JP2024520095A - Flexible reflective material for increasing light capture rate of double-glazed solar panels and its preparation method and use - Google Patents

Flexible reflective material for increasing light capture rate of double-glazed solar panels and its preparation method and use Download PDF

Info

Publication number
JP2024520095A
JP2024520095A JP2023573390A JP2023573390A JP2024520095A JP 2024520095 A JP2024520095 A JP 2024520095A JP 2023573390 A JP2023573390 A JP 2023573390A JP 2023573390 A JP2023573390 A JP 2023573390A JP 2024520095 A JP2024520095 A JP 2024520095A
Authority
JP
Japan
Prior art keywords
treatment
preparation
titanium dioxide
paste resin
reflective material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023573390A
Other languages
Japanese (ja)
Inventor
剣波 朱
伯存 陳
海平 楊
澤忠 羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG HAILIDE NEW MATERIAL CO Ltd
Original Assignee
ZHEJIANG HAILIDE NEW MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG HAILIDE NEW MATERIAL CO Ltd filed Critical ZHEJIANG HAILIDE NEW MATERIAL CO Ltd
Publication of JP2024520095A publication Critical patent/JP2024520095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0009Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0061Organic fillers or organic fibrous fillers, e.g. ground leather waste, wood bark, cork powder, vegetable flour; Other organic compounding ingredients; Post-treatment with organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0077Embossing; Pressing of the surface; Tumbling and crumbling; Cracking; Cooling; Heating, e.g. mirror finish
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/04Properties of the materials having electrical or magnetic properties
    • D06N2209/043Insulating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/067Flame resistant, fire resistant
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/08Properties of the materials having optical properties
    • D06N2209/0876Reflective
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/103Resistant to mechanical forces, e.g. shock, impact, puncture, flexion, shear, compression, tear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/14Properties of the materials having chemical properties
    • D06N2209/146Soilproof, soil repellent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1642Hardnes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1692Weather resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2213/00Others characteristics
    • D06N2213/02All layers being of the same kind of material, e.g. all layers being of polyolefins, all layers being of polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】本発明は、二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材及びその調製方法と使用を開示する。【解決手段】上記の調製方法は、主に防水処理、テンターセッティング処理、PVCペースト樹脂スラリーのプライマーコーティング処理、PVCペースト樹脂スラリーのカバーコーティング処理、ゲル化処理、乾燥・可塑化処理、ポリフッ化ビニリデンによるグラビア印刷表面処理3回、その後のエンボス処理、冷却セッティング処理などの工程が含まれる。本発明によって提供されるフレキシブル反射材は、反射率が高く、耐候性に優れ、太陽電池パネルの温度上昇を引き起こさないと共に、本発明によって調製されるフレキシブル反射材は、全体としてフレキシブルであり、建設、実装、整備が容易であり、太陽電池の様々な場面での実装及び使用の要件に適する。【選択図】図1[Problem] The present invention discloses a flexible reflective material for increasing the light receiving rate of double-glazed solar panels, and its preparation method and use. [Solution] The above preparation method mainly includes the steps of waterproofing, tenter setting, primer coating with PVC paste resin slurry, cover coating with PVC paste resin slurry, gelling, drying and plasticizing, gravure printing surface treatment with polyvinylidene fluoride three times, followed by embossing and cooling setting. The flexible reflective material provided by the present invention has high reflectivity, excellent weather resistance, and does not cause the temperature rise of the solar panel, and the flexible reflective material prepared by the present invention is flexible as a whole, easy to construct, install and maintain, and suitable for the requirements of installation and use in various scenes of solar cells. [Selected Figure] Figure 1

Description

本発明は、反射材の技術分野に属し、具体的に二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材及びその調製方法と使用に関する。 The present invention belongs to the technical field of reflective materials, and specifically relates to a flexible reflective material for increasing the light receiving rate of double-glazed solar panels, and its preparation method and use.

近年、太陽電池発電技術は、急速に発展している。二重ガラス太陽電池パネルは、太陽光発電システムの重要なコンポーネントであり、通常2枚のガラスの間に太陽電池パネルを複合して作られるものを指し、従来のバックシートを備えた太陽電池パネルと比較して、二重ガラス太陽電池パネルは、優れた耐摩耗性を備えており、耐食性などの特性と耐候性が強化されており、極端な気象条件での実装使用に適している。 In recent years, solar power generation technology has been developing rapidly. Double-glass solar panels are an important component of photovoltaic power generation systems and are usually made by combining a solar panel between two pieces of glass. Compared with solar panels with traditional backsheets, double-glass solar panels have excellent wear resistance, corrosion resistance and other properties, and enhanced weather resistance, making them suitable for implementation and use in extreme weather conditions.

二重ガラス太陽電池パネルは、太陽光がなければ発電できないが、二重ガラス太陽電池パネルの受光率をいかに高めるかが太陽光発電のメリットに直結する。従来技術では、研磨されて酸化された純度99.5%のアルミニウム板の拡散反射は約0.50にしか達せず、より良い拡散反射を持つ白色セラミックタイルは約0.55である。アルミニウム板とセラミックタイルは、比較的硬く、敷設する場面が非常に限られており、アルミニウム板とセラミックタイルをシームレスに接合するのは面倒で労働集約的であり、また、アルミニウム板とセラミックタイルの鏡面発光により温度が上昇し、さらに太陽電池パネルの耐用年数に影響を及ぼす。コーティングされた高密度線状ポリエチレンは、高性能な材料であるが、その拡散反射率が約0.56~0.58であると共に、コーティングされた高密度線状ポリエチレンの物性は、強度が劣り、粗いデニールと高密度のメッシュを使用した場合、鋳造を繰り返しても表面を平坦にすることが困難であり、主にダイヘッドの押出能力が限られているため、このプロセスでは往復型複数の鋳造コーティングが必要であり、生産効率が非常に低くなり、生産量が限られている。 A double-glazed solar panel cannot generate electricity without sunlight, but how to increase the light receiving rate of the double-glazed solar panel is directly related to the benefits of solar power generation. In the conventional technology, the diffuse reflectance of a polished and oxidized 99.5% pure aluminum plate only reaches about 0.50, while the white ceramic tile with better diffuse reflectance is about 0.55. The aluminum plate and ceramic tile are relatively hard and have very limited installation scenarios, and it is troublesome and labor-intensive to seamlessly join the aluminum plate and ceramic tile, and the specular emission of the aluminum plate and ceramic tile will increase the temperature, which will further affect the service life of the solar panel. Coated high-density linear polyethylene is a high-performance material, but its diffuse reflectance is about 0.56 to 0.58. The physical properties of coated high-density linear polyethylene are poor in strength, and when coarse denier and high density mesh are used, it is difficult to make the surface flat even after repeated casting. This process requires multiple reciprocating casting coatings, mainly due to the limited extrusion capacity of the die head, which results in very low production efficiency and limited production volume.

従来技術の不足について、本発明の目的は、二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材及びその調製方法と使用を提供することにあり、本発明によって提供されるフレキシブル反射材を使用することにより、280nm~1100nmの波長帯域で約82%の拡散反射率を生成することができ、二重ガラス太陽電池パネルの受光率を大幅に増加させ、発電効率を向上させると共に、本発明によって提供されるフレキシブル反射材を使用することにより、二重ガラス太陽電池パネルの温度が上昇せず、二重ガラス太陽電池パネルの耐用年数が延長される。 Regarding the shortcomings of the prior art, the objective of the present invention is to provide a flexible reflective material for increasing the light receiving rate of a double-glass solar panel, and a preparation method and use thereof. By using the flexible reflective material provided by the present invention, a diffuse reflectance of about 82% can be generated in the wavelength band of 280 nm to 1100 nm, which greatly increases the light receiving rate of the double-glass solar panel and improves the power generation efficiency. At the same time, by using the flexible reflective material provided by the present invention, the temperature of the double-glass solar panel does not increase, and the service life of the double-glass solar panel is extended.

