to the top of the collection chamber.

上記装置構成において、原料粉体はキャリアガスと共に
ガス供給路15を経てノズル16から溶融冷却室lOの
内部に噴射される。キャリアガスとしては原料粉体が酸
化しない非酸化性ガスが用いられ、具体的には窒素ガス
などの不活性ガス、アンモニアガスなどの還元性ガス或
いはこれらの混合ガスが用いられる。キャリアガス中の
最適な原料粉体の量およびガス流速はレーザ出力により
異なるが1例えば、5KWのCO2ガスレーザの場合に
は原料粉体の量は3マo1%以下であるのが良い、3マ
ロ1%より多いと原料粉体が充分に溶融されず球状化し
ない粒子の割合が増し、また粒子相互の結合を生じるよ
うになる。また該ガス流の流速は上記ノズル口において
1000 c m 7秒以上とするのが良い、該流速の
とき微粒子相互の結合を生じ難く、数ルの微粉体を得る
ことが出来る。
In the above device configuration, the raw material powder is injected into the melting cooling chamber IO from the nozzle 16 through the gas supply path 15 together with the carrier gas. As the carrier gas, a non-oxidizing gas that does not oxidize the raw material powder is used, specifically an inert gas such as nitrogen gas, a reducing gas such as ammonia gas, or a mixed gas thereof. The optimal amount of raw material powder in the carrier gas and the gas flow rate vary depending on the laser output. For example, in the case of a 5KW CO2 gas laser, the amount of raw material powder is preferably 3% or less, 3% or less. If it is more than 1%, the raw material powder will not be melted sufficiently and the proportion of particles that will not become spherical will increase, and particles will become bonded to each other. Further, the flow rate of the gas stream is preferably set to 1000 cm/7 seconds or more at the nozzle opening.At this flow rate, it is difficult for fine particles to bond with each other, and several liters of fine powder can be obtained.

発振器13から発振されたレーザビームはレンズ14に
より収束され、その焦点付近の原料粉体を溶融し、球状
の微細な粒子にする。この場合レーザビームで加熱され
るのはビームの焦点近傍に限られ、溶融後は急速に冷却
されるので溶融された微粒子が相互に結合することがな
い。尚、加熱手段としてプラズマを用いる方法が知られ
ているが、プラズマジェットの加熱領域はレーザービー
ムよりも広く、溶融され?&細化された微粒子が該加熱
領域を飛行する間に微粒子相互の結合により、粗大化す
る欠点がある。またキャリアガスが加熱される温度も高
く、プラズマジェットの加熱領域経過後にもキャリアガ
スの雰囲気温度により微粒子が結合して粗大化する問題
もある。この点、本発明のレーザビームは加熱領域が狭
く、このような問題を生じない、レーザビームにより溶
融され微細化された粒子は隔壁1■の孔17を通過して
冷却部10bに導かれ、100℃程度に冷却された後、
捕集部20において捕集される。
The laser beam emitted from the oscillator 13 is focused by the lens 14 and melts the raw material powder near the focal point to form fine spherical particles. In this case, only the area near the focus of the laser beam is heated by the laser beam, and after melting, the particles are rapidly cooled, so that the molten particles do not bond with each other. It should be noted that a method using plasma as a heating means is known, but the heating area of a plasma jet is wider than that of a laser beam, so it is difficult to melt. & There is a drawback that fine particles become coarse due to bonding with each other while flying through the heating region. Further, the temperature at which the carrier gas is heated is high, and there is also the problem that even after the heating region of the plasma jet has passed, the fine particles are combined and become coarse due to the atmospheric temperature of the carrier gas. In this respect, the laser beam of the present invention has a narrow heating area and does not cause such a problem.The particles melted and made fine by the laser beam are guided to the cooling part 10b through the holes 17 of the partition wall 12. After being cooled to around 100℃,
It is collected in the collection section 20.

尚、キャリアガスは排気ダクト22を経て外部に導かれ
、必要に応じて再使用される。また未溶融粉末は溶融部
の底部に設けた回収器19により回収される。
Note that the carrier gas is led to the outside through the exhaust duct 22 and is reused as necessary. Further, the unmelted powder is collected by a collector 19 provided at the bottom of the melting section.

