JP2501127B2 - Ni-base heat-resistant alloy welding wire manufacturing method - Google Patents
Ni-base heat-resistant alloy welding wire manufacturing methodInfo
- Publication number
- JP2501127B2 JP2501127B2 JP27211889A JP27211889A JP2501127B2 JP 2501127 B2 JP2501127 B2 JP 2501127B2 JP 27211889 A JP27211889 A JP 27211889A JP 27211889 A JP27211889 A JP 27211889A JP 2501127 B2 JP2501127 B2 JP 2501127B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- welding wire
- resistant alloy
- intermediate annealing
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Metal Extraction Processes (AREA)
- Arc Welding In General (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガスタービン、科学プラント、原子力発
電プラントなどに用いられるNi基耐熱合金を溶接するた
めの溶接ワイヤーの製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a welding wire for welding a Ni-base heat-resistant alloy used in gas turbines, scientific plants, nuclear power plants, and the like.
上記ガスタービン、化学プラント、原子力発電プラン
トなどに用いられるNi基耐熱合金を溶接するための溶接
ワイヤーとして、 C :0.05〜0.15%、 Si:1.0%以下、 Cr:20.5〜23.0%、 Fe:17.0〜20.0%、 Mo:8.0〜10.0%、 Mn:1.0%以下、 W :0.2〜1.0%、 Cu:0.5%以下、 Co:0.1%以下、 B :0.001〜0.1%、 を含有し、残りがNiおよび不可避不純物からなる組成を
有し、上記不可避不純物として、 Al:0.1%以下、 Ti:0.005〜0.05%、 Mg:0.005〜0.05%、 P :0.04%以下、 S :0.03%以下、 O :0.01%以下、 N :0.01%以下、 を含む組成(以上、重量%)を有するNi基耐熱合金溶接
用ワイヤーが知られている(特開平1−122694号広報参
照)。このNi基耐熱合金溶接用ワイヤーに含有されるB
は、特に溶接部の高温クリープ特性向上に寄与する作用
をする。As a welding wire for welding Ni-based heat-resistant alloys used in the above gas turbines, chemical plants, nuclear power plants, etc., C: 0.05 to 0.15%, Si: 1.0% or less, Cr: 20.5 to 23.0%, Fe: 17.0% ~ 20.0%, Mo: 8.0 ~ 10.0%, Mn: 1.0% or less, W: 0.2 ~ 1.0%, Cu: 0.5% or less, Co: 0.1% or less, B: 0.001 ~ 0.1%, the rest is Ni And a composition consisting of unavoidable impurities, Al: 0.1% or less, Ti: 0.005 to 0.05%, Mg: 0.005 to 0.05%, P: 0.04% or less, S: 0.03% or less, O: 0.01 %, N: 0.01% or less, a wire for welding a Ni-base heat-resistant alloy is known (see JP-A No. 1-22694). B contained in this Ni-based heat-resistant alloy welding wire
Particularly contributes to improving the high temperature creep characteristics of the welded portion.
このNi基耐熱合金溶接用ワイヤーを製造するには、ま
ず通常の真空誘導溶解炉により溶解し鋳造し圧延して作
製された所望の成分組成を有するNi基耐熱合金丸棒素材
を、連続光輝焼鈍炉または定置型加熱炉にて水素ガス雰
囲気中、温度:1110〜1200℃で中間焼鈍したのち冷却
し、酸洗し、冷間引抜きし、さらに上記水素ガス雰囲気
中の中間焼鈍−酸洗−冷間引抜きを2回以上繰返して線
材とし、上記線材を、必要に応じて温度:1110〜1200℃
で最終熱処理して溶接ワイヤーを製造していた。In order to produce this Ni-based heat-resistant alloy welding wire, first, a continuous bright annealing is performed on a Ni-based heat-resistant alloy round bar material having a desired component composition that is produced by melting, casting and rolling in a normal vacuum induction melting furnace. In a hydrogen gas atmosphere in a furnace or a stationary heating furnace, after intermediate annealing at a temperature of 1110 to 1200 ° C, followed by cooling, pickling, cold drawing, and further intermediate annealing in the hydrogen gas atmosphere-pickling-cooling Thinning is repeated twice or more to make a wire rod, and the wire rod is heated at a temperature of 1110 to 1200 ° C as required.
The final heat treatment was carried out in order to manufacture a welding wire.
ところが、このようにして製造された溶接ワイヤーを
用いて上記ガスタービン、化学プラント、原子力発電プ
ラントなどに用いられるNi基耐熱合金を溶接したとこ
ろ、溶接部の高温クリープ特性が所望の値に達しないこ
とが度々あった。However, when welding the Ni-based heat-resistant alloy used in the gas turbine, chemical plant, nuclear power plant, etc. using the welding wire manufactured in this way, the high temperature creep characteristics of the welded portion do not reach the desired value. There were often things.