上記の目的を達成するために、本発明は以下の技術的解決手段を採用する。 To achieve the above objectives, the present invention employs the following technical solutions:

二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施す工程S1、
工程S1で処理された基本メッシュに、PVC(polyvinyl chloride、ポリ塩化ビニル)ペースト樹脂スラリーのプライマーコーティング処理、PVCペースト樹脂スラリーのカバーコーティング処理を施す工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施す工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理を3回施し、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれる。
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel includes:
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment;
Step S2: applying a primer coating treatment of PVC (polyvinyl chloride) paste resin slurry to the basic mesh processed in step S1, and a cover coating treatment of PVC paste resin slurry;
The method includes a step S3 of subjecting the basic mesh coated in the step S2 to a gelling treatment, drying and plasticizing treatment, and a step S4 of subjecting the basic mesh treated in the step S3 to a gravure printing surface treatment using polyvinylidene fluoride three times, an embossing treatment and a cooling setting treatment to obtain a flexible reflective material.

本発明のより好ましい技術的解決手段として、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、重量部で以下の原料からなる。 As a more preferred technical solution of the present invention, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is composed of the following ingredients by weight:

Figure 2024520095000002
Figure 2024520095000002

本発明のさらに好ましい技術的解決手段として、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、重量部で以下の原料からなる。 As a further preferred technical solution of the present invention, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is composed of the following ingredients by weight:

Figure 2024520095000003
Figure 2024520095000003

本発明のさらなる好ましい技術的解決手段として、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、重量部で以下の原料からなる。 As a further preferred technical solution of the present invention, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is composed of the following ingredients by weight:

Figure 2024520095000004
Figure 2024520095000004

本発明のより好ましい技術的解決手段として、工程S1におけるテンターセッティング処理は、170~200℃で120~180秒間処理する。 As a more preferred technical solution of the present invention, the tenter setting process in step S1 is carried out at 170 to 200°C for 120 to 180 seconds.

本発明のより好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して70~75℃に加熱し、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させ、乾燥後0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得ることが含まれ、ここで、0.15~0.2μmの改質二酸化チタンは53%~55%であり、0.2~0.5μmの改質二酸化チタンは42%~46%であり、0.4~0.5μmの改質二酸化チタンは3%~5%である。 As a more preferred technical solution of the present invention, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes preparing rutile titanium dioxide into a 2%wt suspension, then adding 3% of sodium hexametaphosphate by weight of the suspension, shaking uniformly and heating to 70-75°C, adding 3% of sodium silicate solution by weight of the suspension, and adding dilute sulfuric acid to adjust the pH value of the system to 9, aging for 1.5 hours while keeping the temperature constant, and finally drying at 115°C, and grinding to a particle size of 0.15-0.5μm after drying to obtain modified titanium dioxide, where the modified titanium dioxide of 0.15-0.2μm is 53%-55%, the modified titanium dioxide of 0.2-0.5μm is 42%-46%, and the modified titanium dioxide of 0.4-0.5μm is 3%-5%.

本発明のより好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 As a more preferred technical solution of the present invention, the preparation of the above PVC paste resin slurry includes proportionally weighing each ingredient and mixing them uniformly.

本発明のより好ましい技術的解決手段として、工程S2におけるプライマーコーティングの坪量は115~125グラムであり、カバーコーティングの坪量は105~120グラムである。 As a more preferred technical solution of the present invention, the basis weight of the primer coating in step S2 is 115-125 grams, and the basis weight of the cover coating is 105-120 grams.

本発明のより好ましい技術的解決手段として、工程S3におけるゲル処理は135~150℃で35~45秒間ゲル化することである。 As a more preferred technical solution of the present invention, the gel treatment in step S3 is performed at 135 to 150°C for 35 to 45 seconds.

本発明のより好ましい技術的解決手段として、工程S3における乾燥可塑化は、170~190℃で60~90秒間乾燥可塑化することである。 As a more preferred technical solution of the present invention, the dry plasticization in step S3 is carried out at 170 to 190°C for 60 to 90 seconds.

本発明のより好ましい技術的解決手段として、工程S4におけるポリフッ化ビニリデンによる各グラビア印刷表面処理は、130~150℃で60~90秒間乾燥して成膜し、成膜の厚さは30μmである。 As a more preferred technical solution of the present invention, each gravure printing surface treatment with polyvinylidene fluoride in step S4 is dried at 130 to 150°C for 60 to 90 seconds to form a film, the thickness of which is 30 μm.

同時に、本発明は、さらに上記のいずれか一つの方法によって調製されるフレキシブル反射材を提供する。 At the same time, the present invention further provides a flexible reflective material prepared by any one of the above methods.

同時に、本発明は、さらに上記のフレキシブル反射材の二重ガラス太陽電池パネルの受光率を高めるための使用を提供する。 At the same time, the present invention further provides the use of the above-mentioned flexible reflector to increase the light reception rate of a double-glazed solar panel.

従来技術に比べて、本発明は、以下の有益な効果を有する。 Compared to the prior art, the present invention has the following beneficial effects:

(1)本発明によって提供される二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、特別なPVCペースト樹脂スラリーによるプライマーとオーバーレイ、及び複数回のポリフッ化ビニリデンによる表面処理を通じて、調製されたフレキシブル反射材に、高い拡散反射率(380nm~780nmの可視光下で0.91の拡散反射率があり、280nm~1100nm紫外線UVA及びUVBから近赤外線下で0.82の拡散反射率がある)、引張り強度、引き裂き強度、耐候性、及びセルフクリーニング特性を持たせることができ、砂漠化などの地域での太陽電池の実装要件に適する。 (1) The method for preparing a flexible reflective material for enhancing the light receiving rate of a double-glazed solar panel provided by the present invention uses a special PVC paste resin slurry primer and overlay, and multiple surface treatments with polyvinylidene fluoride, to give the prepared flexible reflective material high diffuse reflectance (diffuse reflectance of 0.91 under visible light of 380 nm to 780 nm, and diffuse reflectance of 0.82 under ultraviolet UVA and UVB to near infrared light of 280 nm to 1100 nm), tensile strength, tear strength, weather resistance, and self-cleaning properties, which are suitable for the implementation requirements of solar cells in areas such as desertification.

(2)本発明によって提供される二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法において、基本メッシュは、パッダ(padder)によるイオン型防水剤処理、セッティングが施され、汚れや汚水などの吸収を防ぐウィッキング防止機能を有し、汚れや汚水の吸入により主材にカビが発生し、陽イオン型防水剤はパーフルオロオクタン酸アンモニウムとパーフルオロオクタンスルホニル化合物を含まないため、環境汚染がなく、プライマーとオーバーレイのPVCペースト樹脂スラリーの機能性コートは、ゲル化、乾燥可塑化した後で、優れた難燃性、耐候性、及び高拡散反射性を提供し、3回のポリフッ化ビニリデンによるグラビア印刷表面処理の後、表面に緻密な層が形成され、可塑剤のバリア、セルフクリーニング特性、耐摩耗、耐UV性を提供し、3回の設計されたポリフッ化ビニリデンの表面処理により、表面全体をポリフッ化ビニリデンフィルムでコーティングすることができるが、1回の表面処理では、アニロックスローラーが網目状の壁を有し、各メッシュのインク担持量を100%基材表面に伝えることができないため、表面処理を3回重ねて設計されたプロセスにより、基材全体の表面を完全にコーティングすることができ、良好の緻密な層を形成し、優れた耐候性とセルフクリーニング特性を提供することができ、ポリフッ化ビニリデンの結合エネルギーは485KJ/molであり、UVAの340KJ/molとUVBの380KJ/molよりも高く、優れた耐候性を提供することができ、ポリフッ化ビニリデンは、表面エネルギーが低く、材料表面に落ちた砂などは風で吹き飛ばされやすく、表面にある汚れなどは雨で洗い流されやすいため、反射材としての優れたセルフクリーニング特性が与えられる。 (2) In the method for preparing a flexible reflective material for increasing the light receiving rate of a double-glazed solar panel provided by the present invention, the base mesh is treated with an ionic waterproofing agent by a padder and set, and has a wicking prevention function to prevent the absorption of dirt, sewage, etc., and the main material is protected from mold growth due to the absorption of dirt and sewage. The cationic waterproofing agent does not contain ammonium perfluorooctanoate and perfluorooctanesulfonyl compounds, so there is no environmental pollution. The functional coat of the primer and overlay PVC paste resin slurry provides excellent flame retardancy, weather resistance, and high diffuse reflectivity after gelation, drying, and plasticization. After three gravure printing surface treatments with polyvinylidene fluoride, a dense layer is formed on the surface, providing a plasticizer barrier, self-cleaning properties, abrasion resistance, and UV resistance. The surface of the three designed polyvinylidene fluoride By surface treatment, the entire surface can be coated with polyvinylidene fluoride film, but with a single surface treatment, the anilox roller has mesh-like walls and each mesh cannot transfer 100% of the ink carrying capacity to the substrate surface. Therefore, a process designed by overlapping surface treatment three times can completely coat the entire substrate surface, forming a good dense layer and providing excellent weather resistance and self-cleaning properties. The bond energy of polyvinylidene fluoride is 485 KJ/mol, which is higher than UVA's 340 KJ/mol and UVB's 380 KJ/mol, providing excellent weather resistance. Polyvinylidene fluoride has low surface energy, so sand that falls on the material surface is easily blown away by the wind, and dirt on the surface is easily washed away by rain, giving it excellent self-cleaning properties as a reflective material.

