JPH0462154A - Preparation of electric laminated sheet - Google Patents

Preparation of electric laminated sheet

Info

Publication number
JPH0462154A
JPH0462154A JP2167806A JP16780690A JPH0462154A JP H0462154 A JPH0462154 A JP H0462154A JP 2167806 A JP2167806 A JP 2167806A JP 16780690 A JP16780690 A JP 16780690A JP H0462154 A JPH0462154 A JP H0462154A
Authority
JP
Japan
Prior art keywords
resin
curing
laminated
base material
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2167806A
Other languages
Japanese (ja)
Inventor
Keiji Imasho
今庄 啓二
Kiyoyuki Minamimura
清之 南村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2167806A priority Critical patent/JPH0462154A/en
Publication of JPH0462154A publication Critical patent/JPH0462154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To prepare an electric laminated sheet reduced in warpage and twist by a method wherein a cover sheet and/or a metal foil is laminated to a laminate of impregnated base materials and the formed laminated sheet is continuously cured and cut to be subjected to post-curing twice or more. CONSTITUTION:A plurality of base material rows are continuously fed in parallel and individually impreqnated with a curable resin solution generating no reaction byproduct to be laminated and unified. Subsequently, a cover sheet and/or a metal foil is laminated to the formed laminated while the laminated sheet thus formed is continuously cured and subsequently cut into a desired dimension. After cutting, post-curing is performed twice or more to obtain an electric laminated sheet improved in warpage and twist. In this case, as the curable resin, an epoxy resin and an unsaturated resin are used and, as the unsaturated resin, an oligoacrylate resin such as an epoxy acrylate resin or a polyester acrylate resin, a spirane resin and a diallyl phthalate resin are designated other than unsaturated polyester.

Description

【発明の詳細な説明】 及血立夏 本発明は、反り特性が改良された電気用積層板の製造方
法に関する。ここで電気用積層板とは、各種電気及び電
子部品の基板として用いられる絶縁積層板や、印刷回路
基板として用いられる金属箔張積層板を意味する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrical laminate having improved warpage characteristics. Here, the electrical laminate refers to an insulating laminate used as a substrate for various electrical and electronic components, and a metal foil-clad laminate used as a printed circuit board.

i員致五点皿■点 特開昭55−4838、同56−98136等には電気
用積層板の連続製造法が開示されている。
JP-A-55-4838, JP-A-56-98136, etc. disclose continuous manufacturing methods for electrical laminates.

該方法は複数枚の基材を連続的に平行して搬送下、該基
材へ個別的に硬化性樹脂液を含浸し、含浸基材を積層し
て合体し、カバーシートおよび/または金属箔をラミネ
ートし、連続的に硬化させた後切断するなどの連続工程
よりなる。
This method involves impregnating a plurality of substrates individually with a curable resin liquid while continuously conveying them in parallel, stacking and combining the impregnated substrates, and forming a cover sheet and/or metal foil. It consists of a continuous process such as laminating, curing continuously, and cutting.

該方法においては基材に含浸した硬化性樹脂液を連続的
に硬化させた後切断し、後硬化を行うのが一般的である
。しかしながら時間的、機械的制約から本来必要とされ
るに十分な後硬化を行うことは困難であった。また、よ
り高い温度で後硬化を行っても、積層板中の内部歪を完
全に取り除くには不十分であり、むしろ高すぎる温度に
さらすことで樹脂の熱劣化を引き起こす危険性があり、
実施の上で問題があった。
In this method, it is common to continuously cure the curable resin liquid impregnated into the base material, and then cut it and perform post-curing. However, due to time and mechanical constraints, it has been difficult to perform sufficient post-curing as originally required. In addition, even if post-curing is performed at a higher temperature, it is not sufficient to completely remove internal strains in the laminate, and there is a risk of thermal deterioration of the resin due to exposure to too high a temperature.
There were problems in implementation.

特開昭61−293853には、積層板のプレス成型に
於いて、加熱加圧する際の加熱冷却を2サイクル以上繰
り返す方法が開示されている。しかしながら、プレス成
型機を用いて積層板の加熱冷却を繰り返し行っても、積
層板中の内部歪を完全に除去する事は実質上困難であり
、また成型機から取り出した後行われる積層板の端部の
切断工程で、新たな歪が発生する可能性があった。また
、連続製造法では、同様の加熱冷却を連続的に行うこと
は、設備上不可能であった。
Japanese Patent Laid-Open No. 61-293853 discloses a method of repeating two or more cycles of heating and cooling during heating and pressing in press molding of a laminate. However, even if the laminate is repeatedly heated and cooled using a press molding machine, it is practically difficult to completely remove the internal strain in the laminate. There was a possibility that new distortion would occur during the cutting process of the ends. Furthermore, in the continuous manufacturing method, it is impossible to perform similar heating and cooling continuously due to equipment limitations.

そのため、従来の連続製造法によって得られた積層板は
、切断後の後硬化を行ってもなお、寸法変化が大きく、
反り捩れに問題があった。特に、加工工程における半田
デイツプ工程やりフロー工程等扁い熱履歴を受ける場合
には、大きな反り捩れが発生した。
Therefore, even after cutting and post-curing, laminates obtained by conventional continuous manufacturing methods still exhibit large dimensional changes.
There was a problem with warping and twisting. In particular, large warping and twisting occurred when subjected to a flat thermal history such as a solder dip process or a flow process in the processing process.

本発明は、電気用積層板の連続製造法に於いて反り捩れ
の小さい電気用積層板を製造することを目的とする。
An object of the present invention is to manufacture an electrical laminate with small warp and twist in a continuous manufacturing method of electrical laminates.

照夾力迭 本発明は、複数枚の基材列を平行して連続的に搬送下、
該基材列へ個別的にそれ自身液状で硬化に際し反応副生
成物を発生しない硬化性樹脂液を含浸し、含浸基材を積
層合体し、カバーシート及び/または金属箔をラミネー
トし、連続的に硬化させた後所望の寸法に切断する工程
を含む電気用積層板の製造方法において、切断後に行う
後硬化を2回以上行うことを特徴とする電気用積層板の
製造方法であり、反り槻れの改良された電気用積層板を
提供する。
The present invention is characterized in that a plurality of rows of base materials are continuously conveyed in parallel,
The rows of base materials are individually impregnated with a curable resin liquid that is liquid itself and does not generate reaction by-products upon curing, the impregnated base materials are laminated and combined, a cover sheet and/or metal foil is laminated, and a continuous process is performed. A method for producing an electrical laminate, which includes a step of curing the electrical laminate to a desired size and then cutting it into a desired size, the method includes performing post-curing two or more times after cutting. The present invention provides an improved electrical laminate.

好1旦見皇施旦碌 本発明の実施にあたっては、後硬化を2回以上行うこと
を除き特開昭55−4838、同5698136等に開
示された技術を適用することができる。なお、連続硬化
させる場合実質無圧で硬化させる場合には設備などが簡
単であり、本発明による改良効果も著しい。
In carrying out the present invention, the techniques disclosed in JP-A-55-4838, JP-A-5698136, etc. can be applied, except that post-curing is performed two or more times. In addition, in the case of continuous curing, the equipment and the like are simple when curing is carried out substantially without pressure, and the improvement effect of the present invention is also remarkable.

これらの連続法では、常温で液状で、硬化に際し揮発性
副生成物を発生しない硬化性樹脂を用いる。このような
硬化性樹脂としては、エポキシ樹脂及び不飽和樹脂があ
る。不飽和樹脂とは、硬化前樹脂がラジカル重合可能な
二重結合不飽87基を含み、該不飽和基のラジカル重合
反応によって硬化するものをいう。不飽和ボリヱステル
はその典型的なものであるが、その他にもエポキシアク
リレート樹脂、ポリエステルアクリレート樹脂等のオリ
ゴアクリレート系樹脂、スピラン樹脂、ジアリルフタレ
ート樹脂等がその例である。本出願人の特開昭62−7
4913に開示されている樹脂組成物は電気用積層板と
して優れた特性を有しており、本発明で使用するのに好
ましい樹脂の例である。
These continuous methods use curable resins that are liquid at room temperature and do not generate volatile byproducts during curing. Such curable resins include epoxy resins and unsaturated resins. The unsaturated resin refers to a resin in which the resin before curing contains 87 radically polymerizable double bond unsaturated groups and is cured by a radical polymerization reaction of the unsaturated groups. Unsaturated polyester is a typical example, but other examples include oligoacrylate resins such as epoxy acrylate resins and polyester acrylate resins, spiran resins, and diallyl phthalate resins. Applicant's Japanese Unexamined Patent Publication No. 62-7
The resin composition disclosed in No. 4913 has excellent properties as an electrical laminate and is an example of a resin preferred for use in the present invention.

硬化性樹脂は、その骨格へ結杏したハロゲン原子、特に
臭素を含有することによって難燃化することができる。
Curable resins can be rendered flame retardant by containing halogen atoms, particularly bromine, bound to their skeletons.

また、ハロゲンを含有しない樹脂へ添加型のハロゲン化
難燃剤を添加することによっても達成することができる
It can also be achieved by adding an additive type halogenated flame retardant to a resin that does not contain halogen.

ラジカル重合型樹脂の硬化には触媒ないし重合開始剤を
必要とする。重合開始剤としては有機過酸化物が一般的
であり、多数のものが公知であるが、本発明の目的に対
しては、特開昭55−530134こ開示されている脂
肪族系のパーオキサイド類が好ましく、特に脂肪族系の
パーオキシエステル類から選ばれたものを単独または併
用して用いるのが好ましい。
A catalyst or polymerization initiator is required for curing of radical polymerizable resins. Organic peroxides are common as polymerization initiators, and a large number of them are known. It is particularly preferable to use those selected from aliphatic peroxyesters alone or in combination.

具体的には、例えばジ−t−ブチルパーオキサイド、2
,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)
ヘキサン、アセチルパーオキサイド、イソブチリルパー
オキサイド、t−ブチルパーオキシ−2−エチルヘキサ
ノエート等である。
Specifically, for example, di-t-butyl peroxide, 2
,5-dimethyl-2,5-di(t-butylperoxy)
These include hexane, acetyl peroxide, isobutyryl peroxide, t-butylperoxy-2-ethylhexanoate, and the like.

脂肪族系のパーオキシエステル類とは、例えばt−ブチ
ルパーオキシアセテート、t−ブチルパーオキシイソブ
チレート、t−ブチルパーオキシ−2−エチルヘキサノ
エート、t−プチルバーオキシラウレートなどをいう。
Aliphatic peroxyesters include, for example, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxy-2-ethylhexanoate, t-butylperoxylaurate, etc. say.

基材はクラフト紙、リンター紙等の紙基材、またはガラ
スクロス、不織布を使用することができる。ガラスクロ
スとは、通常太さ9μm程度のガラスフィラメントを5
0〜800本集束したヤーンを、朱子織り、平織り、口
抜き平織り、綾襟りなどの各種の織り方で、縦、横に織
り込んだ布の総称である。不織布としては、太さ1〜2
0μmのガラス繊維を水中に分散し、バインダーにアク
リル樹脂、ポリビニルアルコール、エポキシ樹脂、メラ
ミン樹脂等を用いて湿式で抄造した長尺のシート状のガ
ラス不織布(ガラスペーパーとも言う)や、紙とガラス
繊維からなるガラス混抄紙、ポリエステル等の合成繊維
、レーヨン、石綿、岩綿などからなる不織布もある。不
織布の一部を紙で代替することもできる。中間の基材層
に不織布を使用したコンポジット構造では、不織布は内
側に板厚に応じて1層もしくは数層使用することが出来
る。
As the base material, a paper base material such as kraft paper or linter paper, glass cloth, or nonwoven fabric can be used. Glass cloth is usually made of 5 glass filaments with a thickness of about 9 μm.
It is a general term for cloth in which 0 to 800 yarns are woven vertically and horizontally in various weaving methods such as satin weave, plain weave, open plain weave, and twill weave. As a non-woven fabric, the thickness is 1 to 2.
A long sheet-shaped glass nonwoven fabric (also called glass paper) made by dispersing 0 μm glass fibers in water and using a binder such as acrylic resin, polyvinyl alcohol, epoxy resin, or melamine resin, or paper and glass. There are also glass-mixed paper made of fibers, synthetic fibers such as polyester, and nonwoven fabrics made of rayon, asbestos, rock wool, etc. Part of the nonwoven fabric can also be replaced with paper. In a composite structure in which a nonwoven fabric is used as an intermediate base material layer, one layer or several layers of nonwoven fabric can be used on the inside depending on the thickness of the board.

またコンポジット構造では、厚み方向の寸法安定性を改
善するため、無機充填材を用いることか通常行われてお
り、その無機充填材は、水不溶性で、絶縁性のものが用
いられる。その例としては、シリカ、アルミナ、ジルコ
ニア、二酸化チタン、亜鉛華などの金属酸化物、水酸化
マグネシウム、水酸化アルミニウムなどの金属水酸化物
、タルク、カオリン、雲母、ワラストナイト、粘土鉱物
などの天然鉱物、炭酸カルシウム、炭酸マグネシウム、
硫酸バリウム、燐酸カルシウムなどの不溶性塩などがあ
る。
In addition, in a composite structure, in order to improve the dimensional stability in the thickness direction, an inorganic filler is usually used, and the inorganic filler is water-insoluble and insulating. Examples include metal oxides such as silica, alumina, zirconia, titanium dioxide, and zinc white, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, talc, kaolin, mica, wollastonite, and clay minerals. Natural minerals, calcium carbonate, magnesium carbonate,
Examples include insoluble salts such as barium sulfate and calcium phosphate.

無機フィラーの充填方法としては、あらかじめ含浸用樹
脂液に分散させて使用するか、無機フィラーを直接混入
させておいたガラス基材−・硬化性樹脂液を含浸するか
、またはフィラーを含んでいない樹脂液でガラス基材を
含浸した後フィラーを充填する方法があるが、いずれの
方法でも良く、また併用することもできる。含浸用樹脂
液へフィラーをあらかじめ分散させておくのが一般的で
ある。
The inorganic filler can be filled by dispersing it in an impregnating resin solution in advance, or by impregnating a glass substrate with the inorganic filler directly mixed in, or by impregnating it with a curable resin solution, or by impregnating it with a curable resin solution, or by impregnating it with a curable resin solution, or by impregnating it with a curable resin solution. Although there is a method of impregnating a glass substrate with a resin liquid and then filling the glass substrate with a filler, either method may be used, or they may be used in combination. Generally, the filler is dispersed in the impregnating resin liquid in advance.

本発明において、硬化性樹脂液を含浸した基材を連続的
に硬化させる方法としては、トンネル型の硬化炉を連続
的に通過させることによって行うことが一般的である。
In the present invention, the method for continuously curing the substrate impregnated with the curable resin liquid is generally carried out by continuously passing it through a tunnel-type curing furnace.

連続的に硬化を行う温度条件及び時間等は、必要とされ
る生産量および機械的能力、触媒量等に応じて適宜決定
することができる。トンネル型硬化炉を通過した後、所
定の寸法に切断する。その後、反応を完全に終了させる
あるいは内部歪を取り除く目的で、後硬化を行うが、本
発明においてはその後硬化を2回以上行うことに特徴が
ある。後硬化の条件としては、用いた樹脂のTg以上、
好ましくはTgよりも10゛C以上高い温度に1回につ
き5分以上置くことにより目的とする効果が得られ、好
ましくは10分以上置くことでより一層の効果を得るこ
とができる。
The temperature conditions, time, etc. for continuous curing can be appropriately determined depending on the required production volume, mechanical ability, amount of catalyst, etc. After passing through a tunnel-type curing furnace, it is cut into predetermined dimensions. Thereafter, post-curing is performed for the purpose of completely terminating the reaction or removing internal strain, and the present invention is characterized in that post-curing is performed two or more times. The conditions for post-curing are: Tg or higher of the resin used;
Preferably, the desired effect can be obtained by leaving it at a temperature 10°C or more higher than Tg for at least 5 minutes at a time, and even better effects can be obtained by leaving it preferably for 10 minutes or more.

後硬化を行う回数としては、本発明においては最低2回
以上行うことが必須であり、必要に応じて、3回以上行
っても良い。ただし、3回以上行う場合は、熱による樹
脂の劣化が起こる可能性もあり、緒特性に注意を払う必
要がある。
In the present invention, it is essential to carry out post-curing at least twice, and it may be carried out three or more times if necessary. However, if the process is repeated three or more times, there is a possibility that the resin will deteriorate due to heat, so it is necessary to pay attention to the properties of the resin.