本発明者らは、その原因を究明すべく研究を行ってい
たところ、下記のごとき実験結果を得たのである。The inventors obtained the following experimental results while conducting research to investigate the cause.
B:90ppm含有し直径:5.5mmを有する市販のNi基耐熱合
金丸棒を、水素雰囲気中、温度:1175℃の中間焼鈍−酸
洗−冷間引抜きの工程を2回以上繰返し、最終的に、直
径:1.6mmの細線材を作製したところ、直径:1.6mmの細綿
材のB含有量は、10ppmに減少し、市販のNi基耐熱合金
丸棒のB含有量:90ppmよりも大幅に少ないB含有量Ni基
耐熱合金細線材が作製されるという現象が生じたのであ
る。すなわち、市販のNi基耐熱合金丸棒から細線材に加
工する途中で80ppmもの大幅なB含有量の減少が生じ、
このような現象は、特にNi基耐熱合金の表面ほど顕著に
現れるので、B含有Ni基耐熱合金丸棒から線材、薄板、
薄肉管等を製造する場合に特に顕著に現れ、所定のB含
有量を有するNi基耐熱合金細線材、薄板、薄肉管などが
得られていないということがわかったのである。そのた
め水素雰囲気中、温度:1175℃の中間焼鈍−酸洗−冷間
引抜きの工程を2回以上繰返して線材とすることにより
得られた溶接ワイナーには、B含有量が所望の値よりも
不足しており、そのため上記溶接ワイヤーを用いて溶接
した溶接部は、B含有量が不足し、高温クリープ特性な
ど所望の機械的特性が得られないということがわかった
のである。上記Ni基耐熱合金溶接ワイヤーの製造工程中
にBが散逸し減少するところから、予めB含有量の高い
Ni基耐熱合金丸棒を素材として用いることもできるが、
上記Ni基耐熱合金溶接ワイヤーの製造工程中にBが減少
する量は、製造条件によって変化するために目標のB含
有量を得ることは困難であった。B: A commercially available Ni-base heat-resistant alloy round bar containing 90 ppm and having a diameter of 5.5 mm was repeatedly subjected to the steps of intermediate annealing at a temperature of 1175 ° C.-pickling-cold drawing at least twice in a hydrogen atmosphere, and finally When a thin wire with a diameter of 1.6 mm was produced, the B content of the fine cotton material with a diameter of 1.6 mm was reduced to 10 ppm, which was significantly higher than the B content of commercial Ni-based heat-resistant alloy round bar: 90 ppm. The phenomenon that a small B content Ni-based heat-resistant alloy fine wire was produced occurred. That is, during the processing of a commercially available Ni-base heat-resistant alloy round bar into a thin wire, a significant decrease in B content of 80 ppm occurred,
Since such a phenomenon appears more markedly on the surface of the Ni-based heat-resistant alloy, the B-containing Ni-based heat-resistant alloy round bar to the wire rod, thin plate,
It has been found that it appears particularly prominently in the production of thin-walled tubes, etc., and Ni-based heat-resistant alloy fine wire materials, thin plates, thin-walled tubes, etc. having a predetermined B content have not been obtained. Therefore, in a hydrogen atmosphere, a weld Wiener obtained by repeating the steps of intermediate annealing at a temperature of 1175 ° C-pickling-cold drawing two or more times to form a wire rod has a B content lower than the desired value. Therefore, it was found that the welded portion welded using the above-mentioned welding wire lacks the B content and cannot obtain desired mechanical properties such as high temperature creep properties. Since B dissipates and decreases during the manufacturing process of the Ni-based heat-resistant alloy welding wire, the B content is high in advance.
Ni-based heat-resistant alloy round bar can be used as a material,
Since the amount of B reduced during the manufacturing process of the Ni-based heat-resistant alloy welding wire varies depending on the manufacturing conditions, it is difficult to obtain the target B content.
〔課題を解決するための手段〕 そこで、本発明者らは、B含有量が減少せずにNi基耐
熱合金溶接ワイヤーを製造することのできる方法を開発
することができれば、目標のB含有量を有するNi基耐熱
合金溶接ワイヤーを簡単に製造することができるとの考
えのもとに研究を行った結果、下記の知見を得たのであ
る。[Means for Solving the Problem] Therefore, if the present inventors can develop a method capable of producing a Ni-base heat-resistant alloy welding wire without decreasing the B content, the target B content will be obtained. As a result of conducting research based on the idea that a Ni-based heat-resistant alloy welding wire having Ni could be easily manufactured, the following findings were obtained.
