JP2500398C - - Google Patents

Info

Publication number
JP2500398C
JP2500398C JP2500398C JP 2500398 C JP2500398 C JP 2500398C JP 2500398 C JP2500398 C JP 2500398C
Authority
JP
Japan
Prior art keywords
metal foil
resin
clad laminate
long
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明は、プリント配線板などに供される金属箔張り積層板の連続製造方法に
関するものである。 【0002】 【従来の技術】 従来の金属箔張り積層板の連続製造方法において用いられている金属箔は高温
時の伸び率が小さい。たとえば180℃での伸び率が1〜8%程度である。この
ため樹脂含浸基材が絶縁層となる際の硬化収縮や樹脂の熱膨張など樹脂の動きに
追従できず絶縁層内部に歪みが生じやすくなる。この歪みが金属箔張り積層板に
反りやねじれ現象を起こさせる。特に、長尺の金属箔を用いて連続的に製造され
た金属箔張り積層板では、その製造時に金属箔を常に引張りながら積層一体化す
るため伸び率が小さいと緩和しろが少ないため一層著しい反りやねじれ現象を起
こさせる。また、両面金属箔張り積層板の場合、片面の金属箔のみを除去すると
、絶縁層の歪みのために反り、ねじれが大きくなる。また、絶縁層内部の歪みの
ため金属箔を除去した時の寸法変化率が大きくなるなどの問題を有していた。 【0003】 【発明が解決しょうとする課題】 本発明は、反り、ねじれが少なく、さらに寸法安定性に優れた金属箔張り積層
板を得るための連続製造方法を提供することにある。 【0004】 【問題を解決するための手段】 本発明は、上記の点に鑑みて為されたものである。本発明者らは、所要枚数の
長尺の樹脂含浸基材の片側に長尺の金属箔を、他の片面に長尺の離型フィルムま
たは、長尺の金属箔を重ね、上下に配設したラミネータロールの間を通しラミネ
ートした長尺帯状積層体を連続的に移動させつつ硬化後、所要寸法に切断して金
属箔張り積層板を製造する方法において、150〜200℃での金属箔の伸び率
が10〜50%の金属箔を常に引張りながら積層一体化するように用いることを
特徴とする金属箔張り積層板の製造方法を提供するものである。 【0005】 以下に本発明を詳しく説明する。 本発明の金属箔としては、150〜200℃の伸び率が10〜50%、好まし
くは180℃での伸び率が15〜30%の銅、アルミニウム、鉄、ニッケル、亜
鉛などの単独、合金、複合箔が用いられ、必要に応じて金属箔の片面に接着剤層
を設けておき、次に示す絶縁層との接着性をより向上させることもできる。金属
箔の厚みも12、18、35、70μmなど通常よく用いられるものをそのまま
用いることができる。 【0006】 なお、金属箔の伸び率は、IPC規格に準じて行ったもので、試験片長さ15
2.4mm、幅12.7mm、チャック間50mm、試験スピード50mm/分、雰囲気
温度は所定の温度に設定して測定したものである。 【0007】 樹脂含浸基材は、基材に樹脂を含浸したものであり、後に硬化させて絶縁層を
形成することのできるものである。基材としては、ガラスなどの無機繊維やポリ
エステル、ポリアクリル、ポリビニルアルコール、ポリアミド、ポリイミド、ポ
リフェニレンサルファイト、ウレタンなどの有機合成繊維や木綿などの天然繊維
からなる織布、不織布、マット或いは紙または、これらの組み合わせ基材を用い ることができる。基材に含浸させる樹脂としては不飽和ポリエステル樹脂、エポ
キシ樹脂、ポリイミド樹脂、フッソ樹脂、フェノール樹脂、ポリフェニレンオキ
サイド樹脂などの単独、変性物、混合物を樹脂量が40〜60重量%(以下単に
%と記す)になるように含浸させて用いることができる。樹脂含浸は一次含浸を
同系樹脂または、異系樹脂の低粘度樹脂で行うことがより均一含浸できるので好
ましい。 【0008】 また、樹脂には必要に応じて水酸化アルミニウム、タルク、シリカ、アルミナ
などの充填剤を添加することもできる。さらに、樹脂はそのまま用いてもよいが
好ましくは減圧脱泡してから用いることが樹脂含浸基材内の気泡発生を抑える上
で望ましい。 【0009】 ラミネーターロールとしては、金属製、ゴム製、合成樹脂製或いは金属ロール
表面にゴムや合成樹脂を被覆コーティングしたものなどを適宜用いることができ
る。 【0010】 長尺帯状積層体の硬化は樹脂の種類によって硬化温度、硬化時間を選択するこ
とができるが硬化は無圧乃至20kg/cm2であることが重要である。切断後は用
いた樹脂の熱変形温度以上にアフターベーキング後、熱変形温度以下に冷却する
のが反りやねじれを小さくするのに好ましい。冷却を急冷するのが特に好ましい
。離型フィルムを用いた場合は、冷却後に離型フィルムを除去することによって
反りをより少なくできる。 【0011】 【作用】 金属箔の高温時の伸びが大きいために、長尺の金属箔の引張りに柔軟に対応し
、樹脂の熱膨張、硬化収縮に金属箔が追従する。このために絶縁層内部に応力が
蓄積しない。応力が蓄積しないので歪みが小さくなり完全硬化後、得られる積層
板の反り、ねじれが小さくなる。また、絶縁層内部の歪みが小さいために金属箔
をエッチングなどで除去した時も寸法変化が小さくなる。 【0012】 【実施例】 実施例1 樹脂として、市販のビニルエステル樹脂(昭和高分子社製R−806DA)10
0重量部、クメルハイドロパーオキサイド1重量部にさらに25℃の粘度が5ポ
イズになるようにスチレンを添加したものを用い、これをガラス布基材(日東紡
績社製WE−18K-BS)2枚および、同形状のガラス不織布基材(日本バイリーン
社製 EP-4035)3枚に連続的に、樹脂量が45%になるように含浸させた。含浸
させた時点で、3枚のガラス不織布基材の両側にガラス布基材が配置され、さら
にその外側の両側に180℃での伸び率10%で厚さ18μmの接着剤付銅箔の
接着剤側を内側に配置されるようにしてこれらを1対のラミネートロールの間に
連続的に送りこみ、低圧でラミネートした。このものを硬化炉に送り100℃、
20分間低圧で加熱硬化させ、その後160℃で20分間アフターキュアして厚
み1.6mmの銅張積層板を得た。 【0013】 実施例2 実施例1の銅箔を180℃での伸び率30%のものに代えた以外は実施例1と
同様に行い1.6mmの銅張積層板を得た。 【0014】 実施例3 実施例1の銅箔を180℃での伸び率50%のものに代えた以外は実施例1と
同様に行い1.6mmの銅張積層板を得た。 【0015】 比較例1 実施例1の銅箔を180℃での伸び率1.5%のものに代えた以外は実施例1
と同様に行い1.6mmの銅張積層板を得た。 【0016】 比較例2 実施例1の銅箔を180℃での伸び率7%のものに代えた以外は実施例1と同 様に行い1.6mmの銅張積層板を得た。 【0017】 以上で得られた両面銅張積層板を300×250mmの大きさに切断したもの、
および、この大きさで片面の銅箔をエッチングにより除去して130℃の乾燥機
で1時間処理してから冷却したものの反りをそれぞれ測定し、結果を表1に示し
た。 【0018】 また、寸法変化率は得られた両面銅張積層板を250×250mmの大きさに切
断し、4隅に200mm間隔で開けた穴間寸法を初期値とし各条件での変化を測定
しその変化率の結果を表1に示した。 【0019】 表1から実施例のものは比較例のものに比べ、反り、寸法変化率とも小さいこ
とが確認できた。 【0020】 【発明の効果】 本発明によって、金属箔張り積層板及びプリント配線板において反り、ねじれ
の少ないものが、さらに寸法安定性に優れた金属箔張り積層板が得られる。 【0021】 【表1】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a metal foil-clad laminate used for a printed wiring board or the like. 2. Description of the Related Art Metal foil used in a conventional method for continuously manufacturing a metal foil-clad laminate has a small elongation at high temperatures. For example, the elongation at 180 ° C. is about 1 to 8%. For this reason, the resin-impregnated base material cannot follow the movement of the resin such as curing shrinkage and thermal expansion of the resin when the resin becomes the insulating layer, and distortion is easily generated inside the insulating