[発明の効果] 本発明の製造方法によれば、原料粉体の形状如何に拘ら
ず、微細なかつ球状の微粉体を容易に得ることが出来る
[Effects of the Invention] According to the production method of the present invention, fine and spherical fine powder can be easily obtained regardless of the shape of the raw material powder.

更に本発明の製造方法は、非酸化性のキャリアガスを用
いるので粒子表面の酸化が防止され、殆ど表面酸化のな
い微細粒子を得ることが出来る。
Furthermore, since the manufacturing method of the present invention uses a non-oxidizing carrier gas, oxidation of the particle surface is prevented, and fine particles with almost no surface oxidation can be obtained.

[実施例および比較例] 実施例 第1図に示す製造装置を用い(出力5kw、ビーム径3
インチ、焦点圧ra8インチ)、第1表に示す原料粉体
について微粉体を製造した。得られた微粉体の性状を第
1表に併せて示す。
[Example and Comparative Example] Using the manufacturing equipment shown in Figure 1 of Example (output 5 kW, beam diameter 3
inch, focal pressure ra 8 inches), and fine powders were produced using the raw material powders shown in Table 1. The properties of the obtained fine powder are also shown in Table 1.

比較例 第1表に示す原料粉体についてプラズマ法により微粉体
を製造した。得られた粉体の性状を第1表に併せて示す
Comparative Example Fine powders were produced using the plasma method using the raw material powders shown in Table 1. The properties of the obtained powder are also shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る製造装置の概略断面図、第2図は
該装置の照射部の概略断面図である。 図面中、1〇−溶融冷却室、  10a−溶融部、10
b−冷却部、 20−捕集室、  12−レーザビーム
照射部、  15−ガス供給路、  18.23−水冷
バイブである。 特許出願人  三菱金属株式会社 代理人 弁理士 松井政広  化1名 第1図 /l’1 /’/ 第2図
FIG. 1 is a schematic sectional view of a manufacturing apparatus according to the present invention, and FIG. 2 is a schematic sectional view of an irradiation section of the apparatus. In the drawings, 10-melting cooling chamber, 10a-melting section, 10
b-cooling section, 20-collection chamber, 12-laser beam irradiation section, 15-gas supply path, 18.23-water-cooled vibrator. Patent applicant Mitsubishi Metals Co., Ltd. Agent Patent attorney Masahiro Matsui 1 person Figure 1/l'1 /'/ Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)原料粉体を非酸化性ガスで搬送しつつ該ガス流に
レーザビームを照射して原料粉体を溶融、急冷すること
を特徴とする球状微粉体の製造方法。
(1) A method for producing spherical fine powder, which comprises transporting the raw material powder with a non-oxidizing gas and irradiating the gas flow with a laser beam to melt and rapidly cool the raw material powder.
(2)原料粉体の溶融冷却室と、該溶融冷却室に連通し
た捕集室とを有し、該溶融冷却室にはレーザビーム照射
部と、該レーザビームの焦点領域に原料粉体を供給する
ガス供給路と、レーザビーム照射後のガス流を冷却する
冷却手段を有することを特徴とする球状微粉体製造装置
(2) It has a melting and cooling chamber for the raw material powder and a collection chamber that communicates with the melting and cooling chamber, and the melting and cooling chamber has a laser beam irradiation section and the raw material powder is placed in the focal region of the laser beam. A spherical fine powder production apparatus characterized by having a gas supply path and a cooling means for cooling the gas flow after laser beam irradiation.
JP61172875A 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus Expired - Lifetime JP2508506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172875A JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172875A JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS6333507A true JPS6333507A (en) 1988-02-13
JP2508506B2 JP2508506B2 (en) 1996-06-19

Family

ID=15949925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172875A Expired - Lifetime JP2508506B2 (en) 1986-07-24 1986-07-24 Spherical fine powder manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2508506B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243212A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular high melting point metal base powder
WO1991008850A1 (en) * 1989-12-07 1991-06-27 Nippon Steel Corporation Method of manufacturing minute metallic balls uniform in size
US5761779A (en) * 1989-12-07 1998-06-09 Nippon Steel Corporation Method of producing fine metal spheres of uniform size
WO2001008795A1 (en) * 1999-08-02 2001-02-08 Choi Man Soo Fine particle manufacturing method using laser beam
CN107876783A (en) * 2017-12-08 2018-04-06 西安交通大学 Laser gain material manufacture metal powder preparation method based on laser fixed point interval scan
CN110893468A (en) * 2019-12-26 2020-03-20 安徽工业大学 Method and device for preparing spherical metal powder by combined atomization
CN114260454A (en) * 2021-12-24 2022-04-01 四川大学 Preparation method of high-quality spherical metal powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151402A (en) * 1981-10-26 1983-09-08 Pilot Pen Co Ltd:The Method for spheroidizing abrasion resistant alloy
JPS60224706A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Production of ultrafine metallic particles
JPS61136606A (en) * 1984-12-06 1986-06-24 Toyobo Co Ltd Production of ultrafine powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151402A (en) * 1981-10-26 1983-09-08 Pilot Pen Co Ltd:The Method for spheroidizing abrasion resistant alloy
JPS60224706A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Production of ultrafine metallic particles
JPS61136606A (en) * 1984-12-06 1986-06-24 Toyobo Co Ltd Production of ultrafine powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243212A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular high melting point metal base powder
WO1991008850A1 (en) * 1989-12-07 1991-06-27 Nippon Steel Corporation Method of manufacturing minute metallic balls uniform in size
US5761779A (en) * 1989-12-07 1998-06-09 Nippon Steel Corporation Method of producing fine metal spheres of uniform size
WO2001008795A1 (en) * 1999-08-02 2001-02-08 Choi Man Soo Fine particle manufacturing method using laser beam
CN107876783A (en) * 2017-12-08 2018-04-06 西安交通大学 Laser gain material manufacture metal powder preparation method based on laser fixed point interval scan
CN107876783B (en) * 2017-12-08 2020-05-22 西安交通大学 Laser additive manufacturing metal powder preparation method based on laser fixed-point interval scanning
CN110893468A (en) * 2019-12-26 2020-03-20 安徽工业大学 Method and device for preparing spherical metal powder by combined atomization
CN114260454A (en) * 2021-12-24 2022-04-01 四川大学 Preparation method of high-quality spherical metal powder

Also Published As

Publication number Publication date
JP2508506B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US5439502A (en) Method for making silver powder by aerosol decomposition
US4671906A (en) Method and apparatus for production of minute metal powder
JPH0621335B2 (en) Laser spraying method
JPS63243211A (en) Wet metallurgical method for producing finely divided globular noble metal base powder
JPS63307202A (en) Wet metallurgical method for producing finely divided copper or copper alloy powder
JPS6333507A (en) Method and apparatus for producing fine spheroidal powder
JP2019532185A (en) Low melting point metal or alloy powder atomization manufacturing process
JPH0234707A (en) Method for pulverizing a metal and apparatus for performing it
CN115740471A (en) Ultrasonic-assisted plasma-arc composite atomization powder making equipment and powder making method
JPS63307201A (en) Wet metallurgical method for producing finely divided iron base powder
JP2020084226A (en) Metal powder production method
JPS62156205A (en) Production of pulverized metallic powder
JPH0336205A (en) Method and apparatus for manufacturing metal fine powder
JP2001064702A (en) Prodution of fine spherical metal powder
JP2001064703A (en) Production of fine spherical metal powder
JP2967434B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
JP3099539B2 (en) Manufacturing method of artificial diamond powder
JPH0362763B2 (en)
JPS63255306A (en) Wet metallurgical method for producing finely divided globular low melting point metal base powder
JP2001064703A5 (en)
JPS6361364B2 (en)
JPH01208407A (en) Method and apparatus for manufacturing metal powder
JPH06116609A (en) Production of metal powder
JPH0310005A (en) Method and apparatus for manufacturing metal fine powder
JPS6283407A (en) Production of fine metallic powder