(1) 上記中間焼鈍および必要に応じて施される最終
熱処理の雰囲気ガスとして使用する市販の水素ガスに
は、容積比率で約0.3ppmの酸素ガスおよび露点が−50℃
程度の水分が含まれているが、中間焼鈍および必要に応
じて施される最終熱処理の雰囲気ガスとして使用する水
素ガスに含まれる酸素ガスの含有量(溶接比率)を0.1p
pm以下および水分含有量を露点で−70℃以下にして上記
中間焼鈍および必要に応じて施される最終熱処理の温度
を1100℃以下にすると、溶接ワイヤー製造過程における
B含有量の減少がほぼ完全に阻止される。(1) The commercially available hydrogen gas used as the atmosphere gas for the above-mentioned intermediate annealing and the final heat treatment, which is optionally performed, has an oxygen gas volume of about 0.3 ppm and a dew point of -50 ° C.
Although it contains a certain amount of water, the oxygen gas content (welding ratio) contained in the hydrogen gas used as the atmosphere gas for the intermediate annealing and the final heat treatment performed as necessary is 0.1 p
When the temperature of the intermediate annealing and the final heat treatment, which is performed if necessary, is set to 1100 ° C or less by setting the pm or less and the moisture content to -70 ° C or less in the dew point, the reduction of the B content in the welding wire manufacturing process is almost complete. Be blocked by.
(2) 上記中間焼鈍および必要に応じて施される最終
熱処理の雰囲気ガスとして市販のアルゴンガスを使用し
た場合も、上記アルゴンガスに含まれる酸素ガスの含有
量(容積比率)を0.1ppm以下および水分含有量を露点で
−70℃以下にし、上記中間焼鈍および必要に応じて施さ
れる最終熱処理の温度を1100℃以下にすることにより溶
接ワイヤー製造過程におけるB含有量の減少をほぼ完全
に阻止することができる。(2) Even when a commercially available argon gas is used as the atmosphere gas for the intermediate annealing and the final heat treatment performed as necessary, the oxygen gas content (volume ratio) contained in the argon gas is 0.1 ppm or less and By reducing the moisture content to -70 ° C or less in the dew point and the temperature of the intermediate annealing and the final heat treatment, if necessary, to 1100 ° C or less, the reduction of the B content in the welding wire manufacturing process is almost completely prevented. can do.
この発明は、かかる知見にもとづいてなされたもので
あって、 C :0.05〜0.15%、 Si:1.0%以下、 Cr:20.5〜23.0%、 Fe:17.0〜20.0%、 Mo:8.0〜10.0%、 Mn:1.5%以下、 W :0.2〜1.0%、 Cu:0.5%以下、 Co:0.1%以下、 B :0.001〜0.1%、 を含有し、残りがNiおよび不可避不純物からなる組成
(以上、重量%)を有するNi基耐熱合金丸棒素材を、中
間焼鈍し冷却したのち酸洗し、ついで冷間加工し、上記
中間焼鈍−冷却−酸洗−冷間加工を繰返すことにより最
終的にワイヤーとし、さらに必要に応じて最終熱処理を
施すことによりNi基耐熱合金溶接ワイヤーを製造する方
法において、 上記中間焼鈍、または中間焼鈍および最終熱処理を、
温度:1000〜1100℃、酸素含有量(容積比率):0.1ppm以
下、露点:−70℃以下の水素ガスまたは不活性ガス雰囲
気中で行うNi基耐熱合金溶接ワイヤーの製造方法に特徴
を有するものである。This invention has been made based on such findings, C: 0.05 to 0.15%, Si: 1.0% or less, Cr: 20.5 to 23.0%, Fe: 17.0 to 20.0%, Mo: 8.0 to 10.0%, Composition containing Mn: 1.5% or less, W: 0.2 to 1.0%, Cu: 0.5% or less, Co: 0.1% or less, B: 0.001 to 0.1%, and the balance Ni and inevitable impurities (above, wt% ) Having a Ni-based heat-resistant alloy round bar material, intermediate annealing, cooled and then pickled, and then cold working, and finally a wire by repeating the intermediate annealing-cooling-pickling-cold working, In the method for producing a Ni-based heat-resistant alloy welding wire by further performing a final heat treatment as necessary, the above intermediate annealing, or intermediate annealing and final heat treatment,
Characterized by a method for producing a Ni-base heat-resistant alloy welding wire that is performed in a hydrogen gas or inert gas atmosphere at a temperature of 1000 to 1100 ° C, oxygen content (volume ratio): 0.1 ppm or less, and dew point: -70 ° C or less Is.