(3)本発明によって提供されるプライマー及びオーバーレイに使用されるPVCペースト樹脂スラリーは、出願人によって創造的に提案されたものである。スラリーに使用されるクレジルジフェニルホスフェートは、電気絶縁性、耐低温性、耐加水分解性に優れ、可塑性も良好であり、塗膜の重量が軽いため、三酸化アンチモンだけでは理想的なコートを実現することが困難である。難燃効果があるため、難燃可塑剤であるトルエンジフェニルリン酸塩と三酸化アンチモンの相乗効果で難燃効果を発揮する。 (3) The PVC paste resin slurry used in the primer and overlay provided by the present invention was creatively proposed by the applicant. The cresyl diphenyl phosphate used in the slurry has excellent electrical insulation, low temperature resistance, and hydrolysis resistance, as well as good plasticity. The coating film is light in weight, making it difficult to achieve an ideal coat using antimony trioxide alone. Because it has a flame retardant effect, the flame retardant effect is achieved through the synergistic effect of toluene diphenyl phosphate, a flame retardant plasticizer, and antimony trioxide.

(4)本発明によって提供されるPVCペースト樹脂スラリーに使用されるジオクタデシルペンタエリスリトールジホスファイトは、テトラエリスリトールエステルと亜リン酸エステルとを含む物質であり、亜リン酸エステルは、ヒドロペルオキシドの分解能力(ヒンダードフェノール系酸化防止剤であるテトラエリスリトールエステルにはない)に優れると共に、良好な色保護性能も備えており、ヒンダードフェノール酸化防止剤であるテトラエリスリトールエステルが酸化された後の染色基を漂白することができる。又、ジオクタデシルペンタエリスリトールジホスファイト、粉末カルシウム亜鉛安定剤中の脂肪酸亜鉛、及び配合中のエポキシ化大豆油は、安定な系を形成し、紫外吸収剤との相乗効果が得られ、3つの物質は相乗的に酸化防止効果がより顕著且つ効率的になり、フリーラジカルを捕捉することができ、安定化効果がよく、製品加工時の熱安定性、色安定化効果がよく、その後で使用時の熱安定性、耐侯性、耐加水分解安定性、及び製品透明保持性に優れている。同時に、本発明で使用されるジオクタデシルペンタエリスリトールジホスファイトと粉末カルシウム亜鉛安定剤は、毒性が低く、従来の亞リン酸エステル類の酸化防止剤、液体バリウム亜鉛安定剤を使用する場合に存在するノニルフェノール、ビスフェノールA、及び遊離フェノールなどの物質によって引き起こされる潜在的毒性を回避する。 (4) The dioctadecyl pentaerythritol diphosphite used in the PVC paste resin slurry provided by the present invention is a substance containing tetraerythritol ester and phosphite ester, and the phosphite ester has excellent hydroperoxide decomposition ability (not found in tetraerythritol ester, a hindered phenol antioxidant), as well as good color protection performance, and can bleach the dye base after the oxidation of tetraerythritol ester, a hindered phenol antioxidant. In addition, dioctadecyl pentaerythritol diphosphite, fatty acid zinc in the powdered calcium zinc stabilizer, and epoxidized soybean oil in the formulation form a stable system and obtain a synergistic effect with the ultraviolet absorber, and the three substances synergistically make the antioxidant effect more prominent and efficient, can capture free radicals, have a good stabilization effect, have good thermal stability and color stabilization effects during product processing, and are excellent in thermal stability, weather resistance, hydrolysis resistance, and product transparency retention during subsequent use. At the same time, the dioctadecyl pentaerythritol diphosphite and powdered calcium zinc stabilizer used in the present invention have low toxicity, avoiding potential toxicity caused by substances such as nonylphenol, bisphenol A, and free phenol that are present when using traditional phosphate antioxidants and liquid barium zinc stabilizers.

(5)本発明によって提供されるPVCペースト樹脂スラリーに使用される可塑剤は、LINPLAST 1012 BPであり、耐高温性を有し、従来使用されるトリオクチルトリメリテートなどの物質が存在する高粘度、コーティング中のスラリー粘度の急激な増加、短いオープンタイムなどの不足を回避することができると共に、可塑剤LINPLAST 1012 BPは、耐低温性もあり、毒性が低く、セバシン酸ジオクチルに相当する。 (5) The plasticizer used in the PVC paste resin slurry provided by the present invention is LINPLAST 1012 BP, which has high temperature resistance and can avoid the deficiencies such as high viscosity, rapid increase in slurry viscosity during coating, and short open time that are present in substances such as trioctyl trimellitate that are conventionally used. At the same time, the plasticizer LINPLAST 1012 BP is also low temperature resistant and has low toxicity, and is equivalent to dioctyl sebacate.

(6)本発明によって提供されるPVCペースト樹脂スラリーに使用される改質二酸化チタンは、ルチル二酸化チタンを二酸化ケイ素でコーティングすることにより得られる。ルチル二酸化チタンの屈折率は2.73程度であるが、純粋なルチル型二酸化チタン粒子の表面は、水蒸気と酸素の存在下では光化学的に活性であり、非光化学的に安定であり、粒子周囲の基材の分解を促進する可能性があるため、本発明ではそれに二酸化ケイ素でコートした後で使用すると、二酸化チタン粒子の周囲の表面と有機樹脂との間に遮蔽網が形成され、有機樹脂の分解が大幅に軽減され、ルチル型二酸化チタンが光安定化される。そして、二酸化ケイ素でコーティングされたルチル型二酸化チタンは、ルチル型二酸化チタンの凝集を効果的に防止することができ、その凝集により光の乱反射が低減される。二酸化ケイ素でコーティングされたルチル型二酸化チタンは、強力な耐粉末化性能を有し、様々な過酷な環境下で主材の樹脂表面が光化学分解を起こしても、二酸化チタンなどが表面に突出し、粉砕がさらに進むのを大幅に遅らせる。 (6) The modified titanium dioxide used in the PVC paste resin slurry provided by the present invention is obtained by coating rutile titanium dioxide with silicon dioxide. The refractive index of rutile titanium dioxide is about 2.73, but the surface of pure rutile titanium dioxide particles is photochemically active and non-photochemically stable in the presence of water vapor and oxygen, which may promote the decomposition of the substrate around the particles. Therefore, in the present invention, when it is used after being coated with silicon dioxide, a shielding net is formed between the surface around the titanium dioxide particles and the organic resin, which greatly reduces the decomposition of the organic resin and photostabilizes the rutile titanium dioxide. And the rutile titanium dioxide coated with silicon dioxide can effectively prevent the aggregation of rutile titanium dioxide, which reduces the diffuse reflection of light. The rutile titanium dioxide coated with silicon dioxide has strong powder resistance, and even if the surface of the main resin undergoes photochemical decomposition under various harsh environments, the titanium dioxide and the like protrude to the surface, greatly delaying further grinding.

