JP2024075862A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2024075862A
JP2024075862A JP2022187070A JP2022187070A JP2024075862A JP 2024075862 A JP2024075862 A JP 2024075862A JP 2022187070 A JP2022187070 A JP 2022187070A JP 2022187070 A JP2022187070 A JP 2022187070A JP 2024075862 A JP2024075862 A JP 2024075862A
Authority
JP
Japan
Prior art keywords
ventilation resistance
refrigerator
heat transfer
radiator
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022187070A
Other languages
Japanese (ja)
Inventor
翔一 田口
Shoichi Taguchi
良二 河井
Ryoji Kawai
慎一郎 岡留
Shinichiro Okadome
遵自 鈴木
Junji Suzuki
康平 土井
Kohei Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2022187070A priority Critical patent/JP2024075862A/en
Publication of JP2024075862A publication Critical patent/JP2024075862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigerator capable of improving power saving performance by suppressing unevenness of air flow rate between two radiators constituting a machine room condenser and increasing an amount of heat radiation.SOLUTION: A refrigerator includes: a machine room 7 formed in a manner of extending in a lateral direction when seen from the side of an opening/closing door; a low ventilation resistance opening portion 19 formed on a side surface in the lateral direction of the refrigerator connected to the machine room 7; a high ventilation resistance opening portion 17b formed in a bottom surface on a lower side of the refrigerator connected to the machine room and having a ventilation resistance higher than that of the low ventilation resistance opening portion 19; a high ventilation resistance radiator 71a lying opposite the low ventilation resistance opening portion 19 and radiating heat with air that is mainly taken from the low ventilation resistance opening portion 19; and a low ventilation resistance radiator 71b lying opposite the high ventilation resistance opening portion 17b, radiating heat with air that is mainly taken from the high ventilation resistance opening portion 17b, and having a ventilation resistance lower than the high ventilation resistance radiator 71a.SELECTED DRAWING: Figure 6

Description

本発明は食品や飲料を貯蔵する冷蔵庫に係り、特に機械室に熱交換器を配置した冷蔵庫に関するものである。 The present invention relates to refrigerators for storing food and beverages, and in particular to refrigerators with a heat exchanger located in the machine compartment.

最近の冷蔵庫では、冷蔵庫を構成する箱体内部の上部に冷蔵室、中間部に冷凍室(或いは野菜室)、下部に野菜室(或いは冷凍室)等の貯蔵室を配置し、それぞれの貯蔵室同士は熱の移動が少ないように断熱仕切壁により区画されている。また、冷蔵庫として一般的に主流である間冷式冷蔵庫(冷却器で冷やされた冷気を、送風ファンによって冷凍室、冷蔵室、野菜室に吹き出す方式の冷蔵庫)では、冷蔵庫内部に冷気を生成する冷凍サイクルを備え、この冷凍サイクルの冷却器で生成された冷気を送風機により各貯蔵室に循環させて貯蔵物の冷却を行っている。 In recent refrigerators, storage compartments such as the refrigerator compartment at the top of the box, the freezer compartment (or vegetable compartment) in the middle, and the vegetable compartment (or freezer compartment) at the bottom are arranged inside the refrigerator, and the storage compartments are divided by insulated partition walls to minimize heat transfer. In addition, intermediate cooling refrigerators (refrigerators that use a fan to blow cold air cooled by a cooler into the freezer, refrigerator, and vegetable compartment), which are the most common type of refrigerator, are equipped with a refrigeration cycle that generates cold air inside the refrigerator, and the cold air generated by the cooler in this refrigeration cycle is circulated by a blower to each storage compartment to cool the stored items.

そして、冷凍サイクルを構成する冷媒を圧縮する圧縮機や、圧縮された冷媒を空気と熱交換する機械室凝縮器は、冷蔵庫の下部に設けた機械室に配置されている。冷蔵庫の機械室に設けられる機械室凝縮器の放熱に関して、例えば、特開2003-42636号公報(特許文献1)に記載の技術が知られている。 The compressor that compresses the refrigerant that constitutes the refrigeration cycle and the machine room condenser that exchanges heat between the compressed refrigerant and the air are located in a machine room provided at the bottom of the refrigerator. Regarding heat dissipation from the machine room condenser provided in the machine room of a refrigerator, for example, the technology described in JP 2003-42636 A (Patent Document 1) is known.

特許文献1に記載されている機械室は、冷蔵庫の正面(開閉扉側)から見て、冷蔵庫の背面側で、左右方向の横幅寸法が上下寸法より長い略直方体形状の空間に形成されている。また、機械室下面に下面吸込口、機械室側面に側面吸込口を備えている。 The machine compartment described in Patent Document 1 is formed as a roughly rectangular parallelepiped space on the rear side of the refrigerator when viewed from the front (the opening and closing door side) of the refrigerator, with the left-right width dimension being longer than the top-to-bottom dimension. In addition, a bottom suction port is provided on the bottom of the machine compartment, and a side suction port is provided on the side of the machine compartment.

機械室内には、圧縮機と機械室凝縮器が左右の横幅方向に併設して配置されている。機械室凝縮器は、家屋の設置床と略平行な水平放熱器と、これに略直交する垂直放熱器を有する略L字状に形成されている。そして、機械室の送風機を運転すると、下面吸込口から機械室に吸い込まれた空気が主に機械室凝縮器の水平放熱器で熱交換し、側面吸込口から機械室に吸い込まれた空気が主に機械室凝縮器の垂直放熱器で熱交換する。 In the machine room, the compressor and the machine room condenser are arranged side by side in the width direction on the left and right. The machine room condenser is formed in a roughly L-shape with a horizontal radiator that is roughly parallel to the floor on which the house is installed and a vertical radiator that is roughly perpendicular to this. When the machine room blower is operated, the air sucked into the machine room from the bottom suction port mainly exchanges heat with the horizontal radiator of the machine room condenser, and the air sucked into the machine room from the side suction port mainly exchanges heat with the vertical radiator of the machine room condenser.

このような形態をとることで、横幅方向に機械室凝縮器を大きくすることができ、収納性が良好となる。これにより、大きな機械室凝縮器を狭い機械室に収納できることになり、放熱量を増大することができる。 By adopting this configuration, the machine room condenser can be made larger in the width direction, improving storage efficiency. This means that a large machine room condenser can be stored in a small machine room, increasing the amount of heat dissipation.

特開2003-42636号公報JP 2003-42636 A

ところで、特許文献1の構成では、下面吸込口から機械室に吸い込まれた空気が主に機械室凝縮器の水平放熱器に流入し、背面吸込口から機械室に吸い込まれた空気が主に機械室凝縮器の垂直放熱器に流入する構成である。 In the configuration of Patent Document 1, the air sucked into the machine room from the bottom suction port mainly flows into the horizontal radiator of the machine room condenser, and the air sucked into the machine room from the rear suction port mainly flows into the vertical radiator of the machine room condenser.

ところで、背面吸込口は家屋の壁面に近接して配置されることが多く、通風抵抗が大きくなり放熱効率が悪化することが予想される。このため、冷蔵庫の側面に側面吸込口を設けることが考えられる。 However, rear air inlets are often placed close to the walls of houses, which is expected to increase ventilation resistance and reduce heat dissipation efficiency. For this reason, it is considered to provide a side air inlet on the side of the refrigerator.

しかしながら、冷蔵庫は家屋の床面に狭い隙間を有して設置されるため、冷蔵庫の下面吸込口の通風抵抗は、冷蔵庫の側面吸込口の通風抵抗に比べて大きくなる。このため、下面吸込口と側面吸込口の間の通風抵抗が偏ると、機械室凝縮器の水平放熱器と垂直放熱器との間に空気流量の偏りができてしまい、放熱効率が減少するという課題を生じる。 However, because refrigerators are installed with a narrow gap between them and the floor of a house, the ventilation resistance of the bottom suction port of the refrigerator is greater than the ventilation resistance of the side suction port of the refrigerator. Therefore, if the ventilation resistance between the bottom suction port and the side suction port is uneven, the air flow rate will be uneven between the horizontal and vertical radiators of the machine room condenser, resulting in a problem of reduced heat dissipation efficiency.

また、特許文献1のように背面に背面吸込口を設けた場合も、冷蔵庫が家屋の壁面に近接して配置されるため、冷蔵庫の背面吸込口の通風抵抗は、冷蔵庫の側面吸込口の通風抵抗に比べて大きくなり、同様の課題を生じる。 Even if a rear suction port is provided on the rear side as in Patent Document 1, the refrigerator is placed close to the wall of the house, so the ventilation resistance of the rear suction port of the refrigerator is larger than the ventilation resistance of the side suction port of the refrigerator, resulting in the same problem.

尚、上述の記載では機械室凝縮器の水平放熱器と垂直放熱器と記載しているが、垂直放熱器、水平放熱器に限らず、2つの放熱器を備えるものであれば、同じような課題を生じる。 In addition, the above description refers to a horizontal radiator and a vertical radiator for the machine room condenser, but the same issues arise with any system that has two radiators, not just vertical and horizontal radiators.

本発明は、機械室凝縮器を構成する2つの放熱器との間の空気流量の偏りを抑制し、放熱効率を向上して省電力性能を高めることができる冷蔵庫を提供することにある。 The present invention aims to provide a refrigerator that can suppress the bias in the air flow rate between the two radiators that make up the machine room condenser, improve heat dissipation efficiency, and enhance power saving performance.

本発明は、上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用するものであり、少なくとも、食品や飲料を貯蔵する貯蔵室と、貯蔵室に設けられた開閉扉と、圧縮機で圧縮された冷媒を空気と熱交換する放熱器を配置した機械室を備えた冷蔵庫であって、開閉扉の側から見て左右方向に延びるように形成された機械室と、機械室と繋がった冷蔵庫の左右方向の一方の側面に形成された低通風抵抗開口部と、機械室と繋がった冷蔵庫の下方向の底面、又は背面方向の背面に形成された、低通風抵抗開口部に比べて通風抵抗が大きい高通風抵抗開口部と、低通風抵抗開口部に対向し、主に低通風抵抗開口部から取り入れられた空気で放熱される高通風抵抗放熱器と、高通風抵抗開口部に対向し、主に高通風抵抗開口部から取り入れられた空気で放熱される、高通風抵抗放熱器に比べて通風抵抗が小さい低通風抵抗放熱器とを備えている、ことを特徴としている。 In order to solve the above problems, the present invention employs the configuration described in the claims, for example, and is characterized in that the refrigerator includes at least a storage compartment for storing food and beverages, an opening and closing door provided in the storage compartment, and a machine compartment in which a radiator for exchanging heat between the refrigerant compressed by the compressor and the air is disposed, the refrigerator includes a machine compartment formed to extend in the left-right direction when viewed from the opening and closing door side, a low ventilation resistance opening formed on one side of the refrigerator in the left-right direction connected to the machine compartment, a high ventilation resistance opening formed on the bottom surface in the downward direction or the back surface in the rear direction connected to the machine compartment and having a higher ventilation resistance than the low ventilation resistance opening, a high ventilation resistance radiator facing the low ventilation resistance opening and dissipating heat mainly with air taken in from the low ventilation resistance opening, and a low ventilation resistance radiator facing the high ventilation resistance opening and dissipating heat mainly with air taken in from the high ventilation resistance opening and having a lower ventilation resistance than the high ventilation resistance radiator.

本発明によれば、機械室凝縮器の2つの放熱器の間の空気流量の偏りを抑制し、放熱効率を向上した省電力性能が高い冷蔵庫を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a refrigerator with high power-saving performance that suppresses the bias of the air flow rate between the two radiators of the machine room condenser and improves the heat dissipation efficiency. The problems, configurations, and effects other than those described above will be made clear by the description of the following embodiment.

本発明の第1の実施形態に係る冷蔵庫の正面図である。1 is a front view of a refrigerator according to a first embodiment of the present invention. 図1の冷蔵庫の背面図である。FIG. 2 is a rear view of the refrigerator of FIG. 1 . 図1の冷蔵庫の縦断面図である。FIG. 2 is a vertical cross-sectional view of the refrigerator of FIG. 1 . 図1の冷蔵庫の庫内の構成を示す正面図である。FIG. 2 is a front view showing the configuration of the interior of the refrigerator in FIG. 1. 図1の冷蔵庫の冷凍サイクルの構成図である。FIG. 2 is a configuration diagram of a refrigeration cycle of the refrigerator of FIG. 1. 図1の冷蔵庫の機械室の構成を示す背面図である。FIG. 2 is a rear view showing the configuration of the machine compartment of the refrigerator in FIG. 1 . 図1の冷蔵庫の機械室ベースの構成を示す上面図である。FIG. 2 is a top view showing the configuration of a machine chamber base of the refrigerator of FIG. 1 . 図1の冷蔵庫の庫外放熱器の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of an external radiator of the refrigerator of FIG. 1 . 本発明の第2の実施形態に係る冷蔵庫の庫外放熱器の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of an external radiator of a refrigerator according to a second embodiment of the present invention.