上記Ni基耐熱合金溶接ワイヤーの製造方法における不
活性ガスは、ヘリウム、ネオンなどであってもよいが、
経済的にはアルゴンガスであることが好ましい。さらに
上記Ni基耐熱合金溶接ワイヤーの冷間加工は、一般に、
冷間引抜き加工で実施されるが、溝ロールなどを用いて
断面長方形のワイヤーとし、さらにこの断面長方形のワ
イヤーを加工してリングとしてもよい。The inert gas in the method for producing the Ni-based heat resistant alloy welding wire may be helium, neon, or the like,
From the economical viewpoint, argon gas is preferable. Further cold working of the above Ni-based heat-resistant alloy welding wire, in general,
Although it is carried out by cold drawing, a wire having a rectangular cross section may be formed using a groove roll or the like, and the wire having a rectangular cross section may be processed into a ring.
なお、この発明の中間焼鈍、または中間焼鈍および最
終熱処理の温度を1000〜1100℃に限定した理由は、1100
℃以下にすることにより溶接ワイヤーの製造過程におけ
るB含有量の減少をほぼ完全に阻止することができるか
らであり、一方、1000℃未満で中間焼鈍、または中間焼
鈍および最終熱処理しても十分に軟化せず、冷間引抜き
加工が困難となってワイヤーに加工することが困難とな
ることによるものである。The reason for limiting the temperature of the intermediate annealing of the present invention or the intermediate annealing and the final heat treatment to 1000 to 1100 ° C is 1100.
This is because the decrease of B content in the manufacturing process of the welding wire can be almost completely prevented by lowering the temperature to ℃ or less, while on the other hand, even if the intermediate annealing or the intermediate annealing and the final heat treatment is performed at less than 1000 ° C. This is because it does not soften, making cold drawing difficult and making it difficult to form a wire.
つぎに、この発明を、実施例にもとづいて具体的に説
明する。Next, the present invention will be specifically described based on Examples.
実施例1 C :0.10%、 Si:0.30%、 Cr:20.7%、 Fe:18.2%、 Mo:9.2%、 Mn:0.8%、 W :0.40%、 Cu:0.02%、 Co:0.02%、 B :0.009%、 Al:0.02%、 Ti:0.03%、 Mg:0.03%、 P :0.003%、 S :0.002%、 O :0.003%、 N :0.004%、 を含有し、残りがNiおよび不可避不純物からなる組成
(以上、重量%)を有し、直径:5.5mmのNi基耐熱合金製
丸棒を用意し、この丸棒を、定置型加熱炉に装入し、定
位置型加熱炉内の雰囲気を第1表に示される露点および
酸素含有量を有する水素またはアルゴンガスとし、さら
に第1表に示される温度で加熱することにより中間焼鈍
したのち、常温に冷却し、酸洗し、冷間引抜きして直
径:3.2mmの線材とし、上記直径:3.2mmの線材をさらに上
記条件にて中間焼鈍し、冷却−酸洗したのち冷間引抜き
して直径:2.6mmの線材とし、上記条件の中間焼鈍−冷却
−酸洗−冷間引抜きを繰返して直径:2.0mmから直径:1.7
mmとし、ついで直径:1.6mmの線材とすることにより本発
明溶接ワイヤー製造法1〜8および比較溶接ワイヤー製
造法1〜6を実施し、このようにして製造された溶接ワ
イヤーに含有されるB含有量を測定して、それらの結果
を第1表に示した。Example 1 C: 0.10%, Si: 0.30%, Cr: 20.7%, Fe: 18.2%, Mo: 9.2%, Mn: 0.8%, W: 0.40%, Cu: 0.02%, Co: 0.02%, B: It contains 0.009%, Al: 0.02%, Ti: 0.03%, Mg: 0.03%, P: 0.003%, S: 0.002%, O: 0.003%, N: 0.004%, and the rest is Ni and inevitable impurities. Prepare a Ni-based heat-resistant alloy round bar with a composition (above, wt%) and a diameter of 5.5 mm, insert this round bar into a stationary heating furnace, and set the atmosphere inside the stationary heating furnace. Hydrogen or argon gas having the dew point and oxygen content shown in Table 1 was used, and after intermediate annealing by heating at the temperature shown in Table 1, it was cooled to room temperature, pickled, and cold drawn. Diameter: 3.2 mm wire rod, the above diameter: 3.2 mm wire rod is further annealed under the above conditions, cooled-pickled and then cold drawn to a diameter of 2.6 mm wire rod, the intermediate annealing under the above conditions. -Cooling-Pickling-Cold Repeat pull-out diameter: diameter from 2.0mm: 1.7
mm and then a wire having a diameter of 1.6 mm, the welding wire manufacturing methods 1 to 8 of the present invention and the comparative welding wire manufacturing methods 1 to 6 were carried out, and B contained in the welding wire manufactured in this manner was used. The contents were measured and the results are shown in Table 1.