(7)本発明によって提供されるPVCペースト樹脂スラリーに使用されるナノ炭酸カルシウムは、改質二酸化チタンとの相乗的な高い拡散反射効果を形成することができる。しかし、フィラー粒子の直径が大きいと窓効果が形成され、光束が増加し、有効な拡散反射が減少するため、本発明で繰り返し実験した結果、3000メッシュのナノ炭酸カルシウムは空間を埋める効果があり、二酸化チタンを効果的に相乗的に改質して拡散反射率を増加させることができる。さらに、可塑剤LINPLAST 1012 BPと粉末カルシウム亜鉛安定剤には、ノニルフェノール、ビスフェノールA、及び遊離フェノールが含まれていないため、改質二酸化チタンがフェノールと反応して後の段階で着色生成物を形成することも効果的に防止される。同時に、UVAは、波長320~400nmの長波赤外線であり、UVBは、波長290nm~320nmの中波紫外線であり、可視光(長波)は、波長380nm~780nmであり、近赤外線短波は、波長780nm~1100nmであり、地上に届く光は、主にこれらの帯域を中心とした可視光である。効果的な光反射が必要な場合、改質二酸化チタンの直径は、散乱光の半分よりわずかに小さい必要があり、地上付近の分光波長分布によれば、改質二酸化チタンの直径は0.15μm~0.5μmと決定され、改質二酸化チタンの粒子径分布を調整することにより、280nm~1100nmの異なる波長帯域の直線拡散反射を実現し、ここで、0.15μm~0.2μmの改質二酸化チタンは53%~55%であり、0.2~0.5μmの改質二酸化チタンは42%~46%であり、0.4μm~0.5μmの改質二酸化チタンは3%~5%である。この分布により、380nm~780nm(可視光)で91%、280nm~1100nm(紫外線UVAとUVBから近赤外線まで)で82%という高い拡散反射率を実現し、各波長帯域の直線的な拡散反射により太陽光発電パネルの温度が上昇することがないため、太陽電池パネルの耐用年数に影響を与えることはない。 (7) The nano calcium carbonate used in the PVC paste resin slurry provided by the present invention can form a synergistic high diffuse reflection effect with the modified titanium dioxide. However, when the diameter of the filler particles is large, a window effect is formed, the light flux increases, and the effective diffuse reflection decreases. As a result of repeated experiments in the present invention, it has been found that the 3000 mesh nano calcium carbonate has a space-filling effect, and can effectively synergistically modify the titanium dioxide to increase the diffuse reflectance. In addition, the plasticizer LINPLAST 1012 BP and the powdered calcium zinc stabilizer do not contain nonylphenol, bisphenol A, and free phenol, so that the modified titanium dioxide can also be effectively prevented from reacting with phenol to form colored products at a later stage. At the same time, UVA is long-wave infrared radiation with a wavelength of 320 to 400 nm, UVB is medium-wave ultraviolet radiation with a wavelength of 290 to 320 nm, visible light (long wave) has a wavelength of 380 to 780 nm, and near-infrared short wave has a wavelength of 780 to 1100 nm, and the light that reaches the earth is mainly visible light centered around these bands. If effective light reflection is required, the diameter of the modified titanium dioxide should be slightly smaller than half of the scattered light. According to the spectral wavelength distribution near the ground, the diameter of the modified titanium dioxide is determined to be 0.15 μm to 0.5 μm. By adjusting the particle size distribution of the modified titanium dioxide, the linear diffuse reflection of different wavelength bands from 280 nm to 1100 nm is realized, where the modified titanium dioxide of 0.15 μm to 0.2 μm is 53% to 55%, the modified titanium dioxide of 0.2 to 0.5 μm is 42% to 46%, and the modified titanium dioxide of 0.4 μm to 0.5 μm is 3% to 5%. This distribution achieves a high diffuse reflectance of 91% at 380nm to 780nm (visible light) and 82% at 280nm to 1100nm (from ultraviolet UVA and UVB to near infrared), and the linear diffuse reflection of each wavelength band does not increase the temperature of the solar panel, so it does not affect the service life of the solar panel.

(8)本発明によって提供されるPVCペースト樹脂スラリーにおいて、使用されるセルロースアセテートブチレートは、ナノ炭酸カルシウム及び改質二酸化チタンの分布を向上させ、材料の反射能力をさらに向上させることができる。 (8) In the PVC paste resin slurry provided by the present invention, the cellulose acetate butyrate used can improve the distribution of nano calcium carbonate and modified titanium dioxide, further improving the reflective ability of the material.

要するに、本発明によって提供されるフレキシブル反射材は、反射率が高く、耐候性に優れ、太陽電池パネルの温度上昇を引き起こさないと共に、本発明によって調製されるフレキシブル反射材は、全体としてフレキシブルであり、建設、実装、整備が容易であり、太陽電池の様々な場面での実装及び使用要件に適する。 In summary, the flexible reflective material provided by the present invention has high reflectivity, excellent weather resistance, and does not cause the temperature of the solar panel to rise. The flexible reflective material prepared by the present invention is flexible overall, easy to construct, install, and maintain, and is suitable for the installation and use requirements of solar cells in various situations.

本発明の実施例1で調製された製品の模式図である。FIG. 1 is a schematic diagram of the product prepared in Example 1 of the present invention. 本発明の実施例1で調製された製品の二重ガラス太陽電池パネルの受光率を高めるための使用の実装の模式図である。FIG. 2 is a schematic diagram of the implementation of the use of the product prepared in Example 1 of the present invention to enhance the light receiving efficiency of a double-glass solar panel.

本発明、本発明の技術的解決手段及び利点をより明確にするために、以下では実施例と組み合わせて本発明をさらに詳細に説明する。本発明で使用される原料は、特に断りのない限り、すべて市場から購入したものである。 In order to make the present invention, its technical solution and advantages clearer, the present invention will be described in more detail in the following in combination with examples. All raw materials used in the present invention are purchased from the market unless otherwise specified.

なお、本発明で使用される物質の一部のグレード又は仕様は、次の通りである。
TDI粘着剤:TDI-100、
ナノ炭酸カルシウム:3000メッシュ、
PVCペースト樹脂:ドイツ Vinnolit S3157/11、
防水剤:グレードはKDWF-528である。
Some of the grades or specifications of the materials used in the present invention are as follows:
TDI adhesive: TDI-100,
Nano calcium carbonate: 3000 mesh,
PVC paste resin: Germany Vinnolit S3157/11,
Waterproofing agent: Grade is KDWF-528.

実施例1
二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施し、ここで、テンターセッティング処理は180℃で150秒間処理することである工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング、PVCペースト樹脂スラリーのカバーコーティング処理を施し、ここで、プライマーコーティングの坪量は115グラムであり、カバーコーティングの坪量は105グラムである工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施し、ここで、ゲル処理は135℃で35秒間ゲル化することであり、乾燥可塑化は175℃で65秒間乾燥可塑化することである工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理(ポリフッ化ビニリデンによる各グラビア印刷表面処理は、135℃で60秒間乾燥させて成膜し、成膜の厚さは30μmである)3回、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれ、
ここで、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、以下の原料から調製される。
Example 1
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel includes:
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment, in which the tenter setting treatment is performed at 180° C. for 150 seconds;
Step S2, the basic mesh processed in step S1 is subjected to a primer coating of PVC paste resin slurry and a cover coating of PVC paste resin slurry, where the basis weight of the primer coating is 115 grams and the basis weight of the cover coating is 105 grams;
The basic mesh coated in step S2 is subjected to a gelling treatment, a drying and plasticizing treatment, in which the gelling treatment is performed at 135°C for 35 seconds, and the drying and plasticizing treatment is performed at 175°C for 65 seconds; and the basic mesh treated in step S3 is subjected to a gravure printing surface treatment with polyvinylidene fluoride three times (each gravure printing surface treatment with polyvinylidene fluoride is dried at 135°C for 60 seconds to form a film, and the thickness of the film is 30 μm), an embossing treatment, and a cooling and setting treatment to obtain a flexible reflective material in step S4.
Here, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is prepared from the following raw materials.

