JP2505823Y2 - Laser displacement meter - Google Patents

Laser displacement meter

Info

Publication number
JP2505823Y2
JP2505823Y2 JP9202390U JP9202390U JP2505823Y2 JP 2505823 Y2 JP2505823 Y2 JP 2505823Y2 JP 9202390 U JP9202390 U JP 9202390U JP 9202390 U JP9202390 U JP 9202390U JP 2505823 Y2 JP2505823 Y2 JP 2505823Y2
Authority
JP
Japan
Prior art keywords
displacement meter
laser displacement
measurement
light source
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9202390U
Other languages
Japanese (ja)
Other versions
JPH0449807U (en
Inventor
克巳 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9202390U priority Critical patent/JP2505823Y2/en
Publication of JPH0449807U publication Critical patent/JPH0449807U/ja
Application granted granted Critical
Publication of JP2505823Y2 publication Critical patent/JP2505823Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、レーザ干渉を利用したインクリメンタル式
のレーザ変位計に関し、特にレーザ変位計に原点検出機
能を持たせることにより、変位の積算値を失っても測定
が継続できるようにした装置に関する。
[Detailed Description of the Invention] <Industrial field of application> The present invention relates to an incremental laser displacement meter using laser interference, and in particular, by providing a laser displacement meter with an origin detection function, the integrated value of displacement can be calculated. It relates to a device that enables measurement to be continued even if it is lost.

〈従来の技術〉 第3図は従来のレーザ変位計の測定原理を示す構成図
である。第3図において、半導体レーザ光源1は恒温槽
2で一定の温度に保たれ、高精度定電流4で駆動するこ
とにより波長の安定化を行っている。半導体レーザ光源
1から出射されコリメータレンズ3で平行光とされた直
線偏光の出射光は、ビームスプリッタ5に入射されると
2つに分岐される。一方の光は、ビームスプリッタ5で
反射され、1/8波長板6を介して参照用コーナーキュー
ブ7で反射され、再び1/8波長板6を介してビームスプ
リッタ5に入射される。この光は、1/8波長板6を2回
通過することにより、s偏光成分とp偏光成分間には90
°の位相差が生じている。他方の光は、ビームスプリッ
タ5を透過して、測定用コーナーキューブ8で反射さ
れ、再びビームスプリッタ5に入射される。この光は、
波長板を通過しないので、s偏光成分とp偏光成分間に
は位相差がない。参照用コーナーキューブ7からの光と
測定用コーナーキューブ8からの光は、ビームスプリッ
タ5で合成され、偏光ビームスプリッタ9に入射され
る。入射光は、偏光ビームスプリッタ9でs偏光成分と
p偏光成分に分離され、検出器10,11に入射される。検
出器10,11には、p波とs波に90°の位相を与えている
ので、sin信号とcos信号として検出され、検出した2つ
の信号は、干渉位相測定部12で電気的に処理され、移動
距離Lmが出力される。
<Prior Art> FIG. 3 is a block diagram showing the measurement principle of a conventional laser displacement meter. In FIG. 3, the semiconductor laser light source 1 is kept at a constant temperature in a constant temperature bath 2 and is driven by a high precision constant current 4 to stabilize the wavelength. The linearly polarized light emitted from the semiconductor laser light source 1 and collimated by the collimator lens 3 is split into two when it enters the beam splitter 5. One of the lights is reflected by the beam splitter 5, is reflected by the reference corner cube 7 via the 1/8 wavelength plate 6, and is again incident on the beam splitter 5 via the 1/8 wavelength plate 6. This light passes through the 1/8 wave plate 6 twice, so that there is 90 between the s-polarized component and the p-polarized component.
There is a phase difference of °. The other light passes through the beam splitter 5, is reflected by the corner cube 8 for measurement, and is incident on the beam splitter 5 again. This light is
Since it does not pass through the wave plate, there is no phase difference between the s-polarized component and the p-polarized component. The light from the reference corner cube 7 and the light from the measurement corner cube 8 are combined by the beam splitter 5 and are incident on the polarization beam splitter 9. The incident light is separated into an s-polarized component and a p-polarized component by the polarization beam splitter 9 and is incident on the detectors 10 and 11. Since the detectors 10 and 11 are given 90-degree phases for the p-wave and the s-wave, they are detected as sin and cos signals, and the detected two signals are electrically processed by the interference phase measurement unit 12. The moving distance Lm is output.

〈考案が解決しようとする課題〉 しかしながら、上記従来技術に示すレーザ変位計は、
インクリメンタル式の変位計であるため、光路が遮断さ
れたり、測定用コーナーキューブが最大移動速度以上で
動かされたりすると、変位の積算値が失われ、測定がで
きなくなるという課題があった。
<Problems to be Solved by the Invention> However, the laser displacement meter described in the above-mentioned prior art is
Since it is an incremental type displacement meter, if the optical path is interrupted or the measurement corner cube is moved at the maximum moving speed or higher, the integrated value of displacement is lost and there is a problem that measurement cannot be performed.