また、2回目以降の後硬化は、その直前に行った加熱か
ら少なくともTg以下に冷却された後に行う必要があり
、好ましくはTgよりも10’C以上低い温度まで冷却
された後に行うと本発明が目的とする反り捩れの小さい
積層板を得ることができる。
In addition, the second and subsequent post-curing needs to be performed after the heating performed immediately before is cooled to at least Tg or lower, and preferably after cooling to a temperature 10'C or more lower than Tg, according to the present invention. It is possible to obtain a laminate with small warpage and twist, which is the objective of the method.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例 上下最外層に厚さ180μm、坪量210g/ボのガラ
スクロスを各1枚配し、中間に坪量40g/rrTのガ
ラスペーパーを3枚配し、これら基材をロールから連続
的に繰り出しそれらへ個別的に、市販の不飽和ポリエス
テル樹脂(武田薬品ポリマール6311.Tg約100
″C)90重量部、スチレン10重量部、ベンゾイルパ
ーオキサイド1重量部、水酸化アルミニウム50重量部
よりなる樹脂液を含浸し、合体し、エポキシ系接着剤を
塗布した厚さ18μmの銅箔を両面にラミネートし、ト
ンネル炉を通過させることにより110°Cで30分間
硬化した後切断した。その後、150°CIO分の後硬
化を行い、60″Cまで冷却後、再度150”C10分
の後硬化を行い、厚さ1.6−の両面銅箔張り積層板を
得た。
Example: One sheet of glass cloth with a thickness of 180 μm and a basis weight of 210 g/rrT was placed in the upper and lower outermost layers, and three sheets of glass paper with a basis weight of 40 g/rrT were placed in the middle, and these base materials were continuously rolled from a roll. Pay out and individually add commercially available unsaturated polyester resin (Takeda Pharmaceutical Polymer 6311.Tg approx. 100
``C) Copper foil with a thickness of 18 μm impregnated with a resin liquid consisting of 90 parts by weight, 10 parts by weight of styrene, 1 part by weight of benzoyl peroxide, and 50 parts by weight of aluminum hydroxide, combined, and coated with an epoxy adhesive. It was laminated on both sides and cured for 30 minutes at 110°C by passing through a tunnel furnace before being cut. It was then post-cured for 150°CIO minutes, cooled to 60"C, and then cured again at 150"C for 10 minutes. After curing, a double-sided copper foil-clad laminate having a thickness of 1.6 mm was obtained.

比較例1 後硬化を150°CIO分1回のみ行ったことを除いて
、実施例と同じ操作により、厚さ1.6閣の両面銅箔張
り積層板を得た。
Comparative Example 1 A double-sided copper foil-clad laminate with a thickness of 1.6 cm was obtained by the same operation as in the example except that post-curing was performed only once at 150° CIO.

比較例2 後硬化を180°CIO分1回のみ行ったことを除いて
、実施例と同じ操作により、厚さ1.6閣の両面銅箔張
り積層板を得た。
Comparative Example 2 A double-sided copper foil-clad laminate with a thickness of 1.6 cm was obtained by the same operation as in the example except that post-curing was performed only once at 180° CIO.

実施例及び比較例の積層板の性能を下表に示す。The performance of the laminates of Examples and Comparative Examples is shown in the table below.

(1)加熱後反り評価方法 前記方法によって製造した積層板を250 X250胴
の大きさに切断し、片側の銅箔をエツチングにより完全
に除去する。その後、170°Cで30分間の加熱処理
を行った後、ガラス平板のうえに銅箔が残った側を下に
して置き、積層板の4角のガラス平板からの距離を測定
しその最大値を求めた。
(1) Method for evaluating warpage after heating The laminate produced by the above method is cut into a size of 250 x 250, and the copper foil on one side is completely removed by etching. After that, heat treatment was performed at 170°C for 30 minutes, and the side with the remaining copper foil was placed on the glass flat plate facing down.The distance from the four corners of the laminate from the glass flat plate was measured and the maximum value was measured. I asked for

(2)加熱収縮率の測定方法 両面全面エツチングした200mmX20mmのTD長
手のサンプルを作成し、長手方向の両端から各10nn
の位置に印を付ける。その印の距離を170 ”C30
分加熱処理を行う前後で測定し、加熱収縮率を測定する
(2) Method for measuring heat shrinkage rate Create a 200 mm x 20 mm long TD sample with full etching on both sides, and 10 nn from each end in the longitudinal direction.
Mark the position. The distance of that mark is 170”C30
The heat shrinkage rate is measured before and after the heat treatment.