Figure 2024520095000005
Figure 2024520095000005

なお、本実施例に係る防水処理、テンターセッティング、ゲル化、乾燥可塑化、及びポリフッ化ビニリデンによるグラビア印刷表面処理などのプロセスは、いずれも従来技術に存在するものであり、本実施例では、上記プロセスの具体的な処理過程は限定されない。 The processes involved in this embodiment, such as waterproofing, tenter setting, gelation, drying plasticization, and gravure printing surface treatment using polyvinylidene fluoride, all exist in the prior art, and the specific steps of the above processes are not limited in this embodiment.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して75℃に加熱してから、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させ、乾燥後0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得ることが含まれ、ここで、0.15~0.2μmの改質二酸化チタンは53%であり、0.2~0.5μmの改質二酸化チタンは42%であり、0.4~0.5μmの改質二酸化チタンは5%である。 As a more preferred technical solution of this embodiment, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes preparing rutile titanium dioxide into a 2%wt suspension, then adding 3% of sodium hexametaphosphate by weight of the suspension, shaking uniformly and heating to 75°C, then adding 3% of sodium silicate solution by weight of the suspension and adding dilute sulfuric acid to adjust the pH value of the system to 9, keeping the temperature constant and aging for 1.5 hours, finally drying at 115°C, and grinding to a particle size of 0.15-0.5μm after drying to obtain modified titanium dioxide, where 0.15-0.2μm modified titanium dioxide is 53%, 0.2-0.5μm modified titanium dioxide is 42%, and 0.4-0.5μm modified titanium dioxide is 5%.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 As a further preferred technical solution of this embodiment, the preparation of the above PVC paste resin slurry includes proportionally weighing each ingredient and mixing them uniformly.

本実施例のさらに好ましい技術的解決手段として、紫外吸収剤は、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、4-ジヒドロキシベンゾフェノンなどのベンゾフェノン類から選択される1種又は2種であり、本実施例では、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンが具体的に使用される。 As a more preferred technical solution of this embodiment, the ultraviolet absorber is one or two selected from benzophenones such as 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 4-dihydroxybenzophenone, and in this embodiment, 2-hydroxy-4-n-octyloxybenzophenone is specifically used.

本実施例で調製されたフレキシブル反射材製品の模式図は、図1に示す。 A schematic diagram of the flexible reflective product prepared in this example is shown in Figure 1.

実施例2
二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施し、ここで、テンターセッティング処理は180℃で160秒間処理することである工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング、PVCペースト樹脂スラリーのカバーコーティング処理を施し、ここで、プライマーコーティングの坪量は120グラムであり、カバーコーティングの坪量は110グラムである工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施し、ここで、ゲル処理は140℃で40秒間ゲルすることであり、乾燥可塑化は180℃で70秒間乾燥可塑化することである工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理(ポリフッ化ビニリデンによる各グラビア印刷表面処理は、140℃で乾燥70秒間成膜し、成膜の厚さは30μmである)3回、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4ことが含まれ、
ここで、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、以下の原料から調製される。
Example 2
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel includes:
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment, in which the tenter setting treatment is performed at 180° C. for 160 seconds;
Step S2: the basic mesh processed in step S1 is subjected to a primer coating of PVC paste resin slurry and a cover coating of PVC paste resin slurry, where the basis weight of the primer coating is 120 grams and the basis weight of the cover coating is 110 grams;
The method includes: (a) subjecting the basic mesh coated in step S2 to a gelling treatment, a drying and plasticizing treatment, in which the gelling treatment is gelling at 140°C for 40 seconds, and the drying and plasticizing treatment is drying and plasticizing at 180°C for 70 seconds; and (b) subjecting the basic mesh treated in step S3 to a gravure printing surface treatment with polyvinylidene fluoride three times (each gravure printing surface treatment with polyvinylidene fluoride is formed at 140°C for 70 seconds, and the thickness of the formed film is 30 μm), an embossing treatment, and a cooling and setting treatment to obtain a flexible reflective material in step S4;
Here, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is prepared from the following raw materials.

Figure 2024520095000006
Figure 2024520095000006

なお、本実施例に係る防水処理、テンターセッティング、ゲル化、乾燥可塑化、及びポリフッ化ビニリデンによるグラビア印刷表面処理などのプロセスは、いずれも従来技術に存在するものであり、本実施例では、上記プロセスの具体的な処理過程は限定されない。 The processes involved in this embodiment, such as waterproofing, tenter setting, gelation, drying plasticization, and gravure printing surface treatment using polyvinylidene fluoride, all exist in the prior art, and the specific steps of the above processes are not limited in this embodiment.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して75℃に加熱してから、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させ、乾燥後0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得るが含まれ、ここで、0.15~0.2μmの改質二酸化チタンは54%であり、0.2~0.5μmの改質二酸化チタンは43%であり、0.4~0.5μmの改質二酸化チタンは3%である。 As a more preferred technical solution of this embodiment, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes preparing rutile titanium dioxide into a 2%wt suspension, then adding 3% of sodium hexametaphosphate by weight of the suspension, shaking uniformly and heating to 75°C, then adding 3% of sodium silicate solution by weight of the suspension and adding dilute sulfuric acid to adjust the pH value of the system to 9, keeping the temperature constant and aging for 1.5 hours, finally drying at 115°C, and grinding to a particle size of 0.15-0.5μm after drying to obtain modified titanium dioxide, where 0.15-0.2μm modified titanium dioxide is 54%, 0.2-0.5μm modified titanium dioxide is 43%, and 0.4-0.5μm modified titanium dioxide is 3%.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 As a further preferred technical solution of this embodiment, the preparation of the above PVC paste resin slurry includes proportionally weighing each ingredient and mixing them uniformly.

本実施例のさらに好ましい技術的解決手段として、紫外吸収剤は、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、4-ジヒドロキシベンゾフェノンなどのベンゾフェノン類から選択される1種又は2種であり、本実施例では、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンが具体的に使用される。 As a more preferred technical solution of this embodiment, the ultraviolet absorber is one or two selected from benzophenones such as 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 4-dihydroxybenzophenone, and in this embodiment, 2-hydroxy-4-n-octyloxybenzophenone is specifically used.

実施例3
二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施し、ここで、テンターセッティング処理は190℃で1750秒間処理することである工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング、PVCペースト樹脂スラリーのカバーコーティング処理を施し、ここで、プライマーコーティングの坪量は125グラムであり、カバーコーティングの坪量は115グラムである工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施し、ここで、ゲル処理は145℃で45秒間ゲル化することであり、乾燥可塑化は185℃で75秒間乾燥可塑化することである工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理(ポリフッ化ビニリデンによる各グラビア印刷表面処理は、145℃で60秒間乾燥させて成膜し、成膜の厚さは30μmである)3回、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれ、
ここで、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、以下の原料から調製される。
Example 3
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel includes:
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment, in which the tenter setting treatment is performed at 190° C. for 1750 seconds;
Step S2, the basic mesh processed in step S1 is subjected to a primer coating of PVC paste resin slurry and a cover coating of PVC paste resin slurry, where the basis weight of the primer coating is 125 grams and the basis weight of the cover coating is 115 grams;
The basic mesh coated in step S2 is subjected to a gelling treatment, a drying and plasticizing treatment, in which the gelling treatment is performed at 145°C for 45 seconds, and the drying and plasticizing treatment is performed at 185°C for 75 seconds; and the basic mesh treated in step S3 is subjected to a gravure printing surface treatment with polyvinylidene fluoride three times (each gravure printing surface treatment with polyvinylidene fluoride is dried at 145°C for 60 seconds to form a film, and the thickness of the film is 30 μm), an embossing treatment, and a cooling and setting treatment to obtain a flexible reflective material in step S4.
Here, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is prepared from the following raw materials.