以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 The following describes in detail an embodiment of the present invention with reference to the drawings. However, the present invention is not limited to the following embodiment, and the scope of the present invention includes various modifications and applications within the technical concept of the present invention.

以下、本発明の実施例について、図1乃至図9を用いて説明する。なお、以下の説明では、冷蔵庫1を正面(開閉扉の側)から見た場合に、右側に見える方を右方向、左側に見える方を左方向として説明を進める。 The following describes an embodiment of the present invention with reference to Figs. 1 to 9. In the following description, when the refrigerator 1 is viewed from the front (the side where the door opens and closes), the right side is the right direction and the left side is the left direction.

本発明の第1の実施形態に係る冷蔵庫1について、図1を用いて説明する。図1は本発明の第1の実施形態に係る冷蔵庫1の正面図である。 A refrigerator 1 according to a first embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a front view of a refrigerator 1 according to a first embodiment of the present invention.

図1に示すように、冷蔵庫1の断熱箱体10は、上方から、冷蔵室2、左右に併設された製氷室3及び上段冷凍室4、下段冷凍室5、野菜室6の順に貯蔵室を有している。したがって、冷蔵庫1の外観は、断熱箱体10と後述する夫々の貯蔵室を開閉する開閉扉とから構成されている。 As shown in FIG. 1, the insulated box 10 of the refrigerator 1 has storage compartments, in this order from above: a refrigerator compartment 2, an ice-making compartment 3 on the left and right, an upper freezer compartment 4, a lower freezer compartment 5, and a vegetable compartment 6. Therefore, the exterior of the refrigerator 1 is composed of the insulated box 10 and doors that open and close each of the storage compartments, which will be described later.

冷蔵庫1はそれぞれの貯蔵室の開口を開閉する開閉扉を備えている。これらの扉は、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室扉2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5及び野菜室6の各開口をそれぞれ開閉する引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a及び野菜室扉6aである。これら複数の扉の内部材料は主に発泡ウレタンで構成されている。また、各扉は図示しないシール部材を内面外周部に備えている。 The refrigerator 1 is equipped with doors that open and close the openings of each storage compartment. These doors are rotating refrigerator compartment doors 2a and 2b, which are divided into left and right doors and open the opening of the refrigerator compartment 2, and pull-out ice-making compartment door 3a, upper freezer compartment door 4a, lower freezer compartment door 5a, and vegetable compartment door 6a, which open and close the openings of the ice-making compartment 3, upper freezer compartment 4, lower freezer compartment 5, and vegetable compartment 6, respectively. The interior material of these multiple doors is mainly composed of urethane foam. In addition, each door is equipped with a sealing member (not shown) on the inner periphery.

冷蔵室2と製氷室3及び上段冷凍室4との間は断熱仕切壁27によって隔てられ、下段冷凍室5と野菜室6との間は断熱仕切壁28によって隔てられている。また、製氷室3と、上段冷凍室4との間の前縁部には、製氷室扉3a及び上段冷凍室扉4aを閉じた状態において、製氷室扉3aの右端内面のシール部材と、上段冷凍室扉4aの左端内面のシール部材と当接する位置に仕切部29を備えている。 The refrigerator compartment 2 is separated from the ice-making compartment 3 and the upper freezer compartment 4 by a heat-insulating partition wall 27, and the lower freezer compartment 5 is separated from the vegetable compartment 6 by a heat-insulating partition wall 28. In addition, a partition 29 is provided at the front edge between the ice-making compartment 3 and the upper freezer compartment 4 at a position that abuts against the seal member on the inner right end of the ice-making compartment door 3a and the seal member on the inner left end of the upper freezer compartment door 4a when the ice-making compartment door 3a and the upper freezer compartment door 4a are closed.

製氷室3及び上段冷凍室4と、下段冷凍室5との間の前縁部には、製氷室扉3a、上段冷凍室扉4a及び下段冷凍室扉5aを閉じた状態において、製氷室扉3a及び上段冷凍室扉4aの下端内面の各シール部材と、下段冷凍室扉5aの上端内面のシール部材と当接する位置に、仕切部30を備えている。 At the front edge between the ice-making compartment 3 and the upper freezer compartment 4 and the lower freezer compartment 5, a partition 30 is provided at a position that abuts the seal members on the inner bottom ends of the ice-making compartment door 3a and the upper freezer compartment door 4a and the seal member on the inner top end of the lower freezer compartment door 5a when the ice-making compartment door 3a, the upper freezer compartment door 4a, and the lower freezer compartment door 5a are closed.

断熱箱体10の天面庫外側の前方と、断熱仕切壁27の前縁とには、冷蔵庫1と扉2a、2bとを固定するための扉ヒンジ(図示せず)が配設されており、天面庫外側に設けられた上部の扉ヒンジは扉ヒンジカバー16で覆われている。 Door hinges (not shown) for fixing the refrigerator 1 to the doors 2a and 2b are provided at the front of the outer top compartment of the insulated box body 10 and at the front edge of the insulated partition wall 27, and the upper door hinge provided on the outer top compartment is covered with a door hinge cover 16.

製氷室3、上段冷凍室4及び下段冷凍室5は、基本的に庫内を冷凍温度(0℃未満)の例えば平均的に-18℃程度にした貯蔵室であり、冷蔵室2は庫内を冷蔵温度(0℃以上)の例えば平均的に4℃程度にした貯蔵室、野菜室6は庫内を冷蔵温度(0℃以上)の例えば平均的に7℃程度にした貯蔵室である。以下本明細書中では、冷凍温度の貯蔵室である製氷室3と上段冷凍室4と下段冷凍室5の総称として冷凍室60と呼ぶことがある。 The ice-making compartment 3, upper freezer compartment 4, and lower freezer compartment 5 are basically storage compartments whose interiors are kept at a freezing temperature (below 0°C), for example, on average around -18°C, while the refrigerator compartment 2 is a storage compartment whose interiors are kept at a refrigeration temperature (above 0°C), for example, on average around 4°C, and the vegetable compartment 6 is a storage compartment whose interiors are kept at a refrigeration temperature (above 0°C), for example, on average around 7°C. Hereinafter in this specification, the ice-making compartment 3, upper freezer compartment 4, and lower freezer compartment 5, which are storage compartments kept at freezing temperatures, may be collectively referred to as freezer compartment 60.

図2は図1の冷蔵庫1の背面図である。冷蔵庫1は、野菜室6の後方に冷凍サイクルの構成要素である後述する圧縮機24や庫外放熱器71を収めた機械室7を有している。機械室7には下方に機械室ベース17、後方に機械室カバー18をそれぞれ有しており、機械室7は、断熱箱体10、外箱10a、機械室ベース17及び機械室カバー18で囲まれている。 Figure 2 is a rear view of the refrigerator 1 in Figure 1. The refrigerator 1 has a machine room 7 behind the vegetable room 6, which houses the compressor 24 and external radiator 71, which are components of the refrigeration cycle, as described below. The machine room 7 has a machine room base 17 at the bottom and a machine room cover 18 at the rear, and the machine room 7 is surrounded by the insulated box body 10, the outer box 10a, the machine room base 17, and the machine room cover 18.

機械室カバー18は機械室7内の空気を排出するための機械室カバー開口18aを備えており、機械室カバー18の前方には機械室カバー18と隣接するように冷蔵庫1の制御基板ケース31が設けられている。制御基板ケース31内には、冷蔵庫1の運転を制御する電気部品である基板が収められている。 The machine room cover 18 has a machine room cover opening 18a for discharging air from the machine room 7, and a control board case 31 for the refrigerator 1 is provided in front of the machine room cover 18 so as to be adjacent to the machine room cover 18. The control board case 31 contains a board, which is an electrical component that controls the operation of the refrigerator 1.

図3は図1の冷蔵庫1の縦断面図であり、図1のA-A断面図である。図4は図1の冷蔵庫1の庫内の構成を示す正面図であり、図1の冷蔵庫1から扉及び容器を外した状態の正面図である。図3及び図4を参照しながら、冷蔵庫1の構成を説明する。 Figure 3 is a vertical cross-sectional view of the refrigerator 1 in Figure 1, and a cross-sectional view taken along the line A-A in Figure 1. Figure 4 is a front view showing the configuration of the interior of the refrigerator 1 in Figure 1, and is a front view of the refrigerator 1 in Figure 1 with the door and containers removed. The configuration of the refrigerator 1 will be described with reference to Figures 3 and 4.

図3に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製(例えばABS樹脂)の内箱10bとの間に発泡断熱材(本実施形態の冷蔵庫では発泡ウレタン)を充填して形成される断熱箱体10により、庫外と庫内とが隔てられている。 As shown in FIG. 3, the inside and outside of the refrigerator 1 are separated by an insulated box 10 formed by filling a foam insulation material (urethane foam in the refrigerator of this embodiment) between an outer box 10a made of steel plate and an inner box 10b made of synthetic resin (e.g., ABS resin).

断熱箱体10には発泡断熱材に加えて、発泡断熱材より熱伝導率が低い真空断熱材25を外箱10aと内箱10bとの間に実装することで、内容積の低下を抑えて断熱性能を高めている。本実施形態では、断熱箱体10の背面、上面、下面、両側面、及び下段冷凍室扉5aに真空断熱材25を実装している。 In addition to the foam insulation material, vacuum insulation material 25, which has a lower thermal conductivity than the foam insulation material, is installed between the outer box 10a and the inner box 10b in the insulated box 10 to prevent a decrease in internal volume and improve insulation performance. In this embodiment, vacuum insulation material 25 is installed on the back, top, bottom, and both sides of the insulated box 10, and on the lower freezer door 5a.

また、断熱仕切壁27の内部の断熱材は発泡ポリスチレンであり、断熱仕切壁28の内部には断熱材として発泡ウレタンが充填されている。なお、断熱仕切壁28の内部の発泡ウレタンは、断熱箱体10の外箱10aと内箱10bとの間にウレタンを発泡充填する工程において、断熱箱体10の発泡ウレタンとともに充填される。 The insulating material inside the insulating partition wall 27 is expanded polystyrene, and the inside of the insulating partition wall 28 is filled with urethane foam as an insulating material. The urethane foam inside the insulating partition wall 28 is filled together with the urethane foam of the insulating box 10 in the process of foaming and filling the space between the outer box 10a and the inner box 10b of the insulating box 10 with urethane.

冷蔵室扉2a、2bは、庫内側に複数の扉ポケット33a、33b、33cを備えている。また、冷蔵室2内は、棚34a、34b、34c、34dによって複数の貯蔵スペースに区画されている。製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a及び野菜室扉6aは、それぞれ一体に引き出される製氷室容器3b、上段冷凍室容器4b、下段冷凍室容器5b及び野菜室容器6bを備えている。 The refrigerator compartment doors 2a and 2b are provided with multiple door pockets 33a, 33b, and 33c on the inside of the compartment. The refrigerator compartment 2 is also divided into multiple storage spaces by shelves 34a, 34b, 34c, and 34d. The ice-making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are each provided with an ice-making compartment container 3b, an upper freezer compartment container 4b, a lower freezer compartment container 5b, and a vegetable compartment container 6b, which are pulled out as a unit.

冷蔵室2の背部に、フィンチューブ式の冷蔵室冷却器14aが収納された冷蔵室風路131を備え、冷蔵室風路131(図4参照)には、冷蔵室ファン9aを備えている。冷蔵室風路131には、前方の冷蔵室2に冷気を吹き出す上段冷蔵室吹き出し口111a、下段冷蔵室吹き出し口111bをそれぞれ備えている。 The rear of the refrigerator compartment 2 is provided with a refrigerator compartment air duct 131 housing a fin-tube type refrigerator compartment cooler 14a, and the refrigerator compartment air duct 131 (see FIG. 4) is provided with a refrigerator compartment fan 9a. The refrigerator compartment air duct 131 is provided with an upper refrigerator compartment outlet 111a and a lower refrigerator compartment outlet 111b that blow cold air into the refrigerator compartment 2 in front.