本考案は、上記従来技術の課題を踏まえて成されたも
のであり、インクリメンタル式変位計の半導体レーザ光
源の駆動電流に高周波重畳機能を付加させることによ
り、測長原点を検出することを可能とし、信号を失って
も測定が継続できるレーザ変位計を提供することを目的
としたものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and makes it possible to detect the measurement origin by adding a high frequency superimposing function to the drive current of the semiconductor laser light source of the incremental displacement meter. The object of the present invention is to provide a laser displacement meter that can continue measurement even if the signal is lost.

〈課題を解決するための手段〉 上記課題を解決するための本考案の構成は、周波数安
定化LD光源とマイケルソンの干渉計を用いた位相差方式
のレーザ変位計において、前記周波数安定化光源の駆動
に高周波重畳を行える白色ノイズ源を備えた構成とした
ことを特徴とするものである。
<Means for Solving the Problems> The structure of the present invention for solving the above problems is a phase displacement type laser displacement meter using a frequency-stabilized LD light source and Michelson's interferometer. It is characterized in that it is provided with a white noise source capable of superimposing a high frequency on the driving of.

〈作用〉 本考案によれば、半導体レーザ光源の駆動電流に高周
波重畳機能を付加させることにより、インクリメンタル
式変位計でありながら、自分の原点を検出できるため、
変位の積算値を失っても測定の継続が可能である。
<Operation> According to the present invention, by adding a high-frequency superimposing function to the drive current of the semiconductor laser light source, it is possible to detect its own origin even though it is an incremental displacement meter.
It is possible to continue the measurement even if the accumulated displacement value is lost.

〈実施例〉 以下、本考案を図面に基づいて説明する。<Example> Hereinafter, the present invention will be described with reference to the drawings.

第1図は本考案のレーザ変位計の一実施例を示す構成
図である。なお、第1図において第3図と同一要素には
同一符号を付して重複する説明は省略する。第1図と第
3図との相違点は、半導体レーザ光源1の駆動電流源で
ある定電流源4に高周波重畳を行える白色ノイズ源13を
設け、原点検出時に白色ノイズ源13を定電流源4に重畳
させるようにした点である。
FIG. 1 is a block diagram showing an embodiment of the laser displacement meter of the present invention. In FIG. 1, the same elements as those in FIG. 3 are designated by the same reference numerals, and duplicate description will be omitted. The difference between FIG. 1 and FIG. 3 is that a white noise source 13 that can perform high frequency superimposition is provided on the constant current source 4 that is the driving current source of the semiconductor laser light source 1, and the white noise source 13 is used as the constant current source when detecting the origin. This is the point where it was made to overlap with No. 4.

このような構成において、その動作は第3図装置と同
様であるため、その説明は省略するが、以下に本考案の
レーザ変位計の変位測定時および原点検出時の動作につ
いてそれぞれ説明する。
In such a configuration, the operation thereof is similar to that of the apparatus shown in FIG. 3, and therefore the description thereof will be omitted, but the operation of the laser displacement meter of the present invention during displacement measurement and origin detection will be described below.

変位測定時(高周波重畳なし) 第3図装置の動作と同様に光路差Lmを与えた時の検出
器10,11から出力される干渉位相(sin,cos)の変化
を干渉位相測定部12にて積算して次式により移動距離Lm
を算出している。
Displacement measurement (no high frequency superimposition) Fig. 3 Changes in the interference phase (sin, cos) output from the detectors 10 and 11 when the optical path difference Lm is applied to the interference phase measurement unit 12 as in the device operation. Calculated by the following formula and traveled distance Lm
Is calculated.

=(2π/λ)・na・Lm …… ただし、 na:空気屈折率 である。= (2π / λ) ・ na ・ Lm ・ ・ ・ where na is the air refractive index.

レーザ光を使用すると可干渉距離が長いため、光路差
Lmの変化による干渉振幅の変化は殆どなく、第2図
(イ)に示すような軌跡となる。したがって、ベクトル
の回転した回数と端数から移動距離Lmを求めることが
できる。
When laser light is used, the coherence length is long, so the optical path difference
There is almost no change in the interference amplitude due to the change in Lm, and the locus becomes as shown in FIG. Therefore, the moving distance Lm can be obtained from the number of times the vector has rotated and the fraction.

原点検出時(高周波重畳あり) 原点検出時には、白色ノイズ源13を定電流源4に高周
波重畳させることにより、スペクトル線幅が拡がり、可
干渉距離が短くなる。したがって、干渉信号の振幅は、
第2図(ロ)に示すように、光路差Lmによって大きく変
化することとなり、光路差Lmが0の点(原点)で最小と
なる。これを第2図(イ)と同様にベクトルで表現する
と、第2図(ハ)のようになり、原点検出が可能とな
る。即ち、原点検出時には、白色ノイズ源13をオンと
し、測定用コーナーキューブ8を移動させて光路差Lmを
変化させ、干渉位相測定部12から得られる振幅が最小と
なる点、第2図(ハ)では振幅が最大でcos軸となる
点が原点である。
At origin detection (with high-frequency superimposition) At origin detection, the white noise source 13 is superposed on the constant current source 4 at high frequency, whereby the spectral line width is widened and the coherence length is shortened. Therefore, the amplitude of the interference signal is
As shown in FIG. 2 (b), it greatly changes depending on the optical path difference Lm, and becomes the minimum at the point (origin) where the optical path difference Lm is 0. When this is expressed by a vector as in FIG. 2 (a), it becomes as shown in FIG. 2 (c), and the origin can be detected. That is, when the origin is detected, the white noise source 13 is turned on, the measuring corner cube 8 is moved to change the optical path difference Lm, and the amplitude obtained from the interference phase measuring unit 12 is minimized. ) Is the origin is the point where the maximum amplitude is the cos axis.

