WO2010092625A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2010092625A1
WO2010092625A1 PCT/JP2009/001041 JP2009001041W WO2010092625A1 WO 2010092625 A1 WO2010092625 A1 WO 2010092625A1 JP 2009001041 W JP2009001041 W JP 2009001041W WO 2010092625 A1 WO2010092625 A1 WO 2010092625A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
box
condenser
refrigerator
refrigerant
Prior art date
Application number
PCT/JP2009/001041
Other languages
French (fr)
Japanese (ja)
Inventor
岩井治彦
桑理義博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09839948.8A priority Critical patent/EP2397797A4/en
Priority to CN200980156602.3A priority patent/CN102317713B/en
Publication of WO2010092625A1 publication Critical patent/WO2010092625A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/06Refrigerators with a vertical mullion

Definitions

  • the present invention relates to a refrigerator, and more particularly to a cooling cycle unit and a cooling system provided in the refrigerator.
  • the capacity of refrigerators has been increasing, and the cooling capacity of the cooling system has been improved accordingly.
  • the refrigerator is also considered environmentally and further energy saving is desired.
  • the cooling system described in Patent Document 1 includes two evaporators for a refrigerator compartment and two evaporators for a freezer compartment, and completely stops the operation of the evaporator for the refrigerator compartment as necessary. It is trying to save energy while maintaining cooling capacity.
  • JP 2000-88428 A JP 2000-88428 A
  • This invention is made in view of the said subject, and it aims at provision of the side-by-side type refrigerator which can aim at energy saving while improving indoor temperature distribution.
  • a refrigerator includes a first box that is long in the vertical direction having an opening on the front surface and forming a refrigerator compartment, and an upper and lower portion that has an opening on the front surface and forms a freezer compartment.
  • Compressor that compresses refrigerant, comprising a second box that is long in the direction, and a metal outer box that covers the first box and the second box that are arranged adjacent to each other in the left-right direction
  • a condenser that is connected in series with the compressor and that releases the heat of the refrigerant, and an evaporator that evaporates the refrigerant, which is connected in series with the condenser and provided at the back of the first box.
  • a first evaporator an evaporator for evaporating the refrigerant, connected in series with the first evaporator, provided on the back of the second box, the condenser, and the first A pipe directly connecting the two evaporators, and supplying the refrigerant from the condenser to the first evaporator, or Characterized in that it comprises a switching valve for selecting whether to supply the refrigerant to the second evaporator directly from condenser.
  • each evaporator since the evaporator for the refrigerator compartment can be arranged at the back of the refrigerator compartment and the evaporator for the freezer compartment can be arranged at the back of the refrigerator compartment, each evaporator has a capacity corresponding to each chamber. It can be operated with. Therefore, each chamber can be cooled with the capability of eliminating the temperature unevenness in the vertical direction.
  • the evaporator for the refrigerator compartment can be stopped, and wasteful energy consumption can be avoided.
  • the piping functioning as a bypass that bypasses the evaporator for the refrigerator compartment is shortened. Therefore, it is possible to reduce energy loss when the bypass pipe is used, and to contribute to energy saving.
  • the condenser is disposed between the first condenser that directly exchanges heat with air and the first box and the outer box, and the second condenser that exchanges heat with air through the outer box. It is preferable to provide a vessel.
  • the second condenser can be widely arranged to dissipate heat over a wide area. Therefore, the influence of the refrigerator compartment by the heat from the second condenser can be reduced as much as possible. Accordingly, the capacity of the first condenser can be sufficiently supplemented, and a high cooling cycle can be maintained over a long period of time.
  • the condenser further includes a third condenser disposed at the opening of the second box.
  • the refrigerator according to the present invention can facilitate the design of a cooling cycle suitable for a hydrocarbon-based refrigerant, and even a hydrocarbon-based refrigerant can exhibit an ability suitable for a refrigerator compartment or a freezer compartment. Accordingly, it is possible to easily cope with environmental problems such as global warming.