冷蔵室風路131の下部前方には、冷蔵室2からの戻り冷気が流れる冷蔵室戻り風路115が形成されている。冷蔵室戻り風路115は、冷蔵室冷却器14aの幅と略等しい幅に形成されており、冷蔵室2からの戻り冷気が冷蔵室冷却器14aに効率よく流入するようにしている。 At the lower front of the refrigerator compartment air passage 131, a refrigerator compartment return air passage 115 is formed through which the return cold air from the refrigerator compartment 2 flows. The refrigerator compartment return air passage 115 is formed with a width approximately equal to the width of the refrigerator compartment cooler 14a, so that the return cold air from the refrigerator compartment 2 flows efficiently into the refrigerator compartment cooler 14a.

冷蔵庫1は、下段冷凍室5の背部に、フィンチューブ式の冷凍室冷却器14bが収納された冷却器室8を備え、冷却器室8の上部には、冷凍室ファン9bを備えている。冷凍室ファン9a下流には、冷凍室60に吹き出す冷気が流れる冷凍室風路100が備えられている。 The refrigerator 1 is provided with a cooler chamber 8 that houses a fin-tube type freezer cooler 14b at the rear of the lower freezer chamber 5, and a freezer chamber fan 9b at the top of the cooler chamber 8. Downstream of the freezer chamber fan 9a is a freezer chamber air duct 100 through which the cold air blown into the freezer chamber 60 flows.

冷凍室風路100には、上下に延在する野菜室風路132が接続され、野菜室風路132の下部には、風量を調整する手段(風量調整手段)として、野菜室ダンパ160(図4参照)を備える。冷凍室風路100には、前方の製氷室3、上段冷凍室4及び下段冷凍室5に冷気を吹き出す製氷室吹き出し口(製氷室吐き出し口)101、上段冷凍室吹き出し口(上段冷凍室吐き出し口)102及び下段冷凍室吹き出し口(下段冷凍室吐き出し口)103をそれぞれ備えている。 The freezer compartment air duct 100 is connected to the vegetable compartment air duct 132 that extends vertically, and the bottom of the vegetable compartment air duct 132 is provided with a vegetable compartment damper 160 (see FIG. 4) as a means for adjusting the air volume (air volume adjustment means). The freezer compartment air duct 100 is provided with an ice compartment outlet (ice compartment outlet) 101 that blows cold air to the ice compartment 3 in the front, the upper freezer compartment 4, and the lower freezer compartment 5, an upper freezer outlet (upper freezer outlet) 102, and a lower freezer outlet (lower freezer outlet) 103.

冷却器室8の下部前方には、製氷室3、上段冷凍室4及び下段冷凍室5からの戻り冷気が流れる冷凍室戻り風路105が形成されている。冷凍室戻り風路105は、冷凍室冷却器14bの幅と略等しい幅に形成されており、冷凍室60からの戻り冷気が冷凍室冷却器14bに効率よく流入するようにしている。 At the lower front of the cooler chamber 8, a freezer chamber return air duct 105 is formed through which the return cold air from the ice-making chamber 3, the upper freezer chamber 4, and the lower freezer chamber 5 flows. The freezer chamber return air duct 105 is formed with a width approximately equal to the width of the freezer chamber cooler 14b, allowing the return cold air from the freezer chamber 60 to flow efficiently into the freezer chamber cooler 14b.

また、野菜室風路132の出口には野菜室吹き出し口133を備えている。下段冷凍室5と野菜室6の間の断熱仕切壁28の下面には野菜室戻り口136が開口しており、野菜室戻り口136から冷却器室8の下部前方に至る野菜室戻り風路135を、断熱仕切壁28内に備えている。 The outlet of the vegetable compartment air duct 132 is equipped with a vegetable compartment outlet 133. A vegetable compartment return port 136 opens on the underside of the insulated partition wall 28 between the lower freezer compartment 5 and the vegetable compartment 6, and a vegetable compartment return air duct 135 is provided inside the insulated partition wall 28, running from the vegetable compartment return port 136 to the lower front of the cooler compartment 8.

冷蔵室2、上段冷凍室4及び野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ43及び野菜室温度センサ45が設けられ、冷蔵室冷却器14aの上部には冷蔵室冷却器温度センサ42が設けられ、冷凍室冷却器14bの上部には冷凍室冷却器温度センサ44が設けられる。 A refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 43, and a vegetable compartment temperature sensor 45 are provided on the rear side of the interior of the refrigerator compartment 2, the upper freezer compartment 4, and the vegetable compartment 6, respectively, a refrigerator compartment cooler temperature sensor 42 is provided on the top of the refrigerator compartment cooler 14a, and a freezer compartment cooler temperature sensor 44 is provided on the top of the freezer compartment cooler 14b.

本実施例では冷凍室温度センサ43は上段冷凍室4に設けられているが、下段冷凍室5に設けられてもよい。これらのセンサにより、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6、冷却器室8、冷凍室冷却器14b、冷蔵室風路131、及び冷蔵室冷却器14aの温度が検知される。 In this embodiment, the freezer temperature sensor 43 is provided in the upper freezer 4, but it may also be provided in the lower freezer 5. These sensors detect the temperatures of the refrigerator compartment 2, ice-making compartment 3, upper freezer 4, lower freezer 5, vegetable compartment 6, cooler compartment 8, freezer cooler 14b, refrigerator air duct 131, and refrigerator cooler 14a.

また、冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気温度センサ37と外気湿度センサ38とが設けられ、外気(庫外空気)の温度と湿度とが検知される。その他にも、扉センサ(図示せず)が設けられることで、扉2a、2b、3a、4a、5a、6aの開閉状態がそれぞれ検知される。 In addition, an outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (air outside the refrigerator). In addition, door sensors (not shown) are provided to detect the open/closed states of the doors 2a, 2b, 3a, 4a, 5a, and 6a.

冷却器室8内の冷凍室冷却器14b下方には、冷凍室冷却器14bを加熱する除霜ヒータ21が備えられている。冷却器室8の下面には冷凍室樋23が形成されており、冷蔵室風路131の下面には冷蔵室樋25が形成されている。 A defrost heater 21 that heats the freezer cooler 14b is provided below the freezer cooler 14b in the cooler chamber 8. A freezer gutter 23 is formed on the underside of the cooler chamber 8, and a refrigerator gutter 25 is formed on the underside of the refrigerator air duct 131.

冷凍室樋23の下端部からは、機械室7と連通する冷凍室排水管22が下方に向けて設けられており、冷蔵室樋25の下端部からは、機械室7と連通する冷蔵室排水管24が下方に向けて設けられている。また、機械室7には、圧縮機24と、圧縮機24の上部に配置された蒸発皿32とが設置されている。 The freezer drain pipe 22 that is connected to the machine room 7 is provided downward from the lower end of the freezer gutter 23, and the refrigerator drain pipe 24 that is connected to the machine room 7 is provided downward from the lower end of the refrigerator gutter 25. In addition, the machine room 7 is equipped with a compressor 24 and an evaporation tray 32 arranged above the compressor 24.

除霜ヒータ21は、例えば50W~200Wの電気ヒータを採用すれば良く、本実施形態では120Wのラジアントヒータとしている。冷凍室冷却器14b及び冷蔵室冷却器14aの除霜時に発生した除霜水は、それぞれ冷凍室樋23、冷凍室排水管22、冷蔵室樋25、冷蔵室排水管24を介して圧縮機24の上部の蒸発皿32に排出され、圧縮機24からの放熱や、機械室ファンによる通風等の作用により蒸発する。 The defrost heater 21 may be, for example, a 50W to 200W electric heater, and in this embodiment, a 120W radiant heater is used. The defrost water generated during defrosting of the freezer compartment cooler 14b and the refrigerator compartment cooler 14a is discharged into the evaporation dish 32 above the compressor 24 via the freezer compartment gutter 23, the freezer compartment drain pipe 22, the refrigerator compartment gutter 25, and the refrigerator compartment drain pipe 24, respectively, and evaporates due to the effects of heat radiation from the compressor 24 and ventilation by the machine compartment fan, etc.

冷蔵室2内の、断熱仕切壁27の上部には、内部が-1℃程度に維持される容器36が備えられており、容器36の前方は蓋体36aにより開閉可能となっている。蓋体36aの外周にはパッキン(図示せず)が備えられており、蓋体36aを閉鎖状態とした場合、パッキンにより蓋体36aと容器36とが隙間なく接触し、容器36はその内部空間が密閉される構造となっている。 A container 36, whose interior temperature is maintained at approximately -1°C, is provided above the insulating partition wall 27 in the refrigerator compartment 2, and the front of the container 36 can be opened and closed by a lid 36a. A packing (not shown) is provided on the outer periphery of the lid 36a, and when the lid 36a is closed, the packing ensures that the lid 36a and the container 36 are in contact with each other without any gaps, so that the internal space of the container 36 is sealed.

また、容器36の背部には、容器36内の空気を吸引するポンプ(図示せず)が備えられており、蓋体36aが閉鎖された状態でポンプを駆動することで、容器36内の気圧が約0.8気圧に減圧されるようになっている。これにより容器36内は、蓋体36aにより冷気が直接送風されなくなるとともに、減圧環境となるので、食品の乾燥と酸化を抑制する収納スペースとなる。 The back of the container 36 is equipped with a pump (not shown) that sucks air out of the container 36, and by operating the pump with the lid 36a closed, the air pressure inside the container 36 is reduced to approximately 0.8 atmospheres. As a result, the lid 36a prevents cold air from being blown directly into the container 36, and a reduced pressure environment is created, creating a storage space that prevents food from drying out and oxidizing.

図5は、冷蔵庫1の冷凍サイクル(冷媒流路)の構成を表す図である。図5を参照しながら冷蔵庫1の冷凍サイクルについて説明する。 Figure 5 is a diagram showing the configuration of the refrigeration cycle (refrigerant flow path) of refrigerator 1. The refrigeration cycle of refrigerator 1 will be explained with reference to Figure 5.

冷蔵庫1では、圧縮機24、冷媒と庫外の空気を熱交換させて、冷媒から空気への放熱を行う庫外放熱器(機械室凝縮器に該当する)71、壁面放熱配管72、断熱仕切壁27、28と仕切部29の前縁部への結露を抑制する結露抑制配管73(庫外放熱器71、壁面放熱配管72、結露抑制配管73を放熱手段70と呼ぶ)、水分を除去するドライヤ51、冷媒流制御手段である三方弁92、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ75a、冷凍用キャピラリチューブ75b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱する冷蔵室冷却器14a、及び、冷凍室冷却器14bを備えている。 The refrigerator 1 includes a compressor 24, an external radiator (corresponding to a machine room condenser) 71 that exchanges heat between the refrigerant and the air outside the refrigerator and radiates heat from the refrigerant to the air, a wall surface heat radiation pipe 72, a condensation suppression pipe 73 that suppresses condensation on the front edge of the insulating partition walls 27, 28 and the partition part 29 (the external radiator 71, the wall surface heat radiation pipe 72, and the condensation suppression pipe 73 are called heat radiation means 70), a dryer 51 that removes moisture, a three-way valve 92 that is a refrigerant flow control means, a refrigeration capillary tube 75a and a freezing capillary tube 75b that are pressure reduction means for reducing the pressure of the refrigerant, a refrigerator compartment cooler 14a that exchanges heat between the refrigerant and the air inside the refrigerator and absorbs heat from the refrigerator, and a freezer compartment cooler 14b.

また、冷蔵室冷却器14aの下流と、冷凍用冷却器14bの下流には、それぞれ液冷媒が圧縮機24に流入するのを防止する冷蔵用気液分離器28a、冷凍用気液分離器28bを備えている。さらに冷凍用気液分離器28bの下流には逆止弁89を備えている。これらの構成要素を冷媒配管により接続することで冷凍サイクルを構成している。 Furthermore, downstream of the refrigerator cooler 14a and downstream of the refrigeration cooler 14b, there are provided a refrigeration gas-liquid separator 28a and a refrigeration gas-liquid separator 28b, respectively, which prevent liquid refrigerant from flowing into the compressor 24. Furthermore, downstream of the refrigeration gas-liquid separator 28b, there is provided a check valve 89. These components are connected by refrigerant piping to form a refrigeration cycle.