〈考案の効果〉 以上、実施例と共に具体的に説明したように、本考案
によれば、半導体レーザ光源の駆動電流に高周波重畳機
能を付加させることにより、インクリメンタル式変位計
でありながら、自分の原点を検出できるため、変位の積
算値を失っても測定の継続が可能なレーザ変位計を実現
できる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, by adding a high-frequency superimposing function to the drive current of the semiconductor laser light source, even though it is an incremental displacement sensor, Since the origin can be detected, it is possible to realize a laser displacement meter that can continue measurement even if the accumulated displacement value is lost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案のレーザ変位計の一実施例を示す構成
図、第2図は第1図装置に用いられる検出器の出力を示
す図、第3図は従来のレーザ変位計の測定原理を示す構
成図である。 1……半導体レーザ光源、2……恒温槽、3……コリメ
ータレンズ、4……定電流源、5……ビームスプリッ
タ、6……1/8波長板、7……参照用コーナーキュー
ブ、8……測定用コーナーキューブ、9……偏光ビーム
スプリッタ、10,11……検出器、12……干渉位相測定
部、13……白色ノイズ源。
FIG. 1 is a block diagram showing an embodiment of a laser displacement meter of the present invention, FIG. 2 is a diagram showing the output of a detector used in the apparatus of FIG. 1, and FIG. 3 is a measurement principle of a conventional laser displacement meter. It is a block diagram which shows. 1 ... Semiconductor laser light source, 2 ... Constant temperature chamber, 3 ... Collimator lens, 4 ... Constant current source, 5 ... Beam splitter, 6 ... 1/8 wave plate, 7 ... Reference corner cube, 8 ...... Measuring corner cube, 9 …… Polarizing beam splitter, 10,11 …… Detector, 12 …… Interference phase measurement section, 13 …… White noise source.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】周波数安定化LD光源とマイケルソンの干渉
計を用いた位相差方式のレーザ変位計において、前記周
波数安定化光源の駆動電流に高周波重畳を行える白色ノ
イズ源を備えた構成としたことを特徴とするレーザ変位
計。
1. A phase-difference laser displacement meter using a frequency-stabilized LD light source and a Michelson interferometer, comprising a white noise source capable of superimposing a high frequency on the drive current of the frequency-stabilized light source. A laser displacement meter characterized in that.
JP9202390U 1990-08-31 1990-08-31 Laser displacement meter Expired - Fee Related JP2505823Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9202390U JP2505823Y2 (en) 1990-08-31 1990-08-31 Laser displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9202390U JP2505823Y2 (en) 1990-08-31 1990-08-31 Laser displacement meter

Publications (2)

Publication Number Publication Date
JPH0449807U JPH0449807U (en) 1992-04-27
JP2505823Y2 true JP2505823Y2 (en) 1996-08-07

Family

ID=31828168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9202390U Expired - Fee Related JP2505823Y2 (en) 1990-08-31 1990-08-31 Laser displacement meter

Country Status (1)

Country Link
JP (1) JP2505823Y2 (en)

Also Published As

Publication number Publication date
JPH0449807U (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US5404222A (en) Interferametric measuring system with air turbulence compensation
US10890487B2 (en) Integrated polarization interferometer and snapshot specro-polarimeter applying same
US4702603A (en) Optical phase decoder for interferometers
JPH05119284A (en) Polarization device
US5374991A (en) Compact distance measuring interferometer
JPH06174844A (en) Laser distance measuring apparatus
JP2505823Y2 (en) Laser displacement meter
JP2023036027A (en) Heterodyne light source for use in metrology system
JPH11183116A (en) Method and device for light wave interference measurement
JPH0612333B2 (en) Automatic birefringence measuring device
US5157460A (en) Method and apparatus for measuring rotary speed using polarized light
Dandliker et al. Two-wavelength laser interferometry using super-heterodyne detection
JP3107580B2 (en) Semiconductor laser wavelength detector
JPH02298804A (en) Interferometer
JP2779497B2 (en) Interferometer
JPH0543058U (en) Air refractive index measuring device
JPH06137814A (en) Minute displacement measuring method and its device
JP2723977B2 (en) Rotation speed measurement method
JPH04155260A (en) Rotational speed measuring apparatus
JP2023035989A (en) Digital holography metrology system
JPH04283603A (en) Optical measuring apparatus using infrared laser diode as light source
JPH0742084Y2 (en) Surface shape measuring instrument
JPS6231281B2 (en)
JP2775000B2 (en) Moving amount measuring method and moving amount measuring device
JP2600783B2 (en) Optical device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees