JP2504082B2 - Manufacturing method of electrode plate for lead-acid battery - Google Patents
Manufacturing method of electrode plate for lead-acid batteryInfo
- Publication number
- JP2504082B2 JP2504082B2 JP62299138A JP29913887A JP2504082B2 JP 2504082 B2 JP2504082 B2 JP 2504082B2 JP 62299138 A JP62299138 A JP 62299138A JP 29913887 A JP29913887 A JP 29913887A JP 2504082 B2 JP2504082 B2 JP 2504082B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- lead powder
- water content
- electrode plate
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/56—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
- H01M4/57—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead of "grey lead", i.e. powders containing lead and lead oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池用極板の製造法の改良に関するもの
である。Description: FIELD OF THE INVENTION The present invention relates to an improvement in a method for manufacturing an electrode plate for a lead storage battery.
従来の技術 鉛蓄電池用極板の活物質は、出発原料である鉛粉と硫
酸、水および合成樹脂繊維添加剤または有機添加剤とを
練合した鉛ペーストを活物質の保持体、集電体である鉛
格子体に塗着し、希硫酸中で通電することにより陽極板
と陰極板とし、製造している。2. Description of the Related Art As an active material for a lead-acid battery electrode plate, a lead paste obtained by kneading lead powder as a starting material with sulfuric acid, water, and a synthetic resin fiber additive or an organic additive is used as a support for the active material or a current collector. Is coated on a lead grid and is energized in dilute sulfuric acid to form an anode plate and a cathode plate.
発明が解決しようとする問題点 鉛粉は鉛蓄電池の原料であり、電池性能をも支配す
る。すなわち、鉛粉、水および硫酸を練合してペースト
を得るとき、その練合法によりペーストの安定性と流動
性が異なる。この原因として、鉛粉の含有する水分が鉛
粉粒子相互間に結合力を与え、結果として粒子を凝集さ
せ、ペースト練合時においても粒子は凝集状態を保つた
め、ペーストの安定性、流動性へ影響を及ぼす。Problems to be Solved by the Invention Lead powder is a raw material for lead-acid batteries and also controls battery performance. That is, when lead powder, water and sulfuric acid are kneaded to obtain a paste, the stability and fluidity of the paste differ depending on the kneading method. The reason for this is that the water content of the lead powder gives a binding force between the lead powder particles, and as a result, the particles are aggregated and the particles remain in the aggregated state even when the paste is kneaded, so that the stability and fluidity of the paste are improved. Affect.
鉛粉が凝集した場合、練合時に投入される希硫酸との
反応部分が凝集した鉛粉粒子表面で起こり、反応分布の
不均一が生じる問題点もある。さらに鉛粉の凝集状態が
化成後の活物質粒子の状態まで維持され、活物質構造を
支配する。たとえば深放電が繰り返えされるサイクルサ
ービス用電池では、電池性能が陽極板によって殆んど決
定されるが、活物質構造へ鉛粉の凝集状態が影響を与え
るため、鉛粉性状が電池性能へ影響を与える。When the lead powder is agglomerated, there is a problem that the reaction portion with the dilute sulfuric acid charged during kneading occurs on the surface of the agglomerated lead powder particles, resulting in nonuniform reaction distribution. Furthermore, the agglomerated state of the lead powder is maintained up to the state of the active material particles after chemical conversion, and controls the active material structure. For example, in a cycle service battery in which deep discharge is repeated, the battery performance is mostly determined by the anode plate.However, the lead powder property affects the battery performance because the agglomeration state of the lead powder affects the active material structure. Influence.
上記の点は、鉛粉性状の安定化が電池性能安定化への
問題点となる。From the above point, the stabilization of the lead powder property is a problem for stabilizing the battery performance.
そこで、PbO 1モル当り0.2〜0.8モルの水和水分量を
有する一酸化鉛、すなわち1.7〜6.7Wt%の吸着水分量を
有する高水分領域の鉛粉が提案されたが、1.0Wt%以上
に水分量が増加した場合には急激に流動し難くなり、鉛
粉をペーストとして鉛格子体に塗着する際に支障が出や
すいという問題がある。Therefore, lead monoxide having a hydrated water content of 0.2 to 0.8 mol per 1 mol of PbO, that is, lead powder in a high water region having an adsorbed water content of 1.7 to 6.7 Wt% was proposed, but 1.0 Wt% or more was proposed. When the amount of water increases, it becomes difficult to flow rapidly, and there is a problem in that when lead powder is applied as a paste to a lead grid, there is a problem.
問題点を解決するための手段 本発明は上記の如き点に鑑み、鉛粉の凝集状態を支配
する含有水分量を制御し、さらに鉛粉粒子表面層をおお
う吸着水分を制御するものである。Means for Solving the Problems In view of the above points, the present invention controls the amount of water content that governs the agglomeration state of lead powder, and further controls the adsorbed water content that covers the lead powder particle surface layer.