尚、本実施例の冷蔵庫においては、冷蔵用冷却器14a及び冷凍室冷却器14bの温度を、圧縮機24、冷蔵用ファン9a、冷凍用ファン9bの回転速度によって調整するため、圧縮機24、冷蔵用ファン9a、冷凍用ファン9bを蒸発器温度調整手段と呼ぶ。また、冷媒には可燃性冷媒のイソブタンを用いており、冷媒量封入量は88gである。 In the refrigerator of this embodiment, the temperatures of the refrigeration cooler 14a and the freezer cooler 14b are adjusted by the rotation speeds of the compressor 24, the refrigeration fan 9a, and the freezing fan 9b, so the compressor 24, the refrigeration fan 9a, and the freezing fan 9b are called the evaporator temperature adjustment means. In addition, the refrigerant used is isobutane, which is a flammable refrigerant, and the amount of refrigerant charged is 88 g.

冷媒は、圧縮機24により圧縮され気相として吐出され、機械室に配置された庫外放熱器71内で気液二相に変化し、庫外放熱器71、壁面放熱配管72及び結露抑制配管73で放熱し液相に相変化する。その後、冷媒は冷蔵用キャピラリチューブ75a又は、冷凍用キャピラリチューブ75bで減圧され、冷蔵室冷却器14a又は、冷凍用冷却器14b内で気相に相変化しつつ空気の熱を吸熱する。 The refrigerant is compressed by the compressor 24 and discharged in gas phase, changes to two phases of gas and liquid in the external radiator 71 arranged in the machine room, and dissipates heat in the external radiator 71, the wall surface heat dissipation pipe 72, and the condensation suppression pipe 73, changing to liquid phase. The refrigerant is then depressurized in the refrigeration capillary tube 75a or the freezing capillary tube 75b, and absorbs heat from the air while changing to gas phase in the refrigerator cooler 14a or the freezing cooler 14b.

図6は本実施形態の特徴部分となる、図2の冷蔵庫1から機械室カバー18及び制御基板ケース31を外した状態の機械室近傍の背面図、図7は機械室ベース17の上面図、図8は庫外放熱器71の斜視図である。 Figure 6 is a rear view of the vicinity of the machine chamber with the machine chamber cover 18 and control board case 31 removed from the refrigerator 1 in Figure 2, which is a characteristic part of this embodiment, Figure 7 is a top view of the machine chamber base 17, and Figure 8 is a perspective view of the external radiator 71.

尚、図6に示す破線矢印は、機械室内の空気の流れる向きを示しており、図8に示す実線矢印は冷媒の流れる向きを示している。図2、図6、図7及び図8を用いて第1の実施形態に係る冷蔵庫1の機械室の構成について説明する。 The dashed arrows in FIG. 6 indicate the direction of air flow in the machine compartment, and the solid arrows in FIG. 8 indicate the direction of refrigerant flow. The configuration of the machine compartment of the refrigerator 1 according to the first embodiment will be described with reference to FIGS. 2, 6, 7, and 8.

図6に示すように、機械室7は、断熱箱体10の外表面を形成する外箱10a、機械室ベース17及び機械室カバー18(図2参照)に囲まれた領域である。この機械室7は、冷蔵庫の正面、つまり開閉扉の側からみて、左右の横幅方向に延びるように形成されている。機械室7は、奥行D1(図3参照)=150mm、奥行D2(図3参照)=190mm、高さH=190mmの略台形形状の断面(図3参照)を持ち、この断面形状が幅W=880mmに渡って延びた空間領域である。 As shown in FIG. 6, the machine room 7 is an area surrounded by the outer box 10a that forms the outer surface of the insulated box body 10, the machine room base 17, and the machine room cover 18 (see FIG. 2). This machine room 7 is formed so as to extend in the left and right width direction when viewed from the front of the refrigerator, i.e., the side where the door opens and closes. The machine room 7 has a roughly trapezoidal cross section (see FIG. 3) with a depth D1 (see FIG. 3) = 150 mm, a depth D2 (see FIG. 3) = 190 mm, and a height H = 190 mm, and is a spatial area with this cross-sectional shape extending over a width W = 880 mm.

機械室7は、幅方向(左右方向)に長く、高さ及び奥行が短い空間形状である。即ち、上下寸法及び奥行寸法と比較し、横幅寸法が大きい空間で形成されている。更に、機械室7の上方の奥行寸法D1が、機械室7の下方の奥行寸法D2より短い空間で形成されている。尚、外箱10aは右方側面に外箱入口開口部19と、左方側面に外箱出口開口部35が設けられている。 The machine room 7 is a space that is long in the width direction (left-right direction) and short in height and depth. In other words, it is formed as a space with a large width dimension compared to the top-bottom dimensions and depth dimensions. Furthermore, the depth dimension D1 above the machine room 7 is shorter than the depth dimension D2 below the machine room 7. The outer box 10a has an outer box inlet opening 19 on the right side and an outer box outlet opening 35 on the left side.

機械室7には、左方から右方に向かって、圧縮機24と、機械室ファン78と、庫外放熱器71が、所定の間隔を空けて順次配置されている。後述する庫外放熱器71の伝熱管77は庫外放熱器71に対して左方にある圧縮機24の吐出配管177と、右方にある壁面放熱配管72への接続配管178にそれぞれ接続されている。また、庫外放熱器71の後方には、制御基板ケース31(図2参照)が備えられており、庫外放熱器71の設置可能空間の奥行寸法は、幅寸法W及び上下寸法Hと比較して、小さく設定されている。 In the machine room 7, from left to right, the compressor 24, the machine room fan 78, and the external radiator 71 are arranged in sequence at a predetermined interval. The heat transfer tube 77 of the external radiator 71, which will be described later, is connected to the discharge pipe 177 of the compressor 24 on the left of the external radiator 71, and to the connection pipe 178 to the wall surface heat radiation pipe 72 on the right. In addition, a control board case 31 (see Figure 2) is provided behind the external radiator 71, and the depth dimension of the space in which the external radiator 71 can be installed is set to be small compared to the width dimension W and the vertical dimension H.

圧縮機24の上方には、蒸発皿32が備えられており、冷蔵室冷却器14aと冷凍室冷却器14bの除霜水が冷凍室排水管22及び冷蔵室排水管24を介して蒸発皿32に貯留される。蒸発皿32は一定の水位を超えると水を下方に排出するようにできており、排出された水は機械室ベース17に備えられた機械室ベース貯水部17aに貯留される。蒸発皿32と機械室ベース貯水部17aに貯水された水は、機械室ファン78により送風された空気により蒸発される。 An evaporator tray 32 is provided above the compressor 24, and defrosted water from the refrigerator compartment cooler 14a and the freezer compartment cooler 14b is stored in the evaporator tray 32 via the freezer compartment drain pipe 22 and the refrigerator compartment drain pipe 24. The evaporator tray 32 is designed to discharge water downward when the water level exceeds a certain level, and the discharged water is stored in the machine room base water storage section 17a provided in the machine room base 17. The water stored in the evaporator tray 32 and the machine room base water storage section 17a is evaporated by air blown by the machine room fan 78.

機械室7内の機械室ファン78を駆動することにより、外箱入口開口部19及び機械室ベース開口部17bを介して機械室7内に空気が流入する。機械室7に流入した空気は庫外放熱器71を通り、機械室ファン78で昇圧され、圧縮機24周辺を流れる。この気流によって庫外放熱器71と、圧縮機24からの放熱が促進される。庫外放熱器71と圧縮機24と熱交換して、温度が上昇した空気は、外箱出口開口部35及び機械室カバー開口部18a(図2参照)より機械室7外に排出される。 By driving the machine room fan 78 in the machine room 7, air flows into the machine room 7 through the outer box inlet opening 19 and the machine room base opening 17b. The air that flows into the machine room 7 passes through the external radiator 71, is pressurized by the machine room fan 78, and flows around the compressor 24. This airflow promotes heat dissipation from the external radiator 71 and the compressor 24. The air that has been heated by heat exchange with the external radiator 71 and the compressor 24 is discharged outside the machine room 7 through the outer box outlet opening 35 and the machine room cover opening 18a (see Figure 2).

図6及び図7を用いて機械室ベース17の構成について更に説明を加える。機械室ベース17は機械室7の下面に設けられており、設置床の床面と機械室ベース17の間には、空気が流れる床面流路190が形成されており、床面流路の流路高さLは、L=17mmとなっており、機械室7の高さH(H=190mm)の10分の1以下の狭い流路となっている。 The configuration of the machine room base 17 will be further explained using Figures 6 and 7. The machine room base 17 is provided on the underside of the machine room 7, and a floor surface flow path 190 through which air flows is formed between the floor surface of the installation floor and the machine room base 17. The flow path height L of the floor surface flow path is L = 17 mm, which is a narrow flow path that is less than one tenth of the height H of the machine room 7 (H = 190 mm).

機械室ベース17は、図7にある通り下面にスリット状の開口である機械室ベース開口部17bを設けており、機械室内に空気を取り込む孔として機能する。機械室ベース開口部17bから機械室7に流入する空気は、床面と機械室ベース17の間の比較的狭い流路を通過する。 As shown in FIG. 7, the machine room base 17 has a machine room base opening 17b, which is a slit-shaped opening, on the underside, and functions as a hole for drawing air into the machine room. The air flowing into the machine room 7 from the machine room base opening 17b passes through a relatively narrow flow path between the floor surface and the machine room base 17.

また、機械室ベース開口部17bの空気が流通する開口面積は1230mmであり、床面付近に堆積した埃が機械室7内に流入し難くするため、外箱入口開口部19の空気が流通する開口面積(本実施例では13000mm)と比較して小さくなっている。開口面積が小さいほど通風抵抗が大きくなるので、機械室ベース開口部17bは外箱入口開口部19と比較して通風抵抗が大きくなっている。 The opening area of the machine room base opening 17b through which air flows is 1230 mm2 , which is smaller than the opening area of the outer box inlet opening 19 through which air flows (13000 mm2 in this embodiment) in order to make it difficult for dust accumulated near the floor surface to flow into the machine room 7. The smaller the opening area, the greater the ventilation resistance, so the machine room base opening 17b has greater ventilation resistance than the outer box inlet opening 19.

図6及び図8を用いて庫外放熱器71の構成について説明する。図6に示すように、庫外放熱器71は、外箱入口開口部19及び機械室ベース開口部17bから機械室7内に吸い込まれた空気により放熱する。図8に示すように、機械室7に設置される庫外放熱器71は、冷媒を流す伝熱管77と、伝熱管77に固定され、空気との熱交換を促進する複数のフィンを備えたクロスフィンチューブ式の熱交換器である。 The configuration of the external radiator 71 will be described with reference to Figures 6 and 8. As shown in Figure 6, the external radiator 71 radiates heat using air drawn into the machine room 7 from the outer box inlet opening 19 and the machine room base opening 17b. As shown in Figure 8, the external radiator 71 installed in the machine room 7 is a cross-fin tube type heat exchanger that includes a heat transfer tube 77 through which a refrigerant flows and multiple fins fixed to the heat transfer tube 77 to promote heat exchange with the air.

このように、庫外放熱器71として、クロスフィンチューブ式の熱交換器を用いることで放熱の効率を高めることができる。伝熱管77は、主にフィンが設置された熱交換部と伝熱管77を曲げたベンド部を備えている。以下では、熱交換部に設けられた複数のフィンをフィン群と呼称することがある。本実施例では、全てのフィンは独立しており、1枚のフィンは1本の伝熱管77に固定されて設けられている。また、ベンド部は、隣り合うフィン群を跨いで夫々の伝熱管77を接続するものである。 In this way, by using a cross-fin tube type heat exchanger as the external radiator 71, the efficiency of heat radiation can be improved. The heat transfer tube 77 mainly comprises a heat exchange section where fins are installed and a bend section where the heat transfer tube 77 is bent. In the following, the multiple fins provided in the heat exchange section may be referred to as a fin group. In this embodiment, all the fins are independent, and each fin is fixed to one heat transfer tube 77. In addition, the bend section connects each heat transfer tube 77 across adjacent fin groups.

庫外放熱器71は幅W71が192mm、高さH71が172mm、奥行A71が83mmである。また、垂直放熱部71aの熱交換部は幅W1が53mm、高さH1が114mm、奥行A1は83mmであり、水平放熱部71bの熱交換部は幅W2が111mm、高さH2が26mm、奥行A2は83mmとなっている。 The external radiator 71 has a width W71 of 192 mm, a height H71 of 172 mm, and a depth A71 of 83 mm. The heat exchange section of the vertical heat radiating section 71a has a width W1 of 53 mm, a height H1 of 114 mm, and a depth A1 of 83 mm, while the heat exchange section of the horizontal heat radiating section 71b has a width W2 of 111 mm, a height H2 of 26 mm, and a depth A2 of 83 mm.