Figure 2024520095000007
Figure 2024520095000007

なお、本実施例に係る防水処理、テンターセッティング、ゲル化、乾燥可塑化、及びポリフッ化ビニリデンによるグラビア印刷表面処理などのプロセスは、いずれも従来技術に存在するものであり、本実施例では、上記プロセスの具体的な処理過程は限定されない。 The processes involved in this embodiment, such as waterproofing, tenter setting, gelation, drying plasticization, and gravure printing surface treatment using polyvinylidene fluoride, all exist in the prior art, and the specific steps of the above processes are not limited in this embodiment.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して75℃に加熱してから、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させ、乾燥後0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得ることが含まれ、ここで、0.15~0.2μmの改質二酸化チタンは54%であり、0.2~0.5μmの改質二酸化チタンは42%であり、0.4~0.5μmの改質二酸化チタンは4%である。 As a more preferred technical solution of this embodiment, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes preparing rutile titanium dioxide into a 2%wt suspension, then adding 3% of sodium hexametaphosphate by weight of the suspension, shaking uniformly and heating to 75℃, then adding 3% of sodium silicate solution by weight of the suspension and adding dilute sulfuric acid to adjust the pH value of the system to 9, keeping the temperature constant and aging for 1.5 hours, finally drying at 115℃, and grinding to a particle size of 0.15-0.5μm after drying to obtain modified titanium dioxide, where 0.15-0.2μm modified titanium dioxide is 54%, 0.2-0.5μm modified titanium dioxide is 42%, and 0.4-0.5μm modified titanium dioxide is 4%.

本実施例のさらに好ましい技術的解決手段として、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 As a further preferred technical solution of this embodiment, the preparation of the above PVC paste resin slurry includes proportionally weighing each ingredient and mixing them uniformly.

本実施例のさらに好ましい技術的解決手段として、紫外吸収剤は、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、4-ジヒドロキシベンゾフェノンなどのベンゾフェノン類から選択される1種又は2種であり、本実施例では、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンが具体的に使用される。 As a more preferred technical solution of this embodiment, the ultraviolet absorber is one or two selected from benzophenones such as 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 4-dihydroxybenzophenone, and in this embodiment, 2-hydroxy-4-n-octyloxybenzophenone is specifically used.

比較例1
二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施し、ここで、テンターセッティング処理は180℃で150秒間処理することである工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング、PVCペースト樹脂スラリーのカバーコーティング処理を施し、ここで、プライマーコーティングの坪量は115グラム、カバーコーティングの坪量は105グラムである工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施し、ここで、ゲル処理は135℃で35秒間ゲル化することであり、乾燥可塑化は175℃で65秒間乾燥可塑化することである工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理(ポリフッ化ビニリデンによる各グラビア印刷表面処理は、135℃で60秒間乾燥させて成膜し、成膜の厚さは30μmである)3回、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれ、
ここで、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、以下の原料から調製される。
Comparative Example 1
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel;
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment, in which the tenter setting treatment is performed at 180° C. for 150 seconds;
Step S2: the basic mesh processed in step S1 is subjected to a primer coating of PVC paste resin slurry and a cover coating of PVC paste resin slurry, where the basis weight of the primer coating is 115 grams and the basis weight of the cover coating is 105 grams;
The basic mesh coated in step S2 is subjected to a gelling treatment, a drying and plasticizing treatment, in which the gelling treatment is performed at 135°C for 35 seconds, and the drying and plasticizing treatment is performed at 175°C for 65 seconds; and the basic mesh treated in step S3 is subjected to a gravure printing surface treatment with polyvinylidene fluoride three times (each gravure printing surface treatment with polyvinylidene fluoride is dried at 135°C for 60 seconds to form a film, and the thickness of the film is 30 μm), an embossing treatment, and a cooling and setting treatment to obtain a flexible reflective material in step S4.
Here, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is prepared from the following raw materials.

Figure 2024520095000008
Figure 2024520095000008

なお、本実施例に係る防水処理、テンターセッティング、ゲル化、乾燥可塑化、及びポリフッ化ビニリデンによるグラビア印刷表面処理などのプロセスは、いずれも従来技術に存在するものであり、本実施例では、上記プロセスの具体的な処理過程は限定されない。 The processes involved in this embodiment, such as waterproofing, tenter setting, gelation, drying plasticization, and gravure printing surface treatment using polyvinylidene fluoride, all exist in the prior art, and the specific steps of the above processes are not limited in this embodiment.

本比較例において、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して75℃に加熱してから、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させて改質二酸化チタンを得ることが含まれ、ここで、粒子径が0.5μmを超える改質二酸化チタンは90%程度である。 In this comparative example, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes preparing rutile titanium dioxide into a 2% wt suspension, then adding sodium hexametaphosphate at 3% of the suspension weight, shaking uniformly and heating to 75°C, then adding sodium silicate solution at 3% of the suspension weight and adding dilute sulfuric acid to adjust the pH value of the system to 9, aging for 1.5 hours while keeping the temperature constant, and finally drying at 115°C to obtain modified titanium dioxide, where the modified titanium dioxide has a particle size of more than 0.5 μm at about 90%.

本比較例において、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 In this comparative example, the preparation of the PVC paste resin slurry involves proportionally weighing each ingredient and mixing them uniformly.

本比較例において、紫外線吸収剤は、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンである。 In this comparative example, the UV absorber is 2-hydroxy-4-n-octyloxybenzophenone.

比較例2
二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法は、
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施し、ここで、テンターセッティング処理は180℃で150秒間処理することである工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング、PVCペースト樹脂スラリーのカバーコーティング処理を施し、ここで、プライマーコーティングの坪量は115グラムであり、カバーコーティングの坪量は105グラムである工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施し、ここで、ゲル処理は135℃で35秒間ゲル化することであり、乾燥可塑化は175℃で65秒間乾燥可塑化することである工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理(ポリフッ化ビニリデンによる各グラビア印刷表面処理は、135℃で60秒間乾燥させて成膜し、成膜の厚さは30μmである)3回、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれ、
ここで、工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、以下の原料から調製される。
Comparative Example 2
A method for preparing a flexible reflective material for increasing the light receiving rate of a double glass solar panel includes:
A step S1 of obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material, and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment, in which the tenter setting treatment is performed at 180° C. for 150 seconds;
Step S2, the basic mesh processed in step S1 is subjected to a primer coating of PVC paste resin slurry and a cover coating of PVC paste resin slurry, where the basis weight of the primer coating is 115 grams and the basis weight of the cover coating is 105 grams;
The basic mesh coated in step S2 is subjected to a gelling treatment, a drying and plasticizing treatment, in which the gelling treatment is performed at 135°C for 35 seconds, and the drying and plasticizing treatment is performed at 175°C for 65 seconds; and the basic mesh treated in step S3 is subjected to a gravure printing surface treatment with polyvinylidene fluoride three times (each gravure printing surface treatment with polyvinylidene fluoride is dried at 135°C for 60 seconds to form a film, and the thickness of the film is 30 μm), an embossing treatment, and a cooling and setting treatment to obtain a flexible reflective material in step S4.
Here, the PVC paste resin slurry used for the primer coating and cover coating in step S2 is prepared from the following raw materials.

Figure 2024520095000009
Figure 2024520095000009

なお、本実施例に係る防水処理、テンターセッティング、ゲル化、乾燥可塑化、及びポリフッ化ビニリデンによるグラビア印刷表面処理などのプロセスは、いずれも従来技術に存在するものであり、本実施例では、上記プロセスの具体的な処理過程は限定されない。 The processes involved in this embodiment, such as waterproofing, tenter setting, gelation, drying plasticization, and gravure printing surface treatment using polyvinylidene fluoride, all exist in the prior art, and the specific steps of the above processes are not limited in this embodiment.