layer. This distortion causes the metal foil-clad laminate to warp or twist. In particular, in metal foil-clad laminates manufactured continuously using long metal foils, the metal foil is always laminated while being stretched during the manufacturing process. And cause a twisting phenomenon. Further, in the case of a double-sided metal foil-clad laminate, if only one side of the metal foil is removed, the warpage and torsion increase due to distortion of the insulating layer. In addition, there is a problem that the dimensional change rate when the metal foil is removed due to distortion inside the insulating layer becomes large. [0003] An object of the present invention is to provide a continuous production method for obtaining a metal foil-clad laminate having less warpage and twist and excellent dimensional stability. [0004] The present invention has been made in view of the above points. The present inventors stack a long metal foil on one side of a required number of long resin-impregnated base materials and a long release film or a long metal foil on the other side, and dispose them vertically. In a method of manufacturing a metal-foil-clad laminate by cutting to a required size after curing while continuously moving a long strip-shaped laminate that has been laminated through a laminator roll, the metal foil at 150 to 200 ° C. An object of the present invention is to provide a method for manufacturing a metal foil-clad laminate, wherein a metal foil having an elongation percentage of 10 to 50% is always used while being laminated while being stretched. Hereinafter, the present invention will be described in detail. As the metal foil of the present invention, elongation at 150 to 200 ° C. is 10 to 50%, and preferably, elongation at 180 ° C. is 15 to 30%, such as copper, aluminum, iron, nickel, and zinc alone, alloy, A composite foil is used, and if necessary, an adhesive layer may be provided on one side of the metal foil to further improve the adhesion to the insulating layer described below. The thickness of the metal foil, such as 12, 18, 35, and 70 μm, which is commonly used, can be used as it is. The elongation percentage of the metal foil was measured according to the IPC standard, and the test piece length was 15
2.4 mm, width 12.7 mm, distance between chucks 50 mm, test speed 50 mm / min, ambient temperature was measured at a predetermined temperature. The resin-impregnated base material is obtained by impregnating a base material with a resin, and can be cured later to form an insulating layer. As the base material, woven fabric, nonwoven fabric, mat or paper made of inorganic fibers such as glass, polyester, polyacryl, polyvinyl alcohol, polyamide, polyimide, polyphenylene sulfite, organic synthetic fibers such as urethane and natural fibers such as cotton, or , A combination of these substrates can be used. As the resin to be impregnated into the base material, an unsaturated polyester resin, an epoxy resin, a polyimide resin, a fluorine resin, a phenol resin, a polyphenylene oxide resin, or the like alone, a modified product, or a mixture having a resin amount of 40 to 60% by weight (hereinafter simply referred to as% To be described). The resin impregnation is preferably carried out by performing the primary impregnation with the same resin or a low-viscosity resin of a different resin, since the more uniform impregnation can be achieved. Further, a filler such as aluminum hydroxide, talc, silica, alumina or the like can be added to the resin as required. Further, the resin may be used as it is, but is preferably used after defoaming under reduced pressure in order to suppress the generation of bubbles in the resin-impregnated base material. As the laminator roll, a metal, rubber, synthetic resin, or a metal roll surface coated with rubber or synthetic resin can be appropriately used. For the curing of the long strip-shaped laminate, the curing temperature and the curing time can be selected depending on the type of the resin, but it is important that the curing is performed at no pressure to 20 kg / cm 2 . After cutting, it is preferable that after baking is performed at a temperature equal to or higher than the thermal deformation temperature of the used resin and then cooled to a temperature equal to or lower than the thermal deformation temperature in order to reduce warpage and twist. It is particularly preferred to quench the cooling. When a release film is used, warping can be further reduced by removing the release film after cooling. Since the metal foil has a large elongation at a high temperature, the metal foil flexibly copes with the tension of the long metal foil, and the metal foil follows the thermal expansion and the curing shrinkage of the resin. Therefore, stress does not accumulate inside the insulating layer. Since stress does not accumulate, distortion is reduced, and after complete curing, the resulting laminate has less warpage and twist. Further, since the distortion inside the insulating layer is small, the dimensional change is small even when the metal foil is removed by etching or the like. Example 1 As a resin, a commercially available vinyl ester resin (R-806DA manufactured by Showa Kogyo KK) 10
0 parts by weight, 1 part by weight of cumer hydroperoxide and styrene added so that the viscosity at 25 ° C. becomes 5 poises, and this is used as a glass cloth base material (WE-18K-BS manufactured by Nitto Boseki Co., Ltd.). Two sheets and three sheets of glass nonwoven fabric substrate (EP-4035 manufactured by Japan Vilene Co., Ltd.) of the same shape were continuously impregnated so that the resin amount became 45%. At the time of impregnation, a glass cloth substrate is placed on both sides of the three glass non-woven fabric substrates, and further, an 18 μm thick copper foil with an adhesive having a 10% elongation at 180 ° C. and a thickness of 18 μm is bonded to both outer sides thereof. These were continuously fed between a pair of laminating rolls with the agent side placed inside, and laminated at low pressure. This is sent to a curing oven at 100 ° C,
The composition was cured by heating at a low pressure for 20 minutes, and after-cured at 160 ° C. for 20 minutes to obtain a copper-clad laminate having a thickness of 1.6 mm. Example 2 A 1.6 mm copper-clad laminate was obtained in the same manner as in Example 1 except that the copper foil of Example 1 was replaced with one having an elongation of 30% at 180 ° C. Example 3 A 1.6 mm copper-clad laminate was obtained in the same manner as in Example 1 except that the copper foil of Example 1 was replaced with one having an elongation of 50% at 180 ° C. Comparative Example 1 Example 1 was repeated except that the copper foil of Example 1 was replaced with one having an elongation of 1.5% at 180 ° C.
In the same manner as in the above, a 1.6 mm copper-clad laminate was obtained. Comparative Example 2 A 1.6 mm copper-clad laminate was obtained in the same manner as in Example 1 except that the copper foil of Example 1 was replaced with one having an elongation of 7% at 180 ° C. What is obtained by cutting the double-sided copper-clad laminate obtained above into a size of 300 × 250 mm,
Further, the copper foil on one side was removed by etching at this size, treated with a dryer at 130 ° C. for 1 hour, and then cooled, and the warpage was measured. The results are shown in Table 1. Further, the dimensional change rate is obtained by cutting the obtained double-sided copper-clad laminate into a size of 250 × 250 mm, and measuring the change under each condition with an initial value between holes formed at four corners at intervals of 200 mm. Table 1 shows the results of the change rates. From Table 1, it was confirmed that the example was smaller in warpage and dimensional change rate than the comparative example. According to the present invention, a metal foil-clad laminate having less warpage and twist in a metal foil-clad laminate and a printed wiring board and having further excellent dimensional stability can be obtained. [Table 1]