図6に示すように、庫外放熱器71は、外箱入口開口部19に対向する熱交換部である垂直放熱部71aと、機械室ベース開口部17bに対向する熱交換部である水平放熱部71bを備え、略L字状に構成されている。尚、庫外放熱器71は垂直放熱器71aと水平放熱器71bから構成されているが、垂直放熱器71a、水平放熱器71bに限らず、2つの放熱器を備えるものであっても良い。 As shown in FIG. 6, the external radiator 71 is configured in a generally L-shape and includes a vertical radiator 71a, which is a heat exchanger facing the outer box inlet opening 19, and a horizontal radiator 71b, which is a heat exchanger facing the machine room base opening 17b. Note that the external radiator 71 is configured from the vertical radiator 71a and the horizontal radiator 71b, but is not limited to the vertical radiator 71a and the horizontal radiator 71b, and may include two radiators.

本実施形態では、機械室7は、冷蔵庫の開閉扉の方から見て左右方向の横幅方向に延在しており、冷蔵庫の側面に形成された外箱入口開口部19と外箱出口開口部35と連通されている。そして、垂直放熱部71aは、外箱入口開口部19と対向するように、冷蔵庫の側面に沿って設けられている。つまり、設置床に対して垂直方向に、冷蔵庫の側面に沿って設けられている。一方、水平放熱部71bは、機械室ベース開口部17bと対向するように、冷蔵庫の底面に沿って設けられている。つまり、設置床に対して平行方向に設置床に沿って設けられている。 In this embodiment, the machine room 7 extends in the left-right width direction when viewed from the opening and closing door of the refrigerator, and is connected to the outer box inlet opening 19 and the outer box outlet opening 35 formed on the side of the refrigerator. The vertical heat dissipation section 71a is provided along the side of the refrigerator so as to face the outer box inlet opening 19. In other words, it is provided along the side of the refrigerator in a direction perpendicular to the installation floor. On the other hand, the horizontal heat dissipation section 71b is provided along the bottom surface of the refrigerator so as to face the machine room base opening 17b. In other words, it is provided along the installation floor in a direction parallel to the installation floor.

本実施例では、図8に示すように、垂直放熱部71aと水平放熱部71bは互いに伝熱管77のベンド部を介して接続され、一体に形成されている。また、垂直放熱部71aは空気流れ方向に2列、空気流れと直交する方向に4段の伝熱管77a~77hを備え、水平放熱部71bは、空気流れ方向に1列、空気流れと直交する方向に4段の伝熱管77i~77lを備えている。 In this embodiment, as shown in Figure 8, the vertical heat dissipation section 71a and the horizontal heat dissipation section 71b are connected to each other via the bends of the heat transfer tubes 77 and are formed as one unit. The vertical heat dissipation section 71a has two rows in the air flow direction and four stages of heat transfer tubes 77a to 77h in the direction perpendicular to the air flow, while the horizontal heat dissipation section 71b has one row in the air flow direction and four stages of heat transfer tubes 77i to 77l in the direction perpendicular to the air flow.

本実施例では、垂直放熱部71aの空気流れ方向の上流側の列を垂直放熱部第1列201、下流側の列を垂直放熱部第2列202、水平放熱部71bの列を水平放熱部第1列211と呼ぶことがある。ベンド部には空気の流れを抑制するための図示しない遮蔽部材を設置して、熱交換部に空気の流れが集まるようにしている。 In this embodiment, the row on the upstream side of the vertical heat dissipation section 71a in the air flow direction is sometimes called the first row of vertical heat dissipation sections 201, the row on the downstream side is sometimes called the second row of vertical heat dissipation sections 202, and the row of horizontal heat dissipation sections 71b is sometimes called the first row of horizontal heat dissipation sections 211. A shielding member (not shown) is installed in the bend section to suppress the air flow, so that the air flow is concentrated in the heat exchange section.

冷媒は、伝熱管77a、77b、77c、77d、77e、77i、77j、77f、77g、77k、77l、77gの順に流れるようにしてある。図6に示す圧縮機24の吐出配管177は、伝熱管77aに接続され、伝熱管77lは壁面放熱配管72への接続配管178に接続される。 The refrigerant flows through the heat transfer tubes 77a, 77b, 77c, 77d, 77e, 77i, 77j, 77f, 77g, 77k, 77l, and 77g in this order. The discharge pipe 177 of the compressor 24 shown in FIG. 6 is connected to the heat transfer tube 77a, and the heat transfer tube 77l is connected to the connection pipe 178 to the wall surface heat radiation pipe 72.

圧縮機から吐出された高温の冷媒は、吐出配管178を流れ、伝熱管77a、77b、77cを流れることで放熱して温度が下がり、伝熱管77dにおいて気液二相状態に至る。伝熱管77f以降は気液二相状態で放熱されるので、略一定の温度が保たれる。 The high-temperature refrigerant discharged from the compressor flows through discharge pipe 178, and as it flows through heat transfer tubes 77a, 77b, and 77c, it dissipates heat and its temperature drops, and reaches a two-phase gas-liquid state in heat transfer tube 77d. From heat transfer tube 77f onwards, heat is dissipated in a two-phase gas-liquid state, so an approximately constant temperature is maintained.

垂直放熱部71aのフィン群のフィン間隔G1と、水平放熱部71bのフィン群のフィン間隔G2はともに3mmである。また、垂直放熱部71aのフィン群の総表面積は281500mm、水平放熱部71bのフィン群の総表面積は140750mmである。このように構成された庫外放熱器71は、垂直放熱部71aの通風抵抗が水平放熱部71bの通風抵抗に対して大きくなる。 The fin spacing G1 of the fin group of the vertical heat dissipation section 71a and the fin spacing G2 of the fin group of the horizontal heat dissipation section 71b are both 3 mm. The total surface area of the fin group of the vertical heat dissipation section 71a is 281,500 mm2 , and the total surface area of the fin group of the horizontal heat dissipation section 71b is 140,750 mm2 . In the external radiator 71 configured in this manner, the ventilation resistance of the vertical heat dissipation section 71a is greater than the ventilation resistance of the horizontal heat dissipation section 71b.

水平放熱部伝熱管77i~77lは水平放熱部71bを構成し、左右方向に延伸している。これにより、水平放熱部伝熱管77i~77lのベンド部が機械室7の幅、奥行、高さのうちもっとも大きい寸法が確保されている幅(左右)方向に突出するため収納性が良好となる。また、垂直放熱部伝熱管77a~77hは垂直放熱部71aを構成しつつ上下方向に延伸しているので、水平放熱部71bの右側と垂直放熱部71aの下部のベンド部を介して互いを接続しやすくなるので、接続性が良く、一体に製造しやすくなる。 The horizontal heat dissipation section heat transfer tubes 77i to 77l form the horizontal heat dissipation section 71b and extend in the left-right direction. This allows for good storage because the bends of the horizontal heat dissipation section heat transfer tubes 77i to 77l protrude in the width (left-right) direction in which the largest dimension of the width, depth, and height of the machine room 7 is secured. In addition, the vertical heat dissipation section heat transfer tubes 77a to 77h extend in the up-down direction while forming the vertical heat dissipation section 71a, so they can be easily connected to each other via the bends on the right side of the horizontal heat dissipation section 71b and the lower part of the vertical heat dissipation section 71a, providing good connectivity and facilitating integrated manufacturing.

尚、庫外放熱器71の垂直放熱部71aは主に外箱入口開口部19から吸い込んだ空気により放熱し、水平放熱部71bは機械室ベース開口部17bから吸い込んだ空気により放熱する。 The vertical heat dissipation section 71a of the external radiator 71 dissipates heat mainly by air drawn in from the outer box inlet opening 19, and the horizontal heat dissipation section 71b dissipates heat by air drawn in from the machine room base opening 17b.

以上で、本実施例の冷蔵庫1の構成を説明したが、次に、本実施例の冷蔵庫1の奏する作用、効果について説明する。 The configuration of the refrigerator 1 of this embodiment has been explained above. Next, we will explain the operation and effects of the refrigerator 1 of this embodiment.

本実施例の冷蔵庫1は、左方向に開いた外箱入口開口部19(低通風抵抗開口部)と、下方向に開いた機械室ベース開口部17b(高通風抵抗開口部)と、外箱入口開口部19(低通風抵抗開口部)に対向し、主に外箱入口開口部19から取り入れられた空気で放熱する庫外放熱器71の垂直放熱部71a(高通風抵抗放熱器)と、機械室ベース開口部17b(高通風抵抗開口部)に対向し、主に機械室ベース開口部17bから取り入れられた空気で放熱する庫外放熱器71の水平放熱部71b(低通風抵抗放熱器)と、「庫外放熱器71の垂直放熱部71aの通風抵抗>庫外放熱器71の水平放熱部71bの通風抵抗」が成り立つ機械室7を備える、ことを特徴としている。(請求項1に記載の構成)
機械室ベース開口部17bは比較的高通風抵抗であるため通過する空気の流量は、外箱入口開口部19を通過する空気の流量より小さくなる。一方、外箱入口開口部19に対向する垂直放熱部71aの通風抵抗に比べて機械室ベース開口部17bに対向する水平放熱部71bの通風抵抗が小さくなっている。これにより、垂直放熱部71aと、水平放熱部71bを通過する空気流量の偏りを抑制し、庫外放熱器71の放熱効率を向上させることができる。
The refrigerator 1 of this embodiment is characterized by having an outer box inlet opening 19 (low ventilation resistance opening) that opens to the left, a machine room base opening 17b (high ventilation resistance opening) that opens downward, a vertical heat dissipation section 71a (high ventilation resistance radiator) of an external radiator 71 that faces the outer box inlet opening 19 (low ventilation resistance opening) and dissipates heat mainly with air taken in from the outer box inlet opening 19, a horizontal heat dissipation section 71b (low ventilation resistance radiator) of the external radiator 71 that faces the machine room base opening 17b (high ventilation resistance opening) and dissipates heat mainly with air taken in from the machine room base opening 17b, and a machine room 7 in which "the ventilation resistance of the vertical heat dissipation section 71a of the external radiator 71 > the ventilation resistance of the horizontal heat dissipation section 71b of the external radiator 71" is satisfied. (Configuration described in claim 1)
Since the machine room base opening 17b has a relatively high ventilation resistance, the flow rate of air passing therethrough is smaller than the flow rate of air passing through the outer box inlet opening 19. On the other hand, the ventilation resistance of the horizontal heat radiating section 71b facing the machine room base opening 17b is smaller than the ventilation resistance of the vertical heat radiating section 71a facing the outer box inlet opening 19. This makes it possible to suppress bias in the air flow rate passing through the vertical heat radiating section 71a and the horizontal heat radiating section 71b, and improve the heat dissipation efficiency of the external radiator 71.

つまり、従来の冷蔵庫に比べて、水平放熱部71bの通風抵抗が小さいので、機械室ベース開口部17bから流入してくる空気を多く流すことができ、また、垂直放熱部71aの通風抵抗が大きいので、外箱入口開口部19から流入してくる空気を絞って流すことができ、これらの作用によって垂直放熱部71aと、水平放熱部71bを通過する空気流量の偏りを抑制することができる。 In other words, compared to conventional refrigerators, the horizontal heat dissipation section 71b has a smaller ventilation resistance, so more air can flow in from the machine room base opening 17b, and the vertical heat dissipation section 71a has a larger ventilation resistance, so more air can flow in from the outer box inlet opening 19. These actions make it possible to suppress bias in the amount of air flowing through the vertical heat dissipation section 71a and the horizontal heat dissipation section 71b.

尚、本実施例では、高通風抵抗開口部を床面に隣接する機械室ベース開口部17bとしているが、高通風抵抗開口部は必ずしも床面に隣接する位置に限定されず、例えば、機械室7の背面側に配置された機械室カバー18に高通風抵抗開口部を設けても良い。この場合は、低通風抵抗放熱器を機械室カバー18に備えられた高通風抵抗開口部に対向して配置することで同様の効果を得ることができる。 In this embodiment, the high ventilation resistance opening is the machine room base opening 17b adjacent to the floor surface, but the high ventilation resistance opening is not necessarily limited to a position adjacent to the floor surface. For example, a high ventilation resistance opening may be provided in the machine room cover 18 arranged on the rear side of the machine room 7. In this case, a similar effect can be obtained by arranging a low ventilation resistance radiator opposite the high ventilation resistance opening provided in the machine room cover 18.