第1表の結果から、B:0.009%を含有する直径:5.5mm
のNi基耐熱合金丸棒素材を、本発明溶接ワイヤー製造法
1〜8の温度:1000〜1100℃、酸素含有量(容積比率):
0.1ppm以下、露点:−70℃以下の水素ガスまたは不活性
ガス雰囲気中で中間焼鈍して製造された直径:1.6mmの溶
接ワイヤーのB含有量は、上記直径:5.5mmのNi基耐熱合
金丸棒素材のB含有量とほぼ同じであり、Bの減少は見
られないことがわかる。しかしながら、 この発明の条件から外れた条件で中間焼鈍する比較溶接
ワイヤー製造法1〜6(第1表において、この発明の条
件から外れた中間焼鈍条件に※印を付した。)により製
造された直径:1.6mmの溶接ワイヤーのB含有量は、上記
直径:5.5mmのNi基耐熱合金製丸棒のB含有量よりも大幅
に減少していることがわかる。From the results in Table 1, B: 0.009% containing diameter: 5.5 mm
Ni-based heat-resistant alloy round bar material of the present invention, the temperature of the welding wire manufacturing method 1 to 8 of the present invention: 1000 to 1100 ° C.
Welding wire with a diameter of 1.6 mm produced by intermediate annealing in a hydrogen gas or inert gas atmosphere with a dew point of −70 ° C. or less at 0.1 ppm has a B content of Ni-based heat-resistant alloy of the above diameter: 5.5 mm. It can be seen that the content of B is almost the same as that of the round bar material, and B is not reduced. However, Diameters produced by comparative welding wire manufacturing methods 1 to 6 (intermediate annealing conditions deviating from the conditions of the present invention are marked with * in Table 1) in which intermediate annealing is performed under conditions deviating from the conditions of the present invention: It can be seen that the B content of the 1.6 mm welding wire is significantly smaller than the B content of the Ni-based heat-resistant alloy round bar having the diameter of 5.5 mm.
実施例2 実施例1の第1表に示される本発明溶接ワイヤー製造
法1〜8および比較溶接ワイヤー製造法1〜6の中間焼
鈍条件で製造された溶接ワイヤーを、さらに上記中間焼
鈍条件と同一条件で最終熱処理することにより本発明溶
接ワイヤー製造法1′〜8′および比較溶接ワイヤー製
造法1′〜6′を実施し、これら製造法にて製造された
溶接ワイヤーに含有されるB含有量を測定して、それら
の結果を第2表に示した。Example 2 A welding wire manufactured under the intermediate annealing conditions of the present invention welding wire manufacturing methods 1 to 8 and comparative welding wire manufacturing methods 1 to 6 shown in Table 1 of Example 1 is the same as the above intermediate annealing conditions. The present invention welding wire manufacturing methods 1 ′ to 8 ′ and comparative welding wire manufacturing methods 1 ′ to 6 ′ were carried out by final heat treatment under the conditions, and the B content contained in the welding wire manufactured by these manufacturing methods. Was measured and the results are shown in Table 2.
第2表の結果から、上記中間焼鈍条件で製造した溶接
ワイヤーをさらに本発明溶接ワイヤー製造法1〜8の中
間焼鈍と同一条件で最終熱処理して も、本発明溶接ワイヤー製造法1′〜8′にみられるよ
うにB含有量の減少は見られず、減少しても極微量であ
ることがわかる。From the results shown in Table 2, the welding wire manufactured under the above-mentioned intermediate annealing conditions was further subjected to final heat treatment under the same conditions as the intermediate annealing of the welding wire manufacturing methods 1 to 8 of the present invention. However, the decrease of B content is not seen as seen in the welding wire manufacturing methods 1 ′ to 8 ′ of the present invention, and it is understood that the B content is extremely small even if it is decreased.
しかしながら、この発明の条件から外れた中間焼鈍お
よび最終熱処理条件を含む比較溶接ワイヤー製造法1′
〜6′(第2表において、この発明の条件から外れた中
間焼鈍および最終熱処理条件に※印を付して示した)に
より製造された溶接ワイヤーのB含有量は、上記直径:
5.5mmのNi基耐熱合金丸棒のB含有量よりも大幅に減少
していることがわかる。However, the comparative welding wire manufacturing method 1'including intermediate annealing and final heat treatment conditions deviating from the conditions of the present invention.
6 ′ (in Table 2, the intermediate annealing and final heat treatment conditions deviating from the conditions of the present invention are marked with *), the B content of the welding wire is the above diameter:
It can be seen that the B content of the 5.5 mm Ni-based heat-resistant alloy round bar is significantly reduced.