Claims (1)

【特許請求の範囲】 【請求項1】 所要枚数の長尺の樹脂含浸基材の片側に長尺の金属箔を、他の片面に長尺の離
型フィルムまたは、長尺の金属箔を重ね、上下に配設したラミネータロールの間
を通しラミネートした長尺帯状積層体を連続的に移動させつつ硬化後、所要寸法
に切断して金属箔張り積層板を製造する方法において、150〜200℃での金
属箔の伸び率が10〜50%の金属箔を常に引張りながら積層一体化するように
用いることを特徴とする金属箔張り積層板の製造方法。
Claims: 1. A required number of long resin-impregnated substrates are laminated with a long metal foil on one side and a long release film or a long metal foil on the other side. In a method of manufacturing a metal foil-clad laminate by cutting a required length after curing while continuously moving a long band-shaped laminate laminated by passing between laminator rolls disposed above and below, 150 to 200 ° C. A method for manufacturing a metal-foil-clad laminate, wherein the metal foil having an elongation percentage of 10 to 50% is always stretched and laminated and integrated .

Family

ID=

Similar Documents

Publication Publication Date Title
JP2500398C (en)
JP2500398B2 (en) Metal foil-clad laminate and method for manufacturing the same
JP4296680B2 (en) Laminate production method
JP3611506B2 (en) Laminate manufacturing method
JP2001138437A (en) Method for manufacturing laminate
JP2001150623A (en) Method of manufacturing laminated sheet
JP3275496B2 (en) Manufacturing method of metal foil-clad laminate
JP3662053B2 (en) Metal foil laminate
JP2001170953A (en) Method for manufacturing laminated sheet
JPH07297511A (en) Electrical lamination board
JP2001179877A (en) Method for manufacturing laminated sheet
JP3178163B2 (en) Manufacturing method of laminated board
JPH07290633A (en) Single-sided copper clad laminated sheet
JPH0489253A (en) Manufacture of laminated plate
JPH0414875B2 (en)
JP2001334542A (en) Method for manufacturing laminated sheet
JPH04223113A (en) Manufacture of laminated sheet
JP2001047587A (en) Manufacture of laminate
JPH07227934A (en) Single-sided copper clad laminated sheet
JPH10338758A (en) Production of prepreg and laminated sheet
JP2001162639A (en) Method for manufacturing laminated sheet
JP2001277273A (en) Method for manufacturing laminated sheet
JPH0366195A (en) Copper clad board
JPH04309529A (en) Production glass-fiber-reinforced electrical composite laminate
JPH08197680A (en) Continuous production of metal foil clad laminated sheet