また、本実施例の冷蔵庫1では、放熱器71の垂直放熱部71a(高通風抵抗放熱器)は、内部に冷媒を流す垂直放熱部伝熱管77a~77h(第1伝熱管)と、垂直放熱部伝熱管77a~77hに固定された複数のフィンからなるフィン群(第1フィン群)を備え、庫外放熱器71の水平放熱部71bは、内部に冷媒を流す水平放熱部伝熱管77i~77l(第2伝熱管)と、水平放熱部伝熱管77bに固定された複数のフィンから成るフィン群(第2フィン群)を備えて、第1フィン群のフィン総表面積が、第2フィン群のフィン総表面積より大きくしている、ことを特徴とする。(請求項2に記載の構成)
このような実施形態をとることで、フィン表面における摩擦抵抗によって、垂直放熱部71aの通風抵抗を水平放熱部71bの通風抵抗に比べて大きくすることができ、空気流量の偏りを抑制することができる。
In addition, in the refrigerator 1 of this embodiment, the vertical heat radiation section 71a (high ventilation resistance heat radiation section) of the radiator 71 includes vertical heat radiation section heat transfer tubes 77a to 77h (first heat transfer tubes) through which the refrigerant flows, and a fin group (first fin group) consisting of a plurality of fins fixed to the vertical heat radiation section heat transfer tubes 77a to 77h, and the horizontal heat radiation section 71b of the external radiator 71 includes horizontal heat radiation section heat transfer tubes 77i to 77l (second heat transfer tubes) through which the refrigerant flows, and a fin group (second fin group) consisting of a plurality of fins fixed to the horizontal heat radiation section heat transfer tube 77b, and the total fin surface area of the first fin group is larger than the total fin surface area of the second fin group. (Configuration described in claim 2)
By adopting such an embodiment, the frictional resistance on the fin surface can make the ventilation resistance of the vertical heat dissipation section 71a greater than that of the horizontal heat dissipation section 71b, thereby suppressing bias in the air flow rate.

ここで、垂直放熱部71aフィン総表面積を水平放熱部71bのフィン総表面積より大きくする手段は本実施例の形態に限らず、例えば、垂直放熱部71aと、水平放熱部71bの伝熱管77をともに1列として、垂直放熱部71aを構成するフィン群のフィン間隔G1を1.5mmとし、水平放熱部71bを構成するフィン群のフィン間隔G2を3.0mmとするように、垂直放熱部71aのフィン間隔を、水平放熱部71bのフィン間隔より小さくしても良い。この場合は、放熱器71をよりコンパクトにすることが可能となる。 The means for making the total fin surface area of the vertical heat dissipation section 71a larger than the total fin surface area of the horizontal heat dissipation section 71b is not limited to the embodiment. For example, the heat transfer tubes 77 of the vertical heat dissipation section 71a and the horizontal heat dissipation section 71b may both be arranged in a single row, with the fin spacing G1 of the fin group constituting the vertical heat dissipation section 71a being 1.5 mm and the fin spacing G2 of the fin group constituting the horizontal heat dissipation section 71b being 3.0 mm, so that the fin spacing of the vertical heat dissipation section 71a is smaller than the fin spacing of the horizontal heat dissipation section 71b. In this case, it is possible to make the heat sink 71 more compact.

また、本実施例の冷蔵庫1では、庫外放熱器71の垂直放熱部71a(高通風抵抗放熱器)の列数が水平放熱部71b(低通風抵抗放熱器)の列数より大きくなるようにしている。具体的には垂直放熱部71aは空気流れ方向に2列の伝熱管(伝熱管77a~77dと伝熱管77e~77h)により構成し、水平放熱部71bは空気流れ方向に1列の伝熱管(伝熱管77i~伝熱管77l)で構成している、ことを特徴としている。(請求項3に記載の構成)
このような実施形態をとることで、伝熱管の形状抵抗によって、垂直放熱部71aの通風抵抗を水平放熱部71bの通風抵抗に比べて大きくすることができるので、垂直放熱部71aと水平放熱部71bの通風抵抗を調整でき、通過する空気流量の偏りを抑制することができる。
In addition, in the refrigerator 1 of this embodiment, the number of rows of the vertical heat radiating section 71a (high ventilation resistance radiator) of the external radiator 71 is set to be greater than the number of rows of the horizontal heat radiating section 71b (low ventilation resistance radiator). Specifically, the vertical heat radiating section 71a is configured with two rows of heat transfer tubes (heat transfer tubes 77a to 77d and heat transfer tubes 77e to 77h) in the air flow direction, and the horizontal heat radiating section 71b is configured with one row of heat transfer tubes (heat transfer tubes 77i to 77l) in the air flow direction. (Configuration described in claim 3)
By adopting such an embodiment, the shape resistance of the heat transfer tube can make the ventilation resistance of the vertical heat dissipation section 71a greater than the ventilation resistance of the horizontal heat dissipation section 71b, so that the ventilation resistance of the vertical heat dissipation section 71a and the horizontal heat dissipation section 71b can be adjusted and bias in the flow rate of air passing through can be suppressed.

また、本実施例の冷蔵庫1では、垂直放熱部伝熱管77a~77h(第1伝熱管)は、管の曲げ部である垂直放熱部伝熱管ベンド部(第1ベンド部)を有し、垂直放熱部伝熱管77a~77hを略垂直に配置して、垂直放熱部伝熱管ベンド部を、垂直放熱部71aの上下に形成し、且つ、垂直放熱部伝熱管77a~77hと水平放熱部伝熱管77i~77lを一体に形成している、ことを特徴としている。(請求項4に記載の構成)
このような形態をとることで、上方の奥行寸法が高さ寸法より短い機械室7において、垂直放熱部伝熱管ベンド部が寸法の大きい高さ方向に突出することになるので、垂直放熱部71aの熱交換部を大きくすることができ放熱性能を向上させることができる。
In addition, in the refrigerator 1 of this embodiment, the vertical heat radiating section heat transfer tubes 77a to 77h (first heat transfer tubes) have vertical heat radiating section heat transfer tube bends (first bends) which are bent portions of the tubes, the vertical heat radiating section heat transfer tubes 77a to 77h are arranged substantially vertically, the vertical heat radiating section heat transfer tube bends are formed above and below the vertical heat radiating section 71a, and the vertical heat radiating section heat transfer tubes 77a to 77h and the horizontal heat radiating section heat transfer tubes 77i to 77l are integrally formed. (Configuration described in claim 4)
By adopting this configuration, in the machine room 7 where the upper depth dimension is shorter than the height dimension, the bend portion of the heat transfer pipe of the vertical heat dissipation section protrudes in the height direction, which is the larger dimension, so that the heat exchange section of the vertical heat dissipation section 71a can be enlarged and the heat dissipation performance can be improved.

また、本実施例の冷蔵庫1では、水平放熱部伝熱管77i~77l(第2伝熱管)は、管の曲げ部である水平放熱部伝熱管ベンド部(第2ベンド部)を有し、水平放熱部伝熱管77i~77lを略水平に配置して、水平放熱部伝熱管ベンド部を、水平放熱部71bの左右に形成している、ことを特徴としている。(請求項5に記載の構成)
このような形態をとることで、水平放熱部伝熱管ベンド部が機械室7の幅、高さ、奥行のうち最も寸法が大きい幅方向に突出することになるので、庫外放熱器71の収納性が良好となる。
In addition, in the refrigerator 1 of this embodiment, the horizontal heat radiating section heat transfer pipes 77i to 77l (second heat transfer pipes) have horizontal heat radiating section heat transfer pipe bends (second bends) which are bent portions of the pipes, and the horizontal heat radiating section heat transfer pipes 77i to 77l are arranged substantially horizontally, and the horizontal heat radiating section heat transfer pipe bends are formed on the left and right sides of the horizontal heat radiating section 71b. (Configuration described in claim 5)
By adopting this configuration, the bend portion of the horizontal heat dissipation section heat transfer pipe protrudes in the width direction, which is the largest dimension among the width, height, and depth of the machine chamber 7, thereby improving the storability of the external radiator 71.

また、本実施例の冷蔵庫1では、機械室7の内部に圧縮機24を備え、圧縮機24の吐出口に接続された圧縮機吐出配管177を、垂直放熱部71aの伝熱管77a~77h(第1伝熱管)の空気流れ方向で見て上流側(ここでは最上流側)の列の伝熱管77aに接続し、圧縮機24から吐出された気相冷媒が、垂直放熱部伝熱管77a~77hの内部で二相冷媒になり、水平放熱部71bの伝熱管77i~77l(第2伝熱管)に接続するように形成されている。更に、垂直放熱部71aを流れる空気の流れ方向で見て、最も下流側に位置する列の第1伝熱管77hの出口と冷蔵庫の壁面放熱配管が接続されている、ことを特徴としている。(請求項6、7に記載の構成)
圧縮機24から吐出される冷媒はガス(気相)であり、気相の冷媒が庫外放熱器71に流入する、その後、垂直放熱部伝熱管77a、77b、77cを流れることで放熱して温度が下がり、垂直放熱部伝熱管77dにおいて気液二相状態に至る。気液二相冷媒の熱伝達率は重力の影響を受け、水平管内では凝縮液が管の下部に流下するために、管内の液膜による熱抵抗が小さくなる。一方で、垂直管内では管の内面全周が液膜で覆われるため熱抵抗が水平管に比べて大きくなる。
In addition, the refrigerator 1 of this embodiment is provided with a compressor 24 inside the machine room 7, and the compressor discharge pipe 177 connected to the discharge port of the compressor 24 is connected to the heat transfer pipe 77a of the row on the upstream side (here, the most upstream side) in the air flow direction of the heat transfer pipes 77a to 77h (first heat transfer pipes) of the vertical heat radiating section 71a, and the gas phase refrigerant discharged from the compressor 24 becomes a two-phase refrigerant inside the vertical heat radiating section heat transfer pipes 77a to 77h and is connected to the heat transfer pipes 77i to 77l (second heat transfer pipes) of the horizontal heat radiating section 71b. Furthermore, the refrigerator 1 is characterized in that the outlet of the first heat transfer pipe 77h of the row located on the most downstream side in the air flow direction flowing through the vertical heat radiating section 71a is connected to the wall surface heat radiating pipe of the refrigerator. (Configurations described in claims 6 and 7)
The refrigerant discharged from the compressor 24 is a gas (gas phase), and the gas phase refrigerant flows into the external radiator 71. Thereafter, the refrigerant radiates heat as it flows through the vertical heat radiating section heat transfer tubes 77a, 77b, and 77c, lowering its temperature, and reaches a gas-liquid two-phase state in the vertical heat radiating section heat transfer tube 77d. The heat transfer coefficient of the gas-liquid two-phase refrigerant is affected by gravity, and in the horizontal tubes, the condensed liquid flows down to the bottom of the tube, so the thermal resistance due to the liquid film inside the tube is small. On the other hand, in the vertical tubes, the entire inner circumference of the tube is covered with a liquid film, so the thermal resistance is larger than in the horizontal tubes.

したがって、水平管と垂直管から構成される放熱器では、水平管の部分で気液二相となるように放熱を行うことが有効である。そこで、本実施例の冷蔵庫では、圧縮機24から吐出された気相冷媒を垂直放熱部71aの伝熱管77cで気液二相に変化させて、熱伝達率が高い水平放熱部71bの伝熱管77i~77lには気液二相の冷媒を流すようにして庫外放熱器71の放熱効率を高くしている。 Therefore, in a radiator consisting of horizontal and vertical tubes, it is effective to radiate heat so that the refrigerant becomes two-phase gas-liquid in the horizontal tube section. Therefore, in the refrigerator of this embodiment, the gas-phase refrigerant discharged from the compressor 24 is changed to two-phase gas-liquid in the heat transfer tube 77c of the vertical heat radiating section 71a, and the two-phase gas-liquid refrigerant is made to flow through the heat transfer tubes 77i to 77l of the horizontal heat radiating section 71b, which have a high heat transfer coefficient, thereby increasing the heat radiation efficiency of the external radiator 71.

次に、第2の実施形態について説明する。尚、第1の実施形態と同様の構成については説明を省略する。図9は、第2の実施形態に係る冷蔵庫1の庫外放熱器71である。本実施形態の庫外放熱器71は実施例1の庫外放熱器71と冷媒が伝熱管77を流れる順序が異なっている。 Next, a second embodiment will be described. Note that a description of the same configuration as the first embodiment will be omitted. FIG. 9 shows an external radiator 71 of a refrigerator 1 according to the second embodiment. The external radiator 71 of this embodiment differs from the external radiator 71 of Example 1 in the order in which the refrigerant flows through the heat transfer tubes 77.

圧縮機24より吐出された冷媒が流れる圧縮機吐出配管177(図6参照)は、庫外放熱器71の垂直放熱部71aの伝熱管のうち、圧縮機が設置される左側の伝熱管77hの上部に接続される。冷媒は71hから流入して下方に流れ、水平放熱部71bの伝熱管77lに入る。 The compressor discharge pipe 177 (see FIG. 6), through which the refrigerant discharged from the compressor 24 flows, is connected to the upper part of the heat transfer pipe 77h on the left side where the compressor is installed, among the heat transfer pipes of the vertical heat dissipation section 71a of the external radiator 71. The refrigerant flows in from 71h and flows downward, entering the heat transfer pipe 77l of the horizontal heat dissipation section 71b.

続いて、水平放熱部71bの伝熱管77k、垂直放熱部71aの伝熱管77g、77f、水平放熱部71bの伝熱管77j、77i、垂直放熱部71aの伝熱管77e、77d、77c、77b、77aの順に流れる。伝熱管77aは、壁面放熱配管72への接続配管178(図6参照)に接続されている。 Then, the heat transfer tube 77k of the horizontal heat dissipation section 71b, the heat transfer tubes 77g and 77f of the vertical heat dissipation section 71a, the heat transfer tubes 77j and 77i of the horizontal heat dissipation section 71b, and the heat transfer tubes 77e, 77d, 77c, 77b, and 77a of the vertical heat dissipation section 71a in this order. The heat transfer tube 77a is connected to the connection tube 178 (see FIG. 6) to the wall surface heat dissipation tube 72.

以上で、本実施例の冷蔵庫1の構成を説明したが、次に、本実施例の冷蔵庫1の奏する作用、効果について説明する。 The configuration of the refrigerator 1 of this embodiment has been explained above. Next, we will explain the operation and effects of the refrigerator 1 of this embodiment.

本実施形態の冷蔵庫1は、機械室7の内部であって、庫外放熱器71の左側に圧縮機24を備えるとともに、庫外放熱器71の右側に壁面放熱配管72を備え、圧縮機24の吐出口に接続された接続配管177(圧縮機吐出配管)を垂直放熱部71aの伝熱管のうち、最も空気の流れ方向で見て最も下流に位置する列の伝熱管(伝熱管77h)に接続すると共に、壁面放熱配管72に接続される接続配管178を、最も空気の流れ方向で見て最も上流に位置する垂直放熱部71aの伝熱管77aに接続している、ことを特徴としている。(請求項8に記載の構成)
このような構成をとることで、第1の実施形態と同様の作用、効果が得られると共に、配管の接続が容易となり製造性が良くなる。
The refrigerator 1 of this embodiment is characterized in that, inside the machine room 7, the compressor 24 is provided on the left side of the external radiator 71, and the wall surface heat radiation pipe 72 is provided on the right side of the external radiator 71, and a connection pipe 177 (compressor discharge pipe) connected to the discharge port of the compressor 24 is connected to the heat transfer pipe (heat transfer pipe 77h) of the row located most downstream in the air flow direction among the heat transfer pipes of the vertical heat radiation section 71a, and a connection pipe 178 connected to the wall surface heat radiation pipe 72 is connected to the heat transfer pipe 77a of the vertical heat radiation section 71a located most upstream in the air flow direction. (Configuration described in claim 8)
By adopting such a configuration, it is possible to obtain the same functions and effects as the first embodiment, and also to facilitate the connection of the pipes, improving manufacturability.

以上の実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部を、他の実施形態の構成に置き換えることも可能である。また、ある実施形態の構成に他の実施形態の構成を適宜に加えることも可能である。本実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。また、した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。 The above embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. In addition, it is also possible to replace part of the configuration of each embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment as appropriate. It is also possible to add, delete, or replace other configurations with respect to part of the configuration of this embodiment. In addition, the mechanisms and configurations shown are those that are considered necessary for explanation, and do not necessarily represent all mechanisms and configurations in the product.

1…冷蔵庫、2…冷蔵室、3…製氷室、4…上段冷凍室、5…下段冷凍室、6…野菜室、7…機械室、8…冷却器室、9a…冷蔵室ファン、9b…冷凍室ファン、10…断熱箱体、10a…外箱、10b…内箱、14a…冷蔵室冷却器、14b…冷凍室冷却器、16…扉ヒンジカバー、17…機械室ベース、18…機械室カバー、19…外箱入口開口、21…除霜ヒータ、24…圧縮機、25…真空断熱材、27、28…断熱仕切壁、29、30…仕切部、31…制御基板ケース、32…蒸発皿、35…外箱出口開口、41…冷蔵室温度センサ、42…冷蔵室冷却器温度センサ、43…冷凍室温度センサ、44…冷凍室冷却器温度センサ、45…野菜室温度センサ、60…冷凍室、71…庫外放熱器、71a…垂直放熱部、71b…水平放熱部、72…壁面放熱配管、73…結露抑制配管、77…結露抑制配管、100…冷凍室風路、105…冷凍室戻り風路、115…冷蔵室戻り風路、120…冷蔵室第2風路、130…冷蔵室戻り風路、131…冷蔵室風路、132…野菜室風路、135…野菜室戻り風路、160…野菜室ダンパ、177…圧縮機吐出配管、178…壁面放熱配管の接続配管。 1...refrigerator, 2...refrigerating compartment, 3...ice-making compartment, 4...upper freezer compartment, 5...lower freezer compartment, 6...vegetable compartment, 7...machine compartment, 8...cooler compartment, 9a...refrigerating compartment fan, 9b...freezer compartment fan, 10...insulating box body, 10a...outer box, 10b...inner box, 14a...refrigerating compartment cooler, 14b...freezer compartment cooler, 16...door hinge cover, 17...machine compartment base, 18...machine compartment cover, 19...outer box entrance opening, 21...defrosting heater, 24...compressor, 25...vacuum insulation material, 27, 28...insulating partition wall, 29, 30...partition, 31...control board case, 32...evaporation tray, 35...outer box exit opening, 41...refrigerating compartment temperature sensor, 42 ...Refrigerator cooler temperature sensor, 43...Freezer temperature sensor, 44...Freezer cooler temperature sensor, 45...Vegetable compartment temperature sensor, 60...Freezer, 71...External radiator, 71a...Vertical heat dissipation section, 71b...Horizontal heat dissipation section, 72...Wall surface heat dissipation piping, 73...Condensation suppression piping, 77...Condensation suppression piping, 100...Freezer compartment air duct, 105...Freezer compartment return air duct, 115...Refrigerator compartment return air duct, 120...Refrigerator compartment second air duct, 130...Refrigerator compartment return air duct, 131...Refrigerator compartment air duct, 132...Vegetable compartment air duct, 135...Vegetable compartment return air duct, 160...Vegetable compartment damper, 177...Compressor discharge piping, 178...Connection piping for wall surface heat dissipation piping.

Claims (16)

