JPH04309529A - Production glass-fiber-reinforced electrical composite laminate - Google Patents

Production glass-fiber-reinforced electrical composite laminate

Info

Publication number
JPH04309529A
JPH04309529A JP3102050A JP10205091A JPH04309529A JP H04309529 A JPH04309529 A JP H04309529A JP 3102050 A JP3102050 A JP 3102050A JP 10205091 A JP10205091 A JP 10205091A JP H04309529 A JPH04309529 A JP H04309529A
Authority
JP
Japan
Prior art keywords
glass
composite laminate
reinforced electrical
electrical composite
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3102050A
Other languages
Japanese (ja)
Inventor
Keiji Imasho
今庄 啓二
Kiyoyuki Minamimura
清之 南村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP3102050A priority Critical patent/JPH04309529A/en
Publication of JPH04309529A publication Critical patent/JPH04309529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce the title laminate having a low coefficient of linear expansion and a low warpage by a continuous wet process. CONSTITUTION:A process for producing a glass-fiber-reinforced electrical laminate by a continuous wet process, wherein a glass cloth having a mean filament diameter of 9.6-10.2mum, a thickness of 180-200mum and a weight of 210-220g/m<2> (on the basis of metsuke unit (200-2000g/cm<2>) is used to form the outermost base layer, and a nonwoven cloth is used to form the inner base layer. In this way, a glass-fiber-reinforced electrical composite laminate having a low coefficient of linear expansion, a low warpage and excellent mechanical strengths can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はガラス繊維強化電気用コ
ンポジット積層板の製造方法に関する。ここで電気用積
層板とは、各種電気及び電子部品の基板として用いられ
る絶縁板や、印刷回路基板として用いられる金属箔張積
層板を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing glass fiber reinforced electrical composite laminates. Here, the electrical laminate refers to an insulating board used as a substrate for various electrical and electronic components, and a metal foil-clad laminate used as a printed circuit board.

【0002】0002

【背景技術】近年、電子機器の小型化に対応して印刷配
線板への部品の高密度実装および自動装着が発達して来
た。そのため基板として用いられる積層板に要求される
品質も益々厳しくなりつつある。積層板は加工工程およ
び部品を実装した機器の使用中加熱を受け、膨張したり
反りが発生し易い。
BACKGROUND ART In recent years, in response to the miniaturization of electronic devices, high-density mounting and automatic mounting of components onto printed wiring boards have been developed. Therefore, the quality required for the laminates used as substrates is becoming increasingly strict. Laminated plates are subject to heat during processing and during use of equipment on which components are mounted, and are susceptible to expansion and warping.

【0003】ガラス繊維強化コンポジット積層板は、場
合により難燃性樹脂と組合せて主としてOA機器や民生
用機器に使用される。これまで積層板は基材を樹脂ワニ
スで含浸し、乾燥してプリプレグをつくり、これを所要
枚数重ねてプレス成形するバッチ式の乾式法でつくられ
て来た。近年不飽和ポリエステル樹脂やエポキシアクリ
レート樹脂のようにそれ自身液状で、硬化に際し反応副
生成物を発生しない樹脂を用い、基材の含浸から積層硬
化までの工程を連続的に実施する湿式連続法が高い生産
性の故に注目されている。
[0003] Glass fiber reinforced composite laminates are mainly used in office automation equipment and consumer equipment, sometimes in combination with flame-retardant resin. Until now, laminates have been produced using a batch dry method in which the base material is impregnated with resin varnish and dried to create a prepreg, which is stacked in the required number of sheets and press-molded. In recent years, a wet continuous method has been developed that uses resins such as unsaturated polyester resins and epoxy acrylate resins, which are liquid themselves and do not generate reaction by-products during curing, to continuously carry out the process from impregnation of the base material to lamination curing. It is attracting attention because of its high productivity.

【0004】ところが湿式連続法を適用してガラス繊維
強化コンポジット積層板を製造する場合、両外側に配置
するガラスクロスとして、乾式法において一般に使用さ
れているガラスクロスを用いると線膨張率が大きく、反
り量が大きいことがわかった。そこで本発明は、湿式連
続法を適用して線膨張率および反り量の小さいガラス繊
維コンポジット積層板を製造することを目的とする。
However, when manufacturing a glass fiber-reinforced composite laminate by applying the wet continuous method, if glass cloth commonly used in the dry method is used as the glass cloth placed on both outer sides, the coefficient of linear expansion is large; It was found that the amount of warpage was large. Therefore, an object of the present invention is to apply a wet continuous method to produce a glass fiber composite laminate having a small coefficient of linear expansion and a small amount of warpage.

【0005】[0005]

【本発明の開示】本発明は、少なくとも両外側にガラス
クロスを配し、内側にガラス不織布を配した複数枚の基
材列を平行して連続的に搬送下、該基材列を個別的にそ
れ自身液状で硬化に際し反応副生成物を発生しない硬化
性樹脂で含浸し、含浸基材を積層合体し、カバーシート
および/または金属箔をラミネートし、連続的に硬化さ
せた後所望寸法に切断する工程を含むガラス繊維強化電
気用コンポジット積層板の製造方法において、前記ガラ
スクロス基材がフィラメント平均径9.6〜10.2μ
m,厚み180〜200μm,目付け量210〜220
g/m2 のガラスクロスであることを特徴とするガラ
ス繊維強化電気用コンポジット積層板の製造方法を提供
する。本発明により線膨張率および反り量が小さく、か
つ機械強度がすぐれた積層板を得ることができる。
[Disclosure of the Invention] The present invention provides a method for continuously transporting a plurality of base material rows in which glass cloth is arranged on at least both outer sides and a glass nonwoven fabric on the inner side, and the rows of base materials are individually separated. is impregnated with a curable resin that is liquid itself and does not generate reaction by-products during curing, the impregnated base materials are laminated and combined, a cover sheet and/or metal foil is laminated, and after continuous curing, the desired dimensions are obtained. In the method for manufacturing a glass fiber-reinforced electrical composite laminate including a step of cutting, the glass cloth base material has filament average diameters of 9.6 to 10.2μ.
m, thickness 180-200μm, basis weight 210-220
Provided is a method for manufacturing a glass fiber reinforced electrical composite laminate, characterized in that it is a glass cloth of g/m2. According to the present invention, it is possible to obtain a laminate having a small coefficient of linear expansion and a small amount of warpage, and excellent mechanical strength.

【0006】[0006]

【好ましい実施態様】ガラスクロスとは、細いガラスフ
ィラメントを多数本集束したヤーンを、朱子織、平織、
目抜平織、あや織など各種の織り方でタテ、ヨコに織り
込んだ布の総称である。本発明に用いるガラスクロスは
、フィラメントの平均径が9.6〜10.2μmであり
、クロスの厚みが180〜200μm,目付け量が21
0〜220g/m2 のガラスクロスである。例えば該
フィラメントを400本前後集束したヤーンを、タテ4
0〜42本/25mm,ヨコ31〜37本/25mm織
り込んだ平織ガラスクロスが用いられる。
[Preferred Embodiment] Glass cloth is a yarn made of a large number of thin glass filaments, such as satin weave, plain weave,
It is a general term for cloth that is woven vertically and horizontally in various weaving methods, such as plain weave and twill weave. The glass cloth used in the present invention has an average diameter of filaments of 9.6 to 10.2 μm, a thickness of 180 to 200 μm, and a basis weight of 21 μm.
It is a glass cloth with a weight of 0 to 220 g/m2. For example, a yarn made by bunching around 400 filaments is
A plain weave glass cloth is used, which is woven with 0 to 42 pieces/25 mm and 31 to 37 pieces/25 mm horizontally.

【0007】ガラス不織布は、径1〜20μmのガラス
繊維を水中に分散し、バインダーにアクリル樹脂、ポリ
ビニルアルコール、エポキシ樹脂、メラミン樹脂を用い
て湿式抄造した長尺のシート状のガラス不織布(ガラス
ペーパーともいう)や、セルロース繊維とガラス繊維か
らなるガラス混抄紙、ポリエステル等の合成繊維、レー
ヨン、石綿、岩綿などを含むガラス不織布もある。
[0007] Glass nonwoven fabric is a long sheet-like glass nonwoven fabric (glass paper) made by wet-forming glass fibers with a diameter of 1 to 20 μm dispersed in water and using acrylic resin, polyvinyl alcohol, epoxy resin, or melamine resin as a binder. There are also glass-mixed papers made of cellulose fibers and glass fibers, synthetic fibers such as polyester, and glass non-woven fabrics containing rayon, asbestos, rock wool, etc.

【0008】連続積層法に用いるガラスペーパーは、板
厚のバラツキを小さくするために薄い基材を多数枚使用
する方が好ましい。ところが薄いガラスペーパーは、一
般的には強度が弱く、連続搬送する際切断事故がおこる
ことがある。これを防止するためにコア層のガラスペー
パーとしては、フィラメント径がそれぞれ8〜10μm
および5〜7μmで、長さが10〜15mmの2種類の
ガラス繊維を混抄したガラスペーパーを用いるのが更に
好ましい。その様なガラスペーパーは、薄くても十分な
引張強度をもっているからである。
For the glass paper used in the continuous lamination method, it is preferable to use a large number of thin base materials in order to reduce variations in plate thickness. However, thin glass paper generally has low strength, and cutting accidents may occur during continuous conveyance. To prevent this, the core layer glass paper should have a filament diameter of 8 to 10 μm.
It is more preferable to use a glass paper prepared by mixing two types of glass fibers, each having a diameter of 5 to 7 μm and a length of 10 to 15 mm. This is because such glass paper has sufficient tensile strength even if it is thin.

【0009】本発明の実施に当っては、少なくとも両外
側の基材層に前記のガラスクロスを、内側の基材層にガ
ラス不織布を使用することを除き、本出願人の特開昭5
5−4838,同56−98136等に開示されている
湿式連続法を適用することができる。
[0009] In carrying out the present invention, except for using the above-mentioned glass cloth for at least both outer base material layers and glass nonwoven fabric for the inner base material layer,
5-4838, 56-98136, etc. can be applied.

【0010】湿式連続法の特徴の一つは、それ自身液状
で硬化に際し反応副生成物を発生しない硬化性樹脂を基
材含浸用樹脂として使用することである。そのような樹
脂としては、不飽和ポリエステル樹脂、エポキシアクリ
レート樹脂、ポリエステルアクリレート樹脂、ジアリル
フタレート樹脂、それらの混合物等の不飽和樹脂や、エ
ポキシ樹脂がある。ハロゲン含有樹脂、例えばブロム含
有不飽和ポリエステル樹脂とエポキシアクリレート樹脂
との混合物を使用でき、また三酸化アンチモンのような
難燃助剤を含むことができる。
One of the characteristics of the wet continuous method is that a curable resin that is liquid itself and does not generate reaction by-products upon curing is used as the resin for impregnating the base material. Such resins include unsaturated resins such as unsaturated polyester resins, epoxy acrylate resins, polyester acrylate resins, diallyl phthalate resins, mixtures thereof, and epoxy resins. Mixtures of halogen-containing resins, such as bromine-containing unsaturated polyester resins and epoxy acrylate resins, may be used, and flame retardant aids such as antimony trioxide may be included.

【0011】並列的に搬送される基材を前記樹脂で個別
的に含浸した後、これら基材は積層合体され、銅箔のよ
うな金属箔が両面または片面へ張られ、硬化後積層板の
一体部分となる。金属箔を張らない面はポリエステルフ
ィルムのようなカバーシートで被覆され、硬化後剥離さ
れる。その後所定寸法に切断された後、必要あれば後硬
化にかけられる。湿式連続法による電気用積層板の製造
法は、先に引用した本出願人の特許出願、特に特開昭5
6−98136に詳細に開示されているのでこれ以上論
議しない。以下に実施例および比較例をもって本発明を
例証する。
After the substrates conveyed in parallel are individually impregnated with the resin, these substrates are laminated and combined, and a metal foil such as copper foil is applied to both or one side of the laminate after curing. It becomes an integral part. The surface not covered with metal foil is covered with a cover sheet such as a polyester film, which is peeled off after curing. After that, it is cut to a predetermined size and subjected to post-curing, if necessary. The manufacturing method of electrical laminates by the wet continuous method is described in the patent application of the applicant cited above, especially in the Japanese Patent Application Laid-open No. 5
6-98136 and will not be discussed further. The invention is illustrated below with examples and comparative examples.