ただし、実施例1および2において中間焼鈍および最
終熱処理する温度の下限を1000℃とした理由は、温度:1
000℃未満で中間焼鈍および最終熱処理しても十分に軟
化せず、冷間引抜き加工が困難であることによる。However, the reason for setting the lower limit of the temperature for intermediate annealing and final heat treatment to 1000 ° C. in Examples 1 and 2 is that the temperature:
This is because cold drawing is difficult because it does not soften sufficiently even after intermediate annealing and final heat treatment below 000 ° C.
この発明のNi基耐熱合金溶接ワイヤーの製造方法によ
ると、その製造工程におけるB含有量の減少が見られな
いことから、目標とするNi基耐熱合金溶接ワイヤーのB
含有量を正確に制御することができ、B含有量の不足に
伴う不良Ni基耐熱合金溶接ワイヤーの発生が皆無になる
などの優れた効果を奏するものである。According to the method for producing a Ni-based heat-resistant alloy welding wire of the present invention, since the B content is not reduced in the production process, the target B-based Ni-based heat-resistant alloy welding wire is B.
The content can be controlled accurately, and an excellent effect such as generation of defective Ni-based heat-resistant alloy welding wire due to lack of B content can be achieved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐平 健彰 埼玉県大宮市北袋町1―297 三菱金属 株式会社中央研究所内 (72)発明者 竹入 俊樹 埼玉県桶川市上日出谷1230 三菱金属株 式会社桶川第一製作所内 (72)発明者 倉内 伸好 埼玉県桶川市上日出谷1230 三菱金属株 式会社桶川第一製作所内 (72)発明者 中島 甫 茨城県水戸市千波町1378番38号 (72)発明者 渡辺 勝利 茨城県水戸市千波町2867番18号 (72)発明者 仲西 恒雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 鬼束 義美 静岡県浜北市中瀬7800番地 日本ウエル ディングロッド株式会社技術研究所内 (72)発明者 高津 玉男 静岡県浜北市中瀬7800番地 日本ウエル ディングロッド株式会社技術研究所内 (72)発明者 斎藤 貞一郎 静岡県浜北市中瀬7800番地 日本ウエル ディングロッド株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeaki Sahira 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Central Research Laboratory, Mitsubishi Metals Co., Ltd. (72) Inventor Toshiki Takeiri 1230 Kamijideya, Okegawa City, Saitama Mitsubishi Metal Co., Ltd. Company Okegawa No. 1 Factory (72) Inventor Nobuyoshi Kurauchi 1230 Kamihidani, Okegawa City, Saitama Mitsubishi Metals Co., Ltd.Okegawa No. 1 Factory (72) Inventor Nakajima Ho, 1378-38, Chiba-cho, Mito City, Ibaraki Prefecture ( 72) Inventor Satoshi Watanabe 2867-18 Senba-cho, Mito City, Ibaraki Prefecture (72) Inventor Tsuneo Nakanishi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Fuji Electric Co., Ltd. (72) Inventor Yoshimi Onitsuka Shizuoka Prefecture 7800 Nakase, Hamakita City Japan Welding Rod Co., Ltd. Technical Research Institute (72) Inventor Tamao Takatsu 7800 Nakase, Hamakita City, Shizuoka Prefecture Japan Welding Lod Co., Ltd. intra-technology Research Institute (72) inventor Teiichiro Saito Shizuoka Prefecture Hamakita Nakase 7800 address Japan Welding rod Ltd. intra-technology Research Institute
Claims (5)
(以上、重量%)を有するNi基耐熱合金丸棒素材を、中
間焼鈍し冷却したのち酸洗し、ついで冷間加工し、上記
中間焼鈍−冷却−酸洗−冷間加工を繰返すことにより最
終的にワイヤーとすることによりNi基耐熱合金溶接ワイ
ヤーを製造する方法において、 上記中間焼鈍を、温度:1000〜1100℃、酸素含有量(容
積比率):0.1ppm以下、露点:−70℃以下の水素ガス雰
囲気中で行うことを特徴とするNi基耐熱合金溶接ワイヤ
ーの製造方法。1. C: 0.05 to 0.15%, Si: 1% or less, Cr: 20.5 to 23.0%, Fe: 17.0 to 20.0%, Mo: 8.0 to 10.0%, Mn: 1.5% or less, W: 0.2 to 1.0 %, Cu: 0.5% or less, Co: 0.1% or less, B: 0.001 to 0.1%, and a Ni-based heat-resisting alloy round bar material having a composition (above, weight%) of Ni and unavoidable impurities in the balance. A nickel-base heat-resistant alloy welding wire is manufactured by repeating intermediate annealing, cooling, pickling, and then cold working, and finally repeating the intermediate annealing-cooling-pickling-cold working to finally obtain a wire. In the method, the above-mentioned intermediate annealing is performed in a hydrogen gas atmosphere at a temperature of 1000 to 1100 ° C, an oxygen content (volume ratio) of 0.1 ppm or less, and a dew point of -70 ° C or less in a Ni-base heat-resistant alloy welding. Wire manufacturing method.