  • the first circulation device that cools the air introduced from the inside of the first box by the first evaporator and leads the air to the inside of the first box, and the air is introduced from the inside of the second box
  • a second circulation device that cools the air to be cooled by the second evaporator and guides the air to the inside of the second box.
  • the second circulating device that cools the air introduced from the inside of the second box body by the second evaporator and leads it to the inside of the second box body
  • the front surface is the inside of the first box body
  • the rear surface includes a cooling plate to which the first evaporator is attached in contact.
  • the evaporator can be made thinner than the indirect cooling method, the capacity of the refrigerator compartment can be improved.
  • the present invention it is possible to provide a refrigerator that can contribute to energy saving while maintaining and improving the capacity of the refrigerator.
  • FIG. 1 is a perspective view showing the appearance of the refrigerator.
  • FIG. 2 is a perspective view showing an appearance of the refrigerator in which the first door and the second door are opened.
  • FIG. 3 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are omitted.
  • FIG. 4 is a diagram schematically showing the cooling cycle unit.
  • FIG. 5 is a perspective view schematically showing the components of the cooling cycle unit attached to the refrigerator.
  • FIG. 6 is a cross-sectional view schematically showing a refrigerator in which the indirect cooling method is adopted.
  • FIG. 7 is a perspective view showing the blower unit.
  • FIG. 8 is an exploded perspective view of the blower unit.
  • FIG. 9 is a diagram schematically showing another cooling cycle unit provided in the refrigerator.
  • FIG. 10 is a cross-sectional view schematically showing a refrigerator in which the direct cooling method is adopted.
  • FIG. 11 is a perspective view showing the cooling plate viewed from the back.
  • FIG. 12 is a diagram
  • FIG. 1 is a perspective view showing the appearance of the refrigerator.
  • Refrigerator 100 is a device that refrigerates or stores stored items stored inward, and includes box body 150, first door 111, second door 121, third door 112, and through-hole. 113 and a fourth door 122.
  • the refrigerator 100 is a rectangular box having the longest height among the height, width, and depth.
  • the first door 111 is a door that opens and closes the opening on the right side toward the box body 150.
  • the first door 111 is hinged to the box body 150 by a hinge (not shown) so as to rotate about a rotation axis extending in the vertical direction in front of the right wall of the box body 150. It is attached.
  • the first door 111 has a rectangular shape that is long in the vertical direction, and is arranged from the upper part to the lower part of the refrigerator 100, and the rotation shaft passes through the right end edge of the first door 111.
  • the second door 121 is a door that opens and closes the opening on the left side toward the box body 150.
  • the second door 121 is attached to the box body 150 by a hinge (not shown) so as to rotate about a rotation axis extending in the vertical direction in front of the left wall of the box body 150. It is attached.
  • the second door 121 has a rectangular shape that is long in the vertical direction, and is arranged from the upper part to the lower part of the refrigerator 100, and the rotation shaft passes through the left end edge of the second door 121.
  • the through hole 113 is a hole that penetrates the first door 111 in the thickness direction.
  • the through-hole 113 is used to take out stored items stored behind the first door 111 without opening the first door 111, and to insert the stored items for storage behind the first door 111. It is a hole.
  • the third door 112 is a door that closes the through hole 113 so as to be freely opened and closed.
  • the third door 112 is attached to the first door 111 by a hinge (not shown) so as to rotate about a rotation axis extending in the left-right direction at the lower end edge of the through hole 113. ing.
  • the third door 112 is substantially square when viewed from the front (the corners are rounded), and the rotation shaft passes through the lower edge of the third door 112.
  • the fourth door 122 is a door that opens and closes the receiving port 123 that receives ice supplied from the inside of the refrigerator 100.
  • FIG. 2 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are opened.
  • FIG. 3 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are omitted. Note that FIG. 2 also shows a stored item A stored in the refrigerator 100.
  • the refrigerator 100 includes a first box 151, a second box 152, and an outer box 156.
  • the first box body 151 is a box body having an opening on the front surface and having a long heat insulating performance in the vertical direction forming a refrigerator compartment.