【0012】実施例1 上下最外層に厚さ190μm、フィラメント径の平均が
9.8μm、坪量215g/m2 のガラスクロスを使
用し中間に直径約9μmで長さが12μmのガラス繊維
を使用した坪量50g/m2 のガラスペーパーを2枚
配して、連続的に搬送しながら、個別に硬化性樹脂液を
含浸させた後合体し、エポキシ樹脂系接着剤層を厚み4
0μmに塗布した厚み18μmの銅箔を両面にラミネー
トした後、トンネル型硬化炉を連続的に通過させて、1
00℃で15分間、150℃で10分間熱硬化させ、厚
み1.6mmの両面銅張不飽和ポリエステル積層板を連
続製造法によって製造した。含浸用樹脂としては、難燃
性不飽和ポリエステル樹脂70重量部(ブロム含量14
重量%)、エポキシアクリレート樹脂30重量部、三酸
化アンチモン4重量部、過酸化ベンゾイル1重量部を均
一に混合した液状樹脂を用いた。
Example 1 Glass cloth having a thickness of 190 μm, an average filament diameter of 9.8 μm, and a basis weight of 215 g/m2 was used for the upper and lower outermost layers, and a glass fiber having a diameter of about 9 μm and a length of 12 μm was used in the middle. Two sheets of glass paper with a basis weight of 50 g/m2 are arranged, and while being conveyed continuously, they are individually impregnated with a curable resin liquid and then combined to form an epoxy resin adhesive layer with a thickness of 4.
After laminating copper foil with a thickness of 18 μm coated to 0 μm on both sides, it was continuously passed through a tunnel type curing furnace.
It was thermally cured at 00° C. for 15 minutes and at 150° C. for 10 minutes to produce a double-sided copper-clad unsaturated polyester laminate having a thickness of 1.6 mm by a continuous manufacturing method. The resin for impregnation was 70 parts by weight of a flame-retardant unsaturated polyester resin (brome content: 14 parts by weight).
%), 30 parts by weight of epoxy acrylate resin, 4 parts by weight of antimony trioxide, and 1 part by weight of benzoyl peroxide were used.

【0013】実施例2 目付け33g/m2 で直径約9μmで長さ12mmの
ガラス繊維と直径が約6μmで長さが12mmのガラス
繊維の混抄不織布を3枚使用することを除いて実施例1
と同じ操作によって厚さ1.6mmの両面銅張積層板を
製造した。
Example 2 Example 1 except that three sheets of mixed nonwoven fabric having a basis weight of 33 g/m 2 and glass fibers having a diameter of approximately 9 μm and a length of 12 mm and glass fibers having a diameter of approximately 6 μm and a length of 12 mm were used.
A double-sided copper-clad laminate with a thickness of 1.6 mm was manufactured by the same operation as above.

【0014】比較例1 基材のガラスクロスに厚さ180μm、フィラメント径
の平均が9.5μm、坪量が200g/m2 のガラス
クロスを上下最外層使用する事を除いて、実施例1と同
じ操作によって厚さ1.6mmの両面銅張積層板を製造
した。
Comparative Example 1 Same as Example 1 except that the upper and lower outermost layers were glass cloth with a thickness of 180 μm, an average filament diameter of 9.5 μm, and a basis weight of 200 g/m2. A double-sided copper-clad laminate with a thickness of 1.6 mm was produced by the operation.

【0015】比較例2 直径約9μmで長さが12mmのガラス繊維よりなる目
付け33g/m2の不織布を用いた場合は、搬送中の切
断をさけるためにバックテンションを下げたため、不織
布が蛇行し、外観上問題のない積層板が得られなかった
。実施例及び比較例の積層板の性能を下表に示す。
Comparative Example 2 When a non-woven fabric made of glass fiber with a diameter of about 9 μm and a length of 12 mm and a basis weight of 33 g/m2 was used, the back tension was lowered to avoid cutting during conveyance, so the non-woven fabric meandered. A laminate with no problems in appearance could not be obtained. The performance of the laminates of Examples and Comparative Examples is shown in the table below.

【表1】[Table 1]

【0016】加熱後反りの評価方法 前記方法によって製造した積層板を250×250mm
の大きさに切断し、片側の銅箔をエッチングにより完全
に除去する。その後、170℃で30分間の加熱処理を
行った後、ガラス平板の上に銅箔が残った側を下にして
置き、積層板の4角のガラス平板からの距離を測定しそ
の最大値を求めた。
Method for evaluating warpage after heating The laminate manufactured by the above method was
The copper foil on one side is completely removed by etching. After that, heat treatment was performed at 170°C for 30 minutes, and then the side with the remaining copper foil was placed on a glass flat plate facing down.The distance from the four corners of the laminate from the glass flat plate was measured and the maximum value was calculated. I asked for it.

【0017】板厚ばらつきの測定方法 前記方法によって製造した定尺板の任意の20点の厚さ
をマイクロメーターではかり、この最大値と最小値の差
を板厚のばらつきとした。
Method for Measuring Plate Thickness Variation The thickness of the standard size plate produced by the above method was measured at arbitrary 20 points using a micrometer, and the difference between the maximum value and the minimum value was defined as the plate thickness variation.