素含有量(容積比率):0.1ppm以下、露点:−70℃以下
の不活性ガス雰囲気中で行うことを特徴とする請求項1
記載のNi基耐熱合金溶接ワイヤーの製造方法。2. The intermediate annealing is performed in an inert gas atmosphere having a temperature of 1000 to 1100 ° C., an oxygen content (volume ratio) of 0.1 ppm or less, and a dew point of −70 ° C. or less. 1
A method for producing the Ni-based heat-resistant alloy welding wire as described.
(以上、重量%)を有するNi基耐熱合金丸棒素材を、中
間焼鈍し冷却したのち酸洗し、ついで冷間加工し、上記
中間焼鈍−冷却−酸洗−冷間加工を繰返すことにより最
終的にワイヤーとし、さらに最終熱処理を施すことによ
りNi基耐熱合金溶接ワイヤーを製造する方法において、 上記中間焼鈍および最終熱処理を、温度:1000〜1100
℃、酸素含有量(容積比率):0.1ppm以下、露点:−70
℃以下の水素ガス雰囲気中で行うことを特徴とするNi基
耐熱合金溶接ワイヤーの製造方法。3. C: 0.05 to 0.15%, Si: 1% or less, Cr: 20.5 to 23.0%, Fe: 17.0 to 20.0%, Mo: 8.0 to 10.0%, Mn: 1.5% or less, W: 0.2 to 1.0 %, Cu: 0.5% or less, Co: 0.1% or less, B: 0.001 to 0.1%, and a Ni-based heat-resisting alloy round bar material having a composition (above, weight%) of Ni and unavoidable impurities in the balance. After intermediate annealing, cooling, pickling, and then cold working, the intermediate annealing-cooling-pickling-cold working is repeated to finally form a wire, and a final heat treatment is applied to the Ni-base heat-resistant alloy. In the method for producing a welding wire, the intermediate annealing and final heat treatment are performed at a temperature of 1000 to 1100.
° C, oxygen content (volume ratio): 0.1 ppm or less, dew point: -70
A method for producing a Ni-base heat-resistant alloy welding wire, which is performed in a hydrogen gas atmosphere at ℃ or below.
000〜1100℃、酸素含有量(容積比率):0.1ppm以下、露
点:−70℃以下の不活性ガス雰囲気中で行うことを特徴
とする請求項3記載のNi基耐熱合金溶接ワイヤーの製造
方法。4. The intermediate annealing and final heat treatment are performed at a temperature of 1
The method for producing a Ni-base heat-resistant alloy welding wire according to claim 3, wherein the heat treatment is performed in an inert gas atmosphere at 000 to 1100 ° C, oxygen content (volume ratio): 0.1 ppm or less, and dew point: -70 ° C or less. .
はアルゴンガス雰囲気であることを特徴とするNi基耐熱
合金溶接ワイヤーの製造方法。5. The method for producing a Ni-base heat-resistant alloy welding wire according to claim 2, wherein the inert gas atmosphere is an argon gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27211889A JP2501127B2 (en) | 1989-10-19 | 1989-10-19 | Ni-base heat-resistant alloy welding wire manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27211889A JP2501127B2 (en) | 1989-10-19 | 1989-10-19 | Ni-base heat-resistant alloy welding wire manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03133593A JPH03133593A (en) | 1991-06-06 |
JP2501127B2 true JP2501127B2 (en) | 1996-05-29 |
Family
ID=17509341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27211889A Expired - Lifetime JP2501127B2 (en) | 1989-10-19 | 1989-10-19 | Ni-base heat-resistant alloy welding wire manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501127B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4519520B2 (en) * | 2003-09-24 | 2010-08-04 | 新日鐵住金ステンレス株式会社 | High Ni-base alloy welding wire |
DE102007055379A1 (en) * | 2007-11-19 | 2009-05-20 | Alstom Technology Ltd. | Manufacturing process for a rotor |
CN103635284B (en) * | 2011-03-23 | 2017-03-29 | 思高博塔公司 | The particulate nickel-base alloy split for stress corrosion resistant and its method for designing |
CN104039483B (en) | 2011-12-30 | 2017-03-01 | 思高博塔公司 | Coating composition |
US9738959B2 (en) | 2012-10-11 | 2017-08-22 | Scoperta, Inc. | Non-magnetic metal alloy compositions and applications |
WO2015054637A1 (en) | 2013-10-10 | 2015-04-16 | Scoperta, Inc. | Methods of selecting material compositions and designing materials having a target property |
WO2015081209A1 (en) | 2013-11-26 | 2015-06-04 | Scoperta, Inc. | Corrosion resistant hardfacing alloy |
WO2015191458A1 (en) | 2014-06-09 | 2015-12-17 | Scoperta, Inc. | Crack resistant hardfacing alloys |