Claims (4)

【特許請求の範囲】[Claims] (1)複数枚の基材列を平行して連続的に搬送下、該基
材列へ個別的にそれ自身液状で硬化に際し反応副生成物
を発生しない硬化性樹脂液を含浸し、含浸基材を積層合
体し、カバーシート及び/または金属箔をラミネートし
、連続的に硬化させた後所望の寸法に切断する工程を含
む電気用積層板の製造方法において、切断後に行う後硬
化を2回以上行うことを特徴とする電気用積層板の製造
方法。
(1) While continuously conveying a plurality of substrate rows in parallel, the substrate rows are individually impregnated with a curable resin liquid that is liquid itself and does not generate reaction by-products during curing, and the impregnated base material is In a method for producing electrical laminates, which includes a step of laminating and combining materials, laminating a cover sheet and/or metal foil, curing continuously, and then cutting into desired dimensions, post-curing is performed twice after cutting. A method for manufacturing an electrical laminate, characterized by carrying out the above steps.
(2)硬化性樹脂液が、不飽和ポリエステル樹脂、オリ
ゴアクリレート系樹脂の単独または混合物を主成分とす
る第1項に記載の電気用積層板の製造方法。
(2) The method for manufacturing an electrical laminate according to item 1, wherein the curable resin liquid contains as a main component an unsaturated polyester resin, an oligoacrylate resin, or a mixture thereof.
(3)基材がガラス基材である第1項ないし第2項に記
載の電気用積層板の製造方法。
(3) The method for producing an electrical laminate according to items 1 and 2, wherein the base material is a glass base material.
(4)両外側に用いる基材がガラスクロス、内側が不織
布である第1項ないし第2項に記載の電気用積層板の製
造方法。
(4) The method for producing an electrical laminate according to items 1 and 2, wherein the base material used on both outer sides is glass cloth, and the inner side is a nonwoven fabric.
JP2167806A 1990-06-26 1990-06-26 Preparation of electric laminated sheet Pending JPH0462154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167806A JPH0462154A (en) 1990-06-26 1990-06-26 Preparation of electric laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167806A JPH0462154A (en) 1990-06-26 1990-06-26 Preparation of electric laminated sheet

Publications (1)

Publication Number Publication Date
JPH0462154A true JPH0462154A (en) 1992-02-27

Family

ID=15856456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167806A Pending JPH0462154A (en) 1990-06-26 1990-06-26 Preparation of electric laminated sheet

Country Status (1)

Country Link
JP (1) JPH0462154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846549A3 (en) * 1996-12-05 2001-02-07 Kinergy Pte Ltd. Forming three-dimensional models

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846549A3 (en) * 1996-12-05 2001-02-07 Kinergy Pte Ltd. Forming three-dimensional models

Similar Documents

Publication Publication Date Title
JPH0462154A (en) Preparation of electric laminated sheet
JPH04243185A (en) Laminated board for printed circuit
JPH05318640A (en) Laminated sheet
JP3275496B2 (en) Manufacturing method of metal foil-clad laminate
JPH06338667A (en) Single surface copper-clad laminate for printed circuit board
JPH04309284A (en) Manufacture of glass cloth-reinforced laminated board for electrode use
JPH0414875B2 (en)
JPH04243186A (en) Laminated board for printed circuit
JPH0565322A (en) Thermosetting resin composition and production of laminate from the same
JPH0369353A (en) Manufacture of copper-clad laminated board
JPS5985751A (en) Copper lined laminated board
JPH06336527A (en) Single-copper-clad laminate for printed circuit
JPH05111916A (en) Manufacture of laminate
JPH0592438A (en) Production of laminated sheet
JPH06336528A (en) Single-copper-clad laminate for printed circuit
JPH0757494B2 (en) Laminated board manufacturing method
JPH04266083A (en) Metal foil clad laminated plate for electricity
JPH04223113A (en) Manufacture of laminated sheet
JPH05185559A (en) Production of laminated sheet
JPH04268785A (en) Copper plated laminated board
JPS63207830A (en) Production of laminated sheet
JPH04309529A (en) Production glass-fiber-reinforced electrical composite laminate
JPH04326592A (en) Metal-foil-clad laminate for use with printed circuit
JPH05185552A (en) Production of laminated sheet
JPH04262321A (en) Manufacture of glass cloth reinforced electrical laminated plate