【0018】線膨張係数測定方法 理学社製  TMA8140(昇温速度2℃/min)
で測定した結果をもとに算出した。
[0018] Linear expansion coefficient measurement method: Rigakusha TMA8140 (heating rate 2°C/min)
Calculated based on the results measured in .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも両外側にガラスクロスを配し、
内側にガラス不織布を配した複数枚の基材列を平行して
連続的に搬送下、該基材列を個別的にそれ自身液状で硬
化に際し反応副生成物を発生しない硬化性樹脂で含浸し
、含浸基材を積層合体し、カバーシートおよび/または
金属箔をラミネートし、連続的に硬化させた後所望の寸
法に切断する工程を含むガラス繊維強化電気用コンポジ
ット積層板の製造方法において、前記ガラスクロス基材
がフィラメント平均径9.6〜10.2μm,厚み18
0〜200μm,目付け量210〜220g/m2 の
ガラスクロスであることを特徴とするガラス繊維強化電
気用コンポジット積層板の製造方法。
Claim 1: A glass cloth is arranged on at least both outer sides,
While continuously conveying a plurality of base material rows with glass non-woven fabric arranged on the inside in parallel, the base material rows are individually impregnated with a curable resin that is itself liquid and does not generate reaction by-products upon curing. , a method for producing a glass fiber reinforced electrical composite laminate comprising the steps of laminating and combining impregnated base materials, laminating a cover sheet and/or metal foil, curing continuously, and then cutting into desired dimensions; The glass cloth base material has a filament average diameter of 9.6 to 10.2 μm and a thickness of 18
A method for producing a glass fiber reinforced electrical composite laminate, characterized in that the glass cloth is 0 to 200 μm and has a basis weight of 210 to 220 g/m2.
【請求項2】内側のガラス不織布としてフィラメント平
均径が8〜10μmおよび5〜7μmの2種類のガラス
繊維を混抄したガラス不織布を使用する請求項1のガラ
ス繊維強化電気用コンポジット積層板の製造方法。
2. The method for manufacturing a glass fiber reinforced electrical composite laminate according to claim 1, wherein a glass nonwoven fabric prepared by mixing two types of glass fibers with filament average diameters of 8 to 10 μm and 5 to 7 μm is used as the inner glass nonwoven fabric. .
JP3102050A 1991-04-05 1991-04-05 Production glass-fiber-reinforced electrical composite laminate Pending JPH04309529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102050A JPH04309529A (en) 1991-04-05 1991-04-05 Production glass-fiber-reinforced electrical composite laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102050A JPH04309529A (en) 1991-04-05 1991-04-05 Production glass-fiber-reinforced electrical composite laminate

Publications (1)

Publication Number Publication Date
JPH04309529A true JPH04309529A (en) 1992-11-02

Family

ID=14316940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102050A Pending JPH04309529A (en) 1991-04-05 1991-04-05 Production glass-fiber-reinforced electrical composite laminate

Country Status (1)

Country Link
JP (1) JPH04309529A (en)

Similar Documents

Publication Publication Date Title
JPH04309529A (en) Production glass-fiber-reinforced electrical composite laminate
JPH04309284A (en) Manufacture of glass cloth-reinforced laminated board for electrode use
JPH04325234A (en) Manufacture of glass cloth-reinforced electric laminated board
JPH05318640A (en) Laminated sheet
JPH0356911B2 (en)
JPH0197635A (en) Continuous manufacture of glass fiber reinforced laminated plate for electrical use
JP2500398B2 (en) Metal foil-clad laminate and method for manufacturing the same
JPH04309285A (en) Laminated board for printed circuit
JP2001170953A (en) Method for manufacturing laminated sheet
JPH08174583A (en) Manufacture of laminated board
JPH0592438A (en) Production of laminated sheet
JP3178163B2 (en) Manufacturing method of laminated board
JP2500398C (en)
JP3275496B2 (en) Manufacturing method of metal foil-clad laminate
JPH05111916A (en) Manufacture of laminate
JPH0414875B2 (en)
JPH04326592A (en) Metal-foil-clad laminate for use with printed circuit
JPH0462154A (en) Preparation of electric laminated sheet
JPS62268631A (en) Manufacture of glass-fiber reinforced electrical laminate
JPH05480A (en) Manufacture of laminated sheet
JPH0197637A (en) Manufacture of glass cloth reinforced laminated plate for electrical use
JPH05185552A (en) Production of laminated sheet
JPH0757494B2 (en) Laminated board manufacturing method
JPH04262321A (en) Manufacture of glass cloth reinforced electrical laminated plate
JPH08197680A (en) Continuous production of metal foil clad laminated sheet