作用 各々の鉛粉粒子の凝集状態が均一となり、ペースト性
状が安定化され、電池性能の安定化が可能となる。Action The aggregated state of each lead powder particle becomes uniform, the paste properties are stabilized, and the battery performance can be stabilized.
実施例 鉛粉の含有する水分量が低水分領域で異る場合、鉛粉
粒子の凝集状態が異なるためその粒度分布も異る。第1
図は水分量の異なる原料鉛粉の粒度分布測定結果を示す
ものである。水分の含有量が少ない鉛粉は粒子径全体に
亘って分布しているが、水分量の増加に従い、1〜3μ
mおよび10〜30μmに分布が集中し凝集してくることを
示している。水分量の増加に伴い鉛粉粒子は凝集し、鉛
粉粒子の流動性に影響を及ぼす。第2図は低水分領域に
おける鉛粉粒子の流動性を回転トルクメータで測定した
場合の結果である。鉛粉に含まれる水分量が少ないとき
には、粒子に相互に密に充填されるので流動し難く、水
分量の増加に伴い流動性は増してくる。これは鉛粉が均
一な凝集状態にあるため、空間体積が増すばかりではな
く、凝集粒子相互間の接触面積が小さくなることによる
ものである。流動のし易さは、水分量が0.1Wt%以上で
ほぼ一定となるが、さらに1.0Wt%以上に水分量の増加
した場合には急激に流動し難くなる。Example When the amount of water contained in the lead powder is different in the low water content region, the particle size distribution is different because the agglomeration state of the lead powder particles is different. First
The figure shows the results of particle size distribution measurement of raw lead powders with different water contents. Lead powder with a low water content is distributed over the entire particle size, but as the water content increases, 1-3 μm
It is shown that the distribution concentrates at m and 10 to 30 μm and aggregates. The lead powder particles agglomerate as the amount of water increases, affecting the fluidity of the lead powder particles. FIG. 2 shows the results of measuring the fluidity of lead powder particles in the low moisture region with a rotary torque meter. When the lead powder contains a small amount of water, the particles are densely packed in each other and thus it is difficult for the particles to flow, and the fluidity increases as the amount of water increases. This is because the lead powder is in a uniform agglomerated state, so that not only the space volume increases, but also the contact area between the agglomerated particles becomes small. The fluidity is almost constant when the water content is 0.1 Wt% or more, but when the water content is further increased to 1.0 Wt% or more, it becomes difficult to flow rapidly.
凝集した鉛粉粒子はペースト練合中にも状態を変化さ
せず、化成後の陽極板においても存在する。第3図はEB
-100電池での初期放電特性とその陽極板の多孔度を示
す。鉛粉含有水分が増加し凝集状態となってくると化成
後の陽極板の多孔度も増加してくる。このことは凝集に
より空間体積が増加し、この状態は化成後の陽極板にま
で維持されることを示す。陽極板の多孔度が増加する結
果として0.2C放電持続時間も同様に推移してゆく。すな
わち、鉛粉性状が電池の初期性能を決定することがわか
る。The agglomerated lead powder particles do not change the state during paste kneading, and also exist in the anode plate after chemical conversion. Figure 3 shows EB
-100 shows the initial discharge characteristics of the battery and the porosity of the anode plate. When the lead powder-containing water increases and becomes aggregated, the porosity of the anode plate after chemical conversion also increases. This indicates that the space volume increases due to aggregation, and this state is maintained up to the anode plate after chemical conversion. As a result of the increase in the porosity of the anode plate, the 0.2C discharge duration also changes. That is, it is understood that the lead powder property determines the initial performance of the battery.
鉛粉の凝集状態を支配するのは、各々の粒子表面に吸
着している水分であり、この吸着水分が鉛粉安定性にも
影響を及ぼす。第4図は鉛粉の含有する水分量と粒子表
面層の吸着水分量の関係を示す。低水分量領域では水分
量の大部分が吸着水分であり、鉛粉の含有する水分量が
0.1Wt%以上のとき、吸着水分量は0.03Wt%から0.05Wt
%で飽和してしまう。凝集性や流動性はこの吸着水分量
が支配している。It is the water content adsorbed on the surface of each particle that controls the agglomeration state of the lead powder, and this adsorbed water also affects the stability of the lead powder. FIG. 4 shows the relationship between the amount of water contained in the lead powder and the amount of adsorbed water on the particle surface layer. In the low water content region, most of the water content is adsorbed water, and the water content of lead powder is
When 0.1Wt% or more, the adsorbed water content is 0.03Wt% to 0.05Wt
It becomes saturated at%. The amount of adsorbed water controls the cohesiveness and fluidity.
発明の効果 上述したように本発明は、鉛粉の含有する水分量と吸
着水分量を制御するので、鉛粉の凝集性を均一化できる
ばかりではなく、ペーストの流動性を管理でき、さらに
電池性能も安定することができる等工業的価値甚だ大な
るものである。Effect of the Invention As described above, the present invention controls the water content and the adsorbed water content of the lead powder, so that not only the cohesiveness of the lead powder can be made uniform, but also the fluidity of the paste can be controlled, and the battery It has great industrial value such as stable performance.