本比較例において、上記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンと二酸化ケイ素とを重量比1:1で混合してから、0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得ることが含まれ、ここで、0.15~0.2μmの改質二酸化チタンは53%であり、0.2~0.5μmの改質二酸化チタンは42%であり、0.4~0.5μmの改質二酸化チタンは5%である。 In this comparative example, the preparation of modified titanium dioxide in the above PVC paste resin slurry includes mixing rutile titanium dioxide and silicon dioxide in a weight ratio of 1:1, and then grinding to a particle size of 0.15-0.5 μm to obtain modified titanium dioxide, in which the modified titanium dioxide of 0.15-0.2 μm is 53%, the modified titanium dioxide of 0.2-0.5 μm is 42%, and the modified titanium dioxide of 0.4-0.5 μm is 5%.

本比較例において、上記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれる。 In this comparative example, the preparation of the PVC paste resin slurry involves proportionally weighing each ingredient and mixing them uniformly.

本比較例において、紫外線吸収剤は、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンである。 In this comparative example, the UV absorber is 2-hydroxy-4-n-octyloxybenzophenone.

実施例1~3及び比較例1~2で調製されたフレキシブル反射材の反射率性能試験をASTM E903に従って実施し、試験結果を表1に示す。 The reflectance performance tests of the flexible reflective materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were conducted in accordance with ASTM E903, and the test results are shown in Table 1.

Figure 2024520095000010
Figure 2024520095000010

表1から、本発明の各実施例で調製されたフレキシブル反射材は、380~780nm(可視光)、280nm~1100nm(紫外線UVA及びUVBから近赤外線まで)でいずれも高い拡散反射率を生成することができ、それぞれ0.91以上、0.82以上にも達することができ、白色セラミックタイル(0.55)、研磨酸化されたアルミニウム板(0.50程度)、コーティングされた高密度線状ポリエチレン(0.56~0.58程度)に比較して、反射効果がより優れている。同時に、本発明によって調製されるフレキシブル反射材は、全体としてフレキシブルであり、様々な場面に適用可能で、建設、実装、及び整備が容易である。 From Table 1, it can be seen that the flexible reflective materials prepared in each embodiment of the present invention can produce high diffuse reflectance at 380-780 nm (visible light) and 280-1100 nm (ultraviolet rays UVA and UVB to near infrared), which can reach 0.91 or more and 0.82 or more, respectively, and have better reflective effects than white ceramic tiles (0.55), polished oxidized aluminum plates (about 0.50), and coated high-density linear polyethylene (about 0.56-0.58). At the same time, the flexible reflective materials prepared by the present invention are flexible as a whole, applicable to various scenes, and easy to construct, implement, and maintain.

実際の応用プロジェクト(実装模式図は、図2を参照する)では、本発明の実施例1で調製されたフレキシブル反射材は、太陽電池発電プロジェクトに使用され、二重ガラス太陽電池パネルの受光率を高めることができ、発電効率が向上し、発電量の増加率は約10.32%に達すると共に、本発明のフレキシブル反射材を使用した二重ガラス太陽電池パネルは、温度が上昇せず、太陽電池パネルの耐用年数が延長され、経済的利益が間接的に向上する。 In an actual application project (see Figure 2 for the implementation schematic), the flexible reflective material prepared in Example 1 of the present invention is used in a solar power generation project, which can increase the light receiving rate of the double-glass solar panel, improve the power generation efficiency, and increase the power generation rate by about 10.32%. At the same time, the double-glass solar panel using the flexible reflective material of the present invention does not increase in temperature, and the service life of the solar panel is extended, which indirectly improves the economic benefits.

上述の実施例は、本発明の技術的概念及び特徴を例示することのみを目的としており、当業者が本発明の内容を理解し、それに応じて実施できるようにすることを目的としており、保護範囲を限定するものではない。本発明の精神に従って行われたすべての同等の変更又は修正は、本発明の保護範囲内に含まれるものとする。 The above examples are only intended to illustrate the technical concepts and features of the present invention, to enable those skilled in the art to understand and implement the contents of the present invention accordingly, and do not limit the scope of protection. All equivalent changes or modifications made in accordance with the spirit of the present invention shall be included within the scope of protection of the present invention.

Claims (9)

二重ガラス太陽電池パネルの受光率を高めるためのフレキシブル反射材の調製方法において
ポリエステル糸を原料として経編又は機械織りにより基本メッシュを得てから、基本メッシュに防水処理、テンターセッティング処理を施す工程S1、
工程S1で処理された基本メッシュに、PVCペースト樹脂スラリーのプライマーコーティング処理、PVCペースト樹脂スラリーのカバーコーティング処理を施す工程S2、
工程S2でコーティングされた基本メッシュに、ゲル化処理、乾燥・可塑化処理を施す工程S3、及び
工程S3で処理された基本メッシュに、ポリフッ化ビニリデンによるグラビア印刷表面処理を3回施して、エンボス処理、冷却セッティング処理を施してフレキシブル反射材を得る工程S4が含まれ、
工程S2におけるプライマーコーティング、カバーコーティングに使用されるPVCペースト樹脂スラリーは、重量部で以下の原料からなる:
Figure 2024520095000011
前記のPVCペースト樹脂スラリーの調製には、各原料を比例的に秤量し、均一に混合することが含まれることを特徴とする調製方法。
A method for preparing a flexible reflective material for increasing the light receiving rate of a double-glazed solar panel, comprising the steps of: obtaining a basic mesh by warp knitting or machine weaving using polyester yarn as a raw material; and then subjecting the basic mesh to a waterproofing treatment and a tenter setting treatment in step S1;
A process S2 of subjecting the basic mesh processed in the process S1 to a primer coating process using a PVC paste resin slurry and a cover coating process using a PVC paste resin slurry;
The method includes a step S3 of subjecting the basic mesh coated in the step S2 to a gelling treatment, a drying and plasticizing treatment, and a step S4 of subjecting the basic mesh treated in the step S3 to a gravure printing surface treatment using polyvinylidene fluoride three times, an embossing treatment, and a cooling setting treatment to obtain a flexible reflective material.
The PVC paste resin slurry used for the primer coating and cover coating in step S2 is composed of the following ingredients by weight:
Figure 2024520095000011
The preparation of the PVC paste resin slurry comprises proportionally weighing each ingredient and mixing them uniformly.
工程S1におけるテンターセッティング処理プロセスは、170~200℃で120~180秒間処理することを特徴とする、請求項1に記載の調製方法。 The preparation method according to claim 1, characterized in that the tenter setting process in step S1 is performed at 170 to 200°C for 120 to 180 seconds. 前記のPVCペースト樹脂スラリーにおける改質二酸化チタンの調製には、ルチル型二酸化チタンを2%wtの懸濁液に調製し、次に懸濁液重量の3%のヘキサメタリン酸ナトリウムを加え、均一に振盪して70~75℃に加熱し、懸濁液重量の3%のケイ酸ナトリウム溶液を加えると共に、希硫酸を加えて系のpH値を9に調整し、温度を一定に保って1.5時間熟成し、最後に115℃で乾燥させ、乾燥後0.15~0.5μmの粒子径に研磨して改質二酸化チタンを得ることが含まれ、
ここで、0.15~0.2μmの改質二酸化チタンは53%~55%であり、0.2~0.5μmの改質二酸化チタンは42%~46%であり、0.4~0.5μmの改質二酸化チタンは3%~5%であることを特徴とする、請求項1に記載の調製方法。
The preparation of the modified titanium dioxide in the PVC paste resin slurry includes: preparing rutile titanium dioxide into a 2% wt suspension; then adding sodium hexametaphosphate of 3% of the suspension weight; shaking uniformly and heating to 70-75°C; adding sodium silicate solution of 3% of the suspension weight and adding dilute sulfuric acid to adjust the pH value of the system to 9; keeping the temperature constant and aging for 1.5 hours; finally drying at 115°C; and polishing to a particle size of 0.15-0.5 μm after drying to obtain modified titanium dioxide;
The preparation method according to claim 1, characterized in that the modified titanium dioxide of 0.15-0.2 μm is 53%-55%, the modified titanium dioxide of 0.2-0.5 μm is 42%-46%, and the modified titanium dioxide of 0.4-0.5 μm is 3%-5%.
工程S2におけるプライマーコーティングの坪量は115~125グラムであり、カバーコーティングの坪量は105~120グラムであることを特徴とする、請求項1に記載の調製方法。 The preparation method according to claim 1, characterized in that the basis weight of the primer coating in step S2 is 115 to 125 grams, and the basis weight of the cover coating is 105 to 120 grams. 工程S3におけるゲル処理は135~150℃で35~45秒間ゲル化することを特徴とする、請求項1に記載の調製方法。 The preparation method according to claim 1, characterized in that the gelling treatment in step S3 is carried out at 135 to 150°C for 35 to 45 seconds. 工程S3における乾燥可塑化は、170~190℃で60~90秒間乾燥可塑化することを特徴とする、請求項1に記載の調製方法。 The preparation method according to claim 1, characterized in that the drying and plasticizing in step S3 is carried out at 170 to 190°C for 60 to 90 seconds. 工程S4におけるポリフッ化ビニリデンによる各グラビア印刷表面処理は、130~150℃で60~90秒間乾燥して成膜し、成膜の厚さは30μmであることを特徴とする、請求項1に記載の調製方法。 The preparation method according to claim 1, characterized in that each gravure printing surface treatment with polyvinylidene fluoride in step S4 is dried at 130 to 150°C for 60 to 90 seconds to form a film, and the thickness of the formed film is 30 μm. 請求項1から7いずれか一つに記載の調製方法によって得られるフレキシブル反射材。 A flexible reflective material obtained by the preparation method according to any one of claims 1 to 7. 請求項8に記載のフレキシブル反射材の二重ガラス太陽電池パネルの受光率を高めるための使用。 Use of the flexible reflector of claim 8 to increase the light reception rate of a double-glazed solar panel.
JP2023573390A 2022-01-26 2022-12-14 Flexible reflective material for increasing light capture rate of double-glazed solar panels and its preparation method and use Pending JP2024520095A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202210091639.X 2022-01-26
CN202210091639.XA CN114551622B (en) 2022-01-26 2022-01-26 Flexible reflecting material for increasing light transmittance of double-glass photovoltaic panel and preparation method and application thereof
PCT/CN2022/138908 WO2023142740A1 (en) 2022-01-26 2022-12-14 Flexible reflecting material capable of increasing glazing rate of double-glass photovoltaic panel, and preparation method therefor and use thereof