少なくとも、食品や飲料を貯蔵する貯蔵室と、前記貯蔵室に設けられた開閉扉と、圧縮機で圧縮された冷媒を空気と熱交換する放熱器を配置した機械室を備えた冷蔵庫において、
前記開閉扉の側から見て左右方向に延びるように形成された前記機械室と、
前記機械室と繋がった前記冷蔵庫の左右方向の一方の側面に形成された低通風抵抗開口部と、
前記機械室と繋がった前記冷蔵庫の下方向の底面、又は背面方向の背面に形成された、前記低通風抵抗開口部に比べて通風抵抗が大きい高通風抵抗開口部と、
前記低通風抵抗開口部に対向し、主に前記低通風抵抗開口部から取り入れられた空気で放熱される高通風抵抗放熱器と、
前記高通風抵抗開口部に対向し、主に前記高通風抵抗開口部から取り入れられた空気で放熱される、前記高通風抵抗放熱器に比べて通風抵抗が小さい低通風抵抗放熱器とを備えている
ことを特徴とする冷蔵庫。
A refrigerator including at least a storage compartment for storing food and beverages, an opening and closing door provided in the storage compartment, and a machine compartment in which a radiator for exchanging heat between a refrigerant compressed by a compressor and air is disposed,
The machine room is formed so as to extend in the left-right direction as seen from the opening and closing door side;
A low-ventilation resistance opening portion formed on one side surface in a left-right direction of the refrigerator connected to the machine room;
A high-ventilation resistance opening portion having a higher ventilation resistance than the low-ventilation resistance opening portion, the high-ventilation resistance opening portion being formed on a bottom surface of the refrigerator in a downward direction connected to the machine room or on a rear surface of the refrigerator in a rear direction;
a high ventilation resistance radiator facing the low ventilation resistance opening and radiating heat mainly with air taken in through the low ventilation resistance opening;
The refrigerator is characterized by comprising a low ventilation resistance radiator facing the high ventilation resistance opening, radiating heat mainly with air taken in from the high ventilation resistance opening, and having smaller ventilation resistance than the high ventilation resistance radiator.
請求項1に記載の冷蔵庫において、
前記高通風抵抗放熱器は、内部に冷媒を流す第1伝熱管と前記第1伝熱管に固定された複数のフィンから成る、第1フィン群を備え、
前記低通風抵抗放熱器は、前記第1伝熱管と接続された、内部に冷媒を流す第2伝熱管と前記第2伝熱管に固定された複数のフィンから成る、第2フィン群を備え、
前記第1フィン群のフィン総表面積が、前記第2フィン群の前記フィン総表面積より大きく設定されている
ことを特徴とする冷蔵庫。
In the refrigerator according to claim 1,
the high ventilation resistance radiator includes a first fin group including a first heat transfer tube through which a refrigerant flows and a plurality of fins fixed to the first heat transfer tube;
the low ventilation resistance radiator includes a second fin group including a second heat transfer tube connected to the first heat transfer tube and through which a refrigerant flows, and a plurality of fins fixed to the second heat transfer tube;
A refrigerator, characterized in that a total fin surface area of the first fin group is set to be larger than a total fin surface area of the second fin group.
請求項1に記載の冷蔵庫において、
前記高通風抵抗放熱器は、内部に冷媒を流す第1伝熱管と前記第1伝熱管に固定された複数のフィンから成る、第1フィン群を備え、
前記低通風抵抗放熱器は、前記第1伝熱管と接続された、内部に冷媒を流す第2伝熱管と前記第2伝熱管に固定された複数のフィンから成る、第2フィン群を備え、
前記高通風抵抗放熱器を流れる空気の流れ方向の前記第1フィン群の列数が、前記低通風抵抗放熱器を流れる空気の流れ方向の前記第2フィン群の列数より多く設定されている
ことを特徴とする冷蔵庫。
In the refrigerator according to claim 1,
the high ventilation resistance radiator includes a first fin group including a first heat transfer tube through which a refrigerant flows and a plurality of fins fixed to the first heat transfer tube;
the low ventilation resistance radiator includes a second fin group including a second heat transfer tube connected to the first heat transfer tube and through which a refrigerant flows, and a plurality of fins fixed to the second heat transfer tube;
a number of rows of the first fin group in a flow direction of air flowing through the high ventilation resistance radiator is set to be greater than a number of rows of the second fin group in a flow direction of air flowing through the low ventilation resistance radiator.
請求項2、又は請求項3に記載の冷蔵庫において、
前記高通風抵抗放熱器を流れる空気の流れ方向と直交する方向に複数の前記第1フィン群が設けられ、
複数の前記第1フィン群の夫々の前記第1伝熱管は、前記冷蔵庫の前記側面に沿った方向に延伸するように配置され、
夫々の前記第1フィン群の端部に、隣り合う前記第1フィン群を跨ぐ曲げ部を有する第1ベンド部を配置して、前記第1ベンド部によって夫々の前記第1伝熱管が接続されている
ことを特徴とする冷蔵庫。
In the refrigerator according to claim 2 or 3,
A plurality of the first fin groups are provided in a direction perpendicular to the flow direction of air flowing through the high ventilation resistance radiator,
the first heat transfer tubes of each of the plurality of first fin groups are arranged to extend in a direction along the side surface of the refrigerator,
a first bend portion having a bent portion spanning adjacent first fin groups is disposed at an end of each of the first fin groups, and each of the first heat transfer tubes is connected by the first bend portion.
請求項4に記載の冷蔵庫において、
前記低通風抵抗放熱器を流れる空気の流れ方向と直交する方向に複数の前記第2フィン群が設けられ、
複数の前記第2フィン群の夫々の前記第2伝熱管は、前記冷蔵庫の底面に沿った方向に延伸するように配置され、
夫々の前記第2フィン群の端部に、隣り合う前記第2フィン群を跨ぐ曲げ部を有する第2ベンド部を配置して、前記第2ベンド部によって夫々の前記第2伝熱管が接属されている
ことを特徴とする冷蔵庫。
In the refrigerator according to claim 4,
A plurality of the second fin groups are provided in a direction perpendicular to a flow direction of air flowing through the low ventilation resistance radiator,
the second heat transfer tubes of each of the second fin groups are arranged to extend in a direction along a bottom surface of the refrigerator,
a second bend portion having a bent portion spanning adjacent second fin groups is disposed at an end of each of the second fin groups, and each of the second heat transfer tubes is connected by the second bend portion.
請求項3に記載の冷蔵庫において、
前記機械室の内部に圧縮機を備え、
前記圧縮機の吐出口に接続された圧縮機吐出配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も上流側に位置する列の前記第1フィン群の前記第1伝熱管の入口と接続され、
前記冷蔵庫の壁面放熱配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も下流側に位置する列の前記第1フィン群の前記第1伝熱管の出口と接続されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 3,
A compressor is provided inside the machine room,
a compressor discharge pipe connected to a discharge port of the compressor is connected to an inlet of the first heat transfer tube of the first fin group in a row located most upstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator;
the wall surface heat dissipation piping of the refrigerator is connected to an outlet of the first heat transfer tube of the first fin group in the row located most downstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator.
請求項6に記載の冷蔵庫において、
前記圧縮機から吐出された冷媒が、前記第1伝熱管の内部で気液二相の冷媒となって前記第2伝熱管に流れる
ことを特徴とする冷蔵庫。
The refrigerator according to claim 6,
The refrigerator, wherein the refrigerant discharged from the compressor becomes a gas-liquid two-phase refrigerant inside the first heat transfer tube and flows to the second heat transfer tube.
請求項3に記載の冷蔵庫において、
前記機械室の内部に圧縮機を備え、
前記圧縮機の吐出口に接続された圧縮機吐出配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も下流側に位置する列の前記第1フィン群の前記第1伝熱管の入口と接続され、
前記冷蔵庫の壁面放熱配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も上流側に位置する列の前記第1フィン群の前記第1伝熱管の出口と接続されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 3,
A compressor is provided inside the machine room,
a compressor discharge pipe connected to a discharge port of the compressor is connected to an inlet of the first heat transfer tube of the first fin group in a row located on the most downstream side as viewed in a flow direction of air flowing through the high ventilation resistance radiator;
the wall surface heat dissipation piping of the refrigerator is connected to an outlet of the first heat transfer tube of the first fin group in the row located most upstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator.
少なくとも、食品や飲料を貯蔵する貯蔵室と、前記貯蔵室に設けられた開閉扉と、圧縮機と放熱器を配置した機械室を備えた冷蔵庫において、
前記機械室は、前記開閉扉の側から見て左右方向に延びるように形成され、
前記冷蔵庫の左右方向の一方の側面には、前記機械室と繋がった低通風抵抗開口部が形成され、
前記冷蔵庫の下方向の底面には、前記機械室と繋がった前記低通風抵抗開口部に比べて通風抵抗が大きい高通風抵抗開口部が形成され、
前記側面に沿って、前記低通風抵抗開口部に対向し、主に前記低通風抵抗開口部から取り入れられた空気で放熱される高通風抵抗放熱器が設けられ、
前記底面に沿って、前記高通風抵抗開口部に対向し、主に前記高通風抵抗開口部から取り入れられた空気で放熱される、前記高通風抵抗放熱器に比べて通風抵抗が小さい低通風抵抗放熱器が設けられている
ことを特徴とする冷蔵庫。
A refrigerator including at least a storage compartment for storing food and beverages, an opening and closing door provided in the storage compartment, and a machine compartment in which a compressor and a radiator are disposed,
The machine room is formed so as to extend in the left-right direction as viewed from the opening and closing door side,
A low-ventilation resistance opening connected to the machine room is formed on one side surface in the left-right direction of the refrigerator,
A high-ventilation resistance opening having a higher ventilation resistance than the low-ventilation resistance opening connected to the machine room is formed on a bottom surface of the refrigerator in a downward direction,
a high ventilation resistance radiator is provided along the side surface, facing the low ventilation resistance opening, and radiates heat mainly with air taken in through the low ventilation resistance opening;
The refrigerator is characterized in that a low ventilation resistance radiator having smaller ventilation resistance than the high ventilation resistance radiator is provided along the bottom surface, facing the high ventilation resistance opening, and radiating heat mainly with air taken in from the high ventilation resistance opening.
請求項9に記載の冷蔵庫において、
前記低通風抵抗開口部の空気が流通する開口面積は、前記高通風抵抗開口部の空気が流通する開口面積より大きく設定されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 9,
The refrigerator is characterized in that an opening area through which air flows of the low ventilation resistance opening is set to be larger than an opening area through which air flows of the high ventilation resistance opening.
請求項10に記載の冷蔵庫において、
前記低通風抵抗放熱器と前記高通風抵抗放熱器は、クロスフィンチューブ式の熱交換器であり、
前記高通風抵抗放熱器のフィンの総表面積は、前記低通風抵抗放熱器のフィンの総表面積より大きく設定されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 10,
The low ventilation resistance radiator and the high ventilation resistance radiator are cross fin tube type heat exchangers,
The refrigerator is characterized in that a total surface area of the fins of the high ventilation resistance radiator is set to be larger than a total surface area of the fins of the low ventilation resistance radiator.
請求項10に記載の冷蔵庫において、
前記高通風抵抗放熱器は、内部に冷媒を流す第1伝熱管と前記第1伝熱管に固定された複数のフィンから成る、第1フィン群を備え、
前記低通風抵抗放熱器は、前記第1伝熱管と接続された、内部に冷媒を流す第2伝熱管と前記第2伝熱管に固定された複数のフィンから成る、第2フィン群を備え、
前記高通風抵抗放熱器を流れる空気の流れ方向の前記第1フィン群の列数が、前記低通風抵抗放熱器を流れる空気の流れ方向の前記第2フィン群の列数より多く設定されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 10,
the high ventilation resistance radiator includes a first fin group including a first heat transfer tube through which a refrigerant flows and a plurality of fins fixed to the first heat transfer tube;
the low ventilation resistance radiator includes a second fin group including a second heat transfer tube connected to the first heat transfer tube and through which a refrigerant flows, and a plurality of fins fixed to the second heat transfer tube;
a number of rows of the first fin group in a flow direction of air flowing through the high ventilation resistance radiator is set to be greater than a number of rows of the second fin group in a flow direction of air flowing through the low ventilation resistance radiator.
請求項12に記載の冷蔵庫において、
前記高通風抵抗放熱器を流れる空気の流れ方向と直交する方向に複数の前記第1フィン群が設けられ、
複数の前記第1フィン群の夫々の前記第1伝熱管は、前記冷蔵庫の前記側面に沿った方向に延伸するように配置され、
夫々の前記第1フィン群の端部に、隣り合う前記第1フィン群を跨ぐ曲げ部を有する第1ベンド部を配置して、前記第1ベンド部によって夫々の前記第1伝熱管が接続されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 12,
A plurality of the first fin groups are provided in a direction perpendicular to the flow direction of air flowing through the high ventilation resistance radiator,
the first heat transfer tubes of each of the plurality of first fin groups are arranged to extend in a direction along the side surface of the refrigerator,
a first bend portion having a bent portion spanning adjacent first fin groups is disposed at an end of each of the first fin groups, and each of the first heat transfer tubes is connected by the first bend portion.
請求項13に記載の冷蔵庫において、
前記低通風抵抗放熱器を流れる空気の流れ方向と直交する方向に複数の前記第2フィン群が設けられ、
複数の前記第2フィン群の夫々の前記第2伝熱管は、前記冷蔵庫の底面に沿った方向に延伸するように配置され、
夫々の前記第2フィン群の端部に、隣り合う前記第2フィン群を跨ぐ曲げ部を有する第2ベンド部を配置して、前記第2ベンド部によって夫々の前記第2伝熱管が接属されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 13,
A plurality of the second fin groups are provided in a direction perpendicular to a flow direction of air flowing through the low ventilation resistance radiator,
the second heat transfer tubes of each of the second fin groups are arranged to extend in a direction along a bottom surface of the refrigerator,
a second bend portion having a bent portion spanning adjacent second fin groups is disposed at an end of each of the second fin groups, and each of the second heat transfer tubes is connected by the second bend portion.
請求項14に記載の冷蔵庫において、
前記圧縮機の吐出口に接続された圧縮機吐出配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も上流側に位置する列の前記第1フィン群の前記第1伝熱管の入口と接続され、
前記冷蔵庫の壁面放熱配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も下流側に位置する列の前記第1フィン群の前記第1伝熱管の出口と接続されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 14,
a compressor discharge pipe connected to a discharge port of the compressor is connected to an inlet of the first heat transfer tube of the first fin group in a row located most upstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator;
the wall surface heat dissipation piping of the refrigerator is connected to an outlet of the first heat transfer tube of the first fin group in the row located most downstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator.
請求項14に記載の冷蔵庫において、
前記圧縮機の吐出口に接続された圧縮機吐出配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も下流側に位置する列の前記第1フィン群の前記第1伝熱管の入口と接続され、
前記冷蔵庫の壁面放熱配管が、前記高通風抵抗放熱器を流れる空気の流れ方向で見て、最も上流側に位置する列の前記第1フィン群の前記第1伝熱管の出口と接続されている
ことを特徴とする冷蔵庫。
The refrigerator according to claim 14,
a compressor discharge pipe connected to a discharge port of the compressor is connected to an inlet of the first heat transfer tube of the first fin group in a row located on the most downstream side as viewed in a flow direction of air flowing through the high ventilation resistance radiator;
the wall surface heat dissipation piping of the refrigerator is connected to an outlet of the first heat transfer tube of the first fin group in the row located most upstream as viewed in a flow direction of air flowing through the high ventilation resistance radiator.
JP2022187070A 2022-11-24 2022-11-24 refrigerator Pending JP2024075862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022187070A JP2024075862A (en) 2022-11-24 2022-11-24 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022187070A JP2024075862A (en) 2022-11-24 2022-11-24 refrigerator

Publications (1)

Publication Number Publication Date
JP2024075862A true JP2024075862A (en) 2024-06-05

Family

ID=91330675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022187070A Pending JP2024075862A (en) 2022-11-24 2022-11-24 refrigerator

Country Status (1)

Country Link
JP (1) JP2024075862A (en)

Similar Documents

Publication Publication Date Title
US9267725B2 (en) Refrigerator
US6997008B2 (en) Defrost water draining unit for a refrigerator
JP2007064597A (en) Refrigerator
JP2009063245A (en) Refrigerator
JP5847198B2 (en) refrigerator
JP2007064601A (en) Refrigerator
JP7364459B2 (en) refrigerator
JP2024075862A (en) refrigerator
JP2005345061A (en) Refrigerator
US12044456B2 (en) Refrigerator having air blower located downstream of transverse side of evaporator
JP2007064598A (en) Refrigerator
JP2008111640A (en) Refrigerator
JP6940424B2 (en) refrigerator
JP5367553B2 (en) Cooling storage
JP2016044824A (en) refrigerator
WO2010092625A1 (en) Refrigerator
CN112113381A (en) Refrigerator with special-shaped evaporator
CN111473574B (en) Refrigerator with a door
JPH0771857A (en) Refrigerator
JP2011017506A (en) Refrigerator
CN219063863U (en) Bottom refrigeration equipment
CN219390180U (en) Refrigerating equipment for semiconductor refrigeration
JP7374141B2 (en) refrigerator
JP4203662B2 (en) refrigerator
AU2020227335B2 (en) Refrigerator having air blower located upstream of transverse side of evaporator