  • the first box 151 is disposed on the right side of the refrigerator 100 over the entire vertical direction of the refrigerator 100.
  • the refrigerator compartment is a room that maintains the inside temperature in a temperature range of 0 ° C. or higher, and especially when storing high humidity such as vegetables, a drawer case is formed in the refrigerator compartment and the cold air circulating in the refrigerator compartment is directly It is a room where a room that is partitioned so as not to hit vegetables is provided inside.
  • the second box 152 is a box that has an opening on the front surface and has a long heat insulating performance in the vertical direction that forms a freezer compartment.
  • the second box 152 is disposed on the left side of the refrigerator over the entire vertical direction of the refrigerator 100.
  • the freezer room is a room that maintains a low room temperature of around minus 18 ° C. and stores stored items such as frozen foods.
  • the outer box 156 is a metal plate that covers the first box 151 and the second box 152 that are arranged adjacent to each other in the left-right direction.
  • the box body 150 in the present embodiment is manufactured as follows.
  • the refrigerator compartment and the freezer compartment separated by the partition wall 153 are manufactured independently by the inner box 157 by integral molding with resin.
  • An outer box is arranged outside the inner box 157 so as to cover the inner box 157 at a predetermined interval from the inner box 157.
  • a gap that communicates with the gap between the outer box 156 and the inner box 157 is also provided inside the partition wall 153.
  • a space provided between the outer box 156 and the inner box 157 and a gap between the partition walls 153 are filled and foamed with, for example, hard urethane foam to obtain a heat insulating material.
  • the box body 150 is manufactured as described above.
  • the walls adjacent to the first box 151 and the second box 152 are inseparably integrated, and the first box 151 and the second box 152 define the partition wall 153. It is intended to be shared as a wall.
  • FIG. 4 is a diagram schematically showing the cooling cycle unit.
  • FIG. 5 is a perspective view schematically showing components of the cooling cycle unit attached to the refrigerator.
  • the cooling cycle unit 110 has a function of forcibly transferring heat from one space to the other space by releasing heat by the condenser 102 and absorbing heat by the evaporator 103.
  • 103 is arranged at a position for cooling the inside of the refrigerator 100 and the condenser 102 is arranged in a machine room outside the refrigerator 100, so that the inside of the refrigerator 100 can be cooled.
  • the cooling cycle unit employed by the refrigerator 100 is a device including a compressor 101 (Compressor), a condenser 102 (Condenser), and an evaporator 103 (Evaporator), and a refrigerant path.
  • a cooling cycle is realized by connecting the devices in a ring shape with the refrigerant return pipe 104 and circulating the refrigerant.
  • refrigerator 100 further includes a bypass pipe 105 and a switching valve 106 as pipes.
  • the machine room in which the compressor 101 and the condenser 102 are arranged, and the evaporator 103 arranged in the cabinet are vertically arranged by a heat insulating material, and a drain pipe for introducing the defrost water of the evaporator 103 into the machine room.
  • the chamber and the machine room are structurally connected.
  • the compressor 101 is a device that compresses the gaseous refrigerant flowing in the refrigerant return pipe 104 and increases the pressure of the refrigerant.
  • the condenser 102 is a device that radiates the heat of the gaseous refrigerant whose pressure has been increased to the atmosphere to cool the refrigerant, thereby converting the refrigerant into a liquid refrigerant having a high pressure.
  • the condenser 102 includes a first condenser 124, a second condenser 125, and a third condenser 126.
  • the first condenser 124 is a main condenser that directly exchanges heat with air, and is disposed at the lower back of the refrigerator 100 while being exposed to air.
  • the main condenser is a spiral fin coil specification in which thin heat-radiating fins formed of a heat-conductive material such as aluminum are spirally wound around the pipe, and the pipe is meandered several times and bent. Is configured.