Publications (1)

Publication Number Publication Date
JP2024520095A true JP2024520095A (en) 2024-05-21

Family

ID=81673385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023573390A Pending JP2024520095A (en) 2022-01-26 2022-12-14 Flexible reflective material for increasing light capture rate of double-glazed solar panels and its preparation method and use

Country Status (3)

Country Link
JP (1) JP2024520095A (en)
CN (1) CN114551622B (en)
WO (1) WO2023142740A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551622B (en) * 2022-01-26 2022-08-30 浙江海利得新材料股份有限公司 Flexible reflecting material for increasing light transmittance of double-glass photovoltaic panel and preparation method and application thereof
CN115742505A (en) * 2022-11-08 2023-03-07 浙江明士达股份有限公司 Flexible composite material for improving back surface reflectivity of double-glass photovoltaic panel and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662805B2 (en) * 2005-04-21 2011-03-30 積水化学工業株式会社 Manufacturing method of adhesive sheet for solar cell
CN101538800B (en) * 2009-04-23 2012-06-13 合肥市东方美捷分子材料技术有限公司 Thermoplastic resin coating film material and preparation method thereof
CN101979247A (en) * 2010-09-02 2011-02-23 常熟市冠日新材料有限公司 Packaging back sheet for solar photovoltaic cell
CN102582170B (en) * 2011-12-31 2015-08-05 嘉兴市丰泰新材料有限公司 A kind of coating sunshade composite material with high reflectance and preparation method thereof
CN203013768U (en) * 2012-12-25 2013-06-19 江苏鹿山光伏科技有限公司 Highly reflective EVA film for photovoltaic module
CN103413861A (en) * 2013-07-18 2013-11-27 常州大学 Light reflecting thin film of photovoltaic module and method for fixing light reflecting thin film and soldering strip
CN104347742A (en) * 2013-08-06 2015-02-11 3M创新有限公司 Packaging material for solar battery and solar battery pack using same
CN108878548A (en) * 2018-06-13 2018-11-23 太仓碧奇新材料研发有限公司 A kind of preparation method of polyester fiber base flexible solar battery
CN109722065A (en) * 2018-07-25 2019-05-07 江苏拜富科技有限公司 Highly-reflective coating and preparation method thereof suitable for double-glass solar energy assembly backboard
CN110256888B (en) * 2019-06-20 2021-07-06 深圳职业技术学院 High-reflectivity diffuse reflection coating, preparation method thereof and reflector
CN113389067A (en) * 2021-06-08 2021-09-14 上海奈田装饰工程有限公司 High-reflection PVC heat-insulation waterproof coiled material and preparation method thereof
CN114551622B (en) * 2022-01-26 2022-08-30 浙江海利得新材料股份有限公司 Flexible reflecting material for increasing light transmittance of double-glass photovoltaic panel and preparation method and application thereof

Also Published As

Publication number Publication date
WO2023142740A1 (en) 2023-08-03
CN114551622B (en) 2022-08-30
CN114551622A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
JP2024520095A (en) Flexible reflective material for increasing light capture rate of double-glazed solar panels and its preparation method and use
CN102061111B (en) Preparation method of self-cleaning ceramic nanometer glass antireflective coating material and preparation method of reflection deducting coating
CN103436111A (en) Preparation method of water-based ultraviolet barrier coating based on ZnO quantum dots
DE112020003667T5 (en) Radiant cooler that works efficiently both day and night and its manufacturing process
CN103449526A (en) Tungsten bronze with substitutional hetero-atoms at tungsten and oxygen lattice point positions as well as preparation method and application of tungsten bronze
CN110467878B (en) Long-acting heat-insulating and cooling coating for energy-saving building and preparation method thereof
CN110256888B (en) High-reflectivity diffuse reflection coating, preparation method thereof and reflector
CN106167657A (en) A kind of aqueous glass transparent reflective heat-insulating coating and preparation method thereof
KR101321697B1 (en) Infrared reflectance paint containing white or red infrared reflectance pigment and manufacturing method thereof
CN105762283A (en) Perovskite solar cell light-absorbing layer nano sol film-coating solution and preparation method
Kumar et al. Study on reflectivity and photostability of Al-doped TiO2 nanoparticles and their reflectors
CN103740165A (en) Special nano zirconium dioxide composite powder material for architectural outer wall insulation paint
CN103992706A (en) Intelligent temperature control all-band-shielding nanometer transparent thermal insulation coating material and preparation process thereof
WO2013191961A1 (en) Backsheet for a photovoltaic cell module and photovoltaic cell module including same
CN103013212A (en) Nanometer heat insulating coating and preparation method thereof
CN110128767A (en) The low transparent polyvinylidene fluoride film and its manufacturing method that high ultraviolet-resistant is precipitated
CN111073351A (en) Preparation method of high-weather-resistance and high-dispersion plastic color master batch titanium dioxide pigment
CN107519895A (en) Cadmium sulfide/CNT composite photo-catalyst and preparation method thereof
CN107519902A (en) The preparation method of chlorine doped titanium dioxide photocatalyst
Fu et al. Preparation of transparent TiO 2 nanocrystalline film for UV sensor
EP2670720A1 (en) Process for forming a coating layer on a substrate and coating composition therefor
CN104774550B (en) Nanometer TiO2/ZnO anti-ultraviolet coating for PC and preparation method thereof
CN109574062B (en) Na5Yb9F32:Ho3+Up-conversion material and preparation method thereof, photo-anode film and preparation method and application thereof
KR20140007107A (en) Fabrication of photoanoded of dye sensitized solar cells containing metal nanoparticles decorated silica-titania hollow nanoparticles
CN117067624A (en) Reflecting material for improving generating capacity of photovoltaic module and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507