第1図は鉛粉の含有水分量を変えた場合の粒度分布を示
す曲線図、第2図は鉛粉含有水分量とその鉛粉の流動性
を回転トルクメータで測定した結果を示す曲線図、第3
図は初期容量特性と陽極板の多孔度を示す曲線図、第4
図は水分量のうちの吸着水分量を示す曲線図である。Fig. 1 is a curve diagram showing the particle size distribution when the water content of lead powder is changed, and Fig. 2 is a curve diagram showing the results of measuring the water content of lead powder and the fluidity of the lead powder with a rotary torque meter. , Third
The figure is a curve diagram showing the initial capacity characteristics and porosity of the anode plate.
The figure is a curve diagram showing the adsorbed water content of the water content.
Claims (1)
または有機添加剤を練合したペーストを、鉛格子体に塗
着する鉛蓄電池用極板の製造法であつて、 前記鉛粉の含有する水分量が重量比で0.1%以上であ
り、且つそのうちの吸着水分が0.03〜0.05Wt%である、 ことを特徴とする鉛蓄電池用極板の製造法。1. A method for producing an electrode plate for a lead storage battery, which comprises applying a paste prepared by kneading lead powder, sulfuric acid, water, and a synthetic resin fiber additive or an organic additive onto a lead grid. The method for producing a lead-acid battery electrode plate according to claim 1, wherein the water content of is 0.1% or more by weight, and the adsorbed water content is 0.03 to 0.05 Wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299138A JP2504082B2 (en) | 1987-11-27 | 1987-11-27 | Manufacturing method of electrode plate for lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299138A JP2504082B2 (en) | 1987-11-27 | 1987-11-27 | Manufacturing method of electrode plate for lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01143144A JPH01143144A (en) | 1989-06-05 |
JP2504082B2 true JP2504082B2 (en) | 1996-06-05 |
Family
ID=17868611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62299138A Expired - Lifetime JP2504082B2 (en) | 1987-11-27 | 1987-11-27 | Manufacturing method of electrode plate for lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2504082B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954138A (en) * | 2016-04-27 | 2016-09-21 | 超威电源有限公司 | Pole plate porosity measurement method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109616667B (en) * | 2018-11-23 | 2022-06-24 | 骆驼集团蓄电池研究院有限公司 | Lead paste for long-life lead-acid storage battery and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410943A (en) * | 1977-06-27 | 1979-01-26 | Mizusawa Industrial Chem | Lead storage battery and method of making same |
JPS58147961A (en) * | 1982-02-26 | 1983-09-02 | Shin Kobe Electric Mach Co Ltd | Manufacture of negative plate for lead storage battery |
-
1987
- 1987-11-27 JP JP62299138A patent/JP2504082B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410943A (en) * | 1977-06-27 | 1979-01-26 | Mizusawa Industrial Chem | Lead storage battery and method of making same |
JPS58147961A (en) * | 1982-02-26 | 1983-09-02 | Shin Kobe Electric Mach Co Ltd | Manufacture of negative plate for lead storage battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954138A (en) * | 2016-04-27 | 2016-09-21 | 超威电源有限公司 | Pole plate porosity measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPH01143144A (en) | 1989-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5302476A (en) | High performance positive electrode for a lead-acid battery | |
Garche et al. | Influence of phosphoric acid on both the electrochemistry and the operating behaviour of the lead/acid system | |
JP2504082B2 (en) | Manufacturing method of electrode plate for lead-acid battery | |
JP4635325B2 (en) | Control valve type lead acid battery | |
JP2000058063A (en) | Lithium secondary battery having high conductive positive electrode and manufacture thereof | |
CN108417773A (en) | A kind of LiFePO4 combination electrode and its preparation method and application | |
JP4186197B2 (en) | Positive electrode plate for lead acid battery | |
CN114512636A (en) | All-solid-state battery | |
JP2504082C (en) | ||
JPH0736332B2 (en) | Battery | |
JPH0770317B2 (en) | Manufacturing method of electrode plate for lead-acid battery | |
JP2949773B2 (en) | Lead storage battery | |
JPH09147841A (en) | Negative electrode plate for lead acid battery and its manufacture | |
KR102683933B1 (en) | High capacity energy storage device and manufacturing method of the same | |
CN103035956A (en) | Lead storage battery | |
JPH0243308B2 (en) | ||
JPH0443387B2 (en) | ||
JPH05205732A (en) | Manufacture of anode plate for lead-acid battery | |
JPH10270017A (en) | Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith | |
JPS5945186B2 (en) | Manufacturing method for cathode plates for lead-acid batteries | |
JPS60140661A (en) | Negative electrode plate for nickel cadmium storage battery | |
JPS5999668A (en) | Manufacturing method for negative plate of lead storage battery | |
JPS61198561A (en) | Nickel electrode for alkaline secondary battery | |
JPH1154114A (en) | Plate for lead acid battery | |
JPH08180857A (en) | Electrode plate for lead-acid battery |