WO2016014851A1 (en) | 2014-07-24 | 2016-01-28 | Scoperta, Inc. | Hardfacing alloys resistant to hot tearing and cracking |
US10465269B2 (en) | 2014-07-24 | 2019-11-05 | Scoperta, Inc. | Impact resistant hardfacing and alloys and methods for making the same |
CN104439762B (en) * | 2014-11-12 | 2016-10-12 | 江苏兴海特钢有限公司 | A kind of preparation technology of high niobium height molybdenum nickel base superalloy welding wire |
CN107532265B (en) | 2014-12-16 | 2020-04-21 | 思高博塔公司 | Ductile and wear resistant iron alloy containing multiple hard phases |
WO2017040775A1 (en) | 2015-09-04 | 2017-03-09 | Scoperta, Inc. | Chromium free and low-chromium wear resistant alloys |
EP3347501B8 (en) | 2015-09-08 | 2021-05-12 | Oerlikon Metco (US) Inc. | Non-magnetic, strong carbide forming alloys for powder manufacture |
JP2018537291A (en) | 2015-11-10 | 2018-12-20 | スコペルタ・インコーポレイテッドScoperta, Inc. | Antioxidation twin wire arc spray material |
CA3017642A1 (en) | 2016-03-22 | 2017-09-28 | Scoperta, Inc. | Fully readable thermal spray coating |
WO2019004176A1 (en) * | 2017-06-30 | 2019-01-03 | 日立金属株式会社 | Method for manufacturing ni-based heat-resistant superalloy wire, and ni-based heat-resistant superalloy wire |
US11939646B2 (en) | 2018-10-26 | 2024-03-26 | Oerlikon Metco (Us) Inc. | Corrosion and wear resistant nickel based alloys |
CA3136967A1 (en) | 2019-05-03 | 2020-11-12 | Oerlikon Metco (Us) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
CN114505619B (en) * | 2022-04-19 | 2022-09-27 | 西安热工研究院有限公司 | Nickel-based welding wire, manufacturing method of nickel-based welding wire and welding process of nickel-based welding wire |
-
1989
- 1989-10-19 JP JP27211889A patent/JP2501127B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03133593A (en) | 1991-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2501127B2 (en) | Ni-base heat-resistant alloy welding wire manufacturing method | |
JP6521071B2 (en) | Titanium material for hot rolling | |
CN112105751B (en) | High strength titanium alloy | |
US10676808B2 (en) | Method for producing a metal film | |
JP6199897B2 (en) | Powder mixture for producing nickel-titanium-rare earth metal (Ni-Ti-RE) sintered alloys | |
CN113579558B (en) | Nuclear grade nickel-chromium-iron alloy core wire and manufacturing method thereof | |
JP2018514649A (en) | Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same | |
US3963532A (en) | Fe, Cr ferritic alloys containing Al and Nb | |
CN111299906B (en) | NiCrNb-Zr welding wire for cracking furnace and preparation method thereof | |
JPH06264233A (en) | Sputtering target for producing tft | |
JP2722628B2 (en) | Plastic working method for B-containing Ni-base heat-resistant alloy | |
US3193661A (en) | Welding rod and electrode | |
JP2000256766A (en) | HOT WORKING METHOD FOR CuNiFe ALLOY | |
JP2004183079A (en) | Titanium alloy and method for manufacturing titanium alloy material | |
CN114892061B (en) | Ni-Co-Cr multi-principal-element alloy material and preparation method thereof | |
CN110625289A (en) | Tungsten electrode argon arc welding wire for welding Mn-Mo-Ni steel of nuclear island main equipment | |
JPH02147195A (en) | Production of cobalt-chromium-based alloy welding material | |
JPH06256918A (en) | Production of molybdenum or molybdenum alloy sheet | |
JPS62280348A (en) | Fe-cr-al alloy sintered body | |
JP2691713B2 (en) | Method for producing Cr-Ni-based stainless steel having excellent hot workability | |
JPH07228940A (en) | Tubular rhenium-molybdenum alloy parts | |
JP4220772B2 (en) | Ti-Sc shape memory alloy | |
JPH11123591A (en) | Manufacture of flux cored wire by recrystallization annealing | |
JPH06220596A (en) | Production of molybdenum or molybdenum alloy sheet | |
CN118600296A (en) | Light antioxidant refractory medium-entropy alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20100313 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 14 |