  • the second condenser 125 is arranged in a meandering manner in close contact with the back surface of the outer box 156 between the outer side wall of the first box 151 and the outer box 156, and the second condenser 125 is arranged through the metal outer box 156. It is an auxiliary condenser that exchanges heat with air. In addition, since there is a heat insulating material between the second condenser 125 and the inner side of the first box 151, the heat generated from the second condenser 125 hardly affects the inner side of the first box 151. It has become a thing. Further, since the inside of the first box 151 is a refrigerating room having a relatively high temperature, the thermal gradient between the second condenser 125 and the inside of the first box 151 is low, and heat is not easily transmitted. Yes.
  • the third condenser 126 is an auxiliary condenser arranged at the periphery of the opening of the second box 152, cools the refrigerant by heat dissipation, and raises the temperature of the periphery of the opening of the second box 152 to cause condensation. It also has a function to prevent.
  • the condenser 102 When the condenser 102 is configured as described above, even when the ability of the first condenser 124 exposed to the atmosphere is reduced due to accumulation of dust or the like, the ability of the second condenser 125 as the condenser 102 is reduced. Therefore, it is possible to maintain the cooling cycle unit 110 over a long period of time without requiring maintenance in order to secure the capacity of the cooling cycle unit 110.
  • the evaporator 103 is a device that evaporates the refrigerant in the interior and absorbs the heat of the surrounding air.
  • the evaporator 103 includes a first evaporator 131 and a second evaporator 132 that are connected in series by a connecting pipe 107.
  • the connecting pipe 107 passes through the back surface of the first box 151 and the back surface of the second box 152 and passes through the heat insulating material, and the evaporator is connected to both ends of the connecting pipe 107.
  • the first evaporator 131 is an evaporator connected in series with the third condenser 126 and provided on the back of the first box 151, and plays a role of cooling the inside of the first box 151.
  • the second evaporator 132 is arranged in the freezer compartment height direction in order to cool the freezer compartment to about minus 18 ° C.
  • the first evaporator 131 that cools the refrigerating room to a temperature higher than that of the freezing room at about 0 to 6 ° C. is not arranged higher in the height direction of the refrigerating room than the second evaporator 132.
  • the second evaporator 132 is smaller.
  • the second evaporator 132 is an evaporator connected in series with the first evaporator 131 and provided on the back of the second box 152, and plays a role of cooling the inside of the second box 152.
  • the 2nd evaporator 132 cools a freezer compartment, it is larger than the 1st evaporator 131.
  • the evaporator uses a fin-and-tube heat exchanger, but the present invention is not limited to this, and any heat exchange such as a heat exchanger employing corrugated fins and flat tubes is used.
  • a vessel can be applied.
  • Both the first evaporator 131 and the second evaporator 132 are configured such that the pipe meanders and bends a plurality of times, and an inlet and an outlet for refrigerant inflow are arranged at the upper part of the evaporator.
  • the first evaporator 131 for cooling the first box 151 (refrigeration room) and the second evaporator 132 for cooling the second box 152 (freezer room) are separated. By providing, it becomes possible to perform cooling suitable for each set temperature zone.
  • the refrigerator compartment when a vertically long freezer compartment as in the present embodiment is provided, it is necessary to provide an evaporator having sufficient cooling capacity in order to reduce the temperature difference in the vertical direction of the freezer compartment.
  • the refrigerator compartment may be excessively cooled, and it is necessary to sufficiently insulate the refrigerator compartment from the evaporator.
  • the capacity of the refrigerator compartment is pressed by the heat insulating material. Therefore, as in the present invention, the first evaporator 131 suitable for cooling the refrigerator compartment is provided at the back of the first box 151 (refrigerator compartment), and the freezer compartment is provided at the back of the second box 152 (freezer compartment).
  • the second evaporator 132 suitable for uniform cooling, the capacity of the refrigerator compartment can be increased.
  • the first box 151 (refrigeration room) includes a refrigerating room in which a plurality of shelves 163 are arranged at the top, a plurality of drawer chambers 164 in the top and bottom below the shelves 163, and at least of the plurality of drawer rooms. If one room is a temperature-controlled room that can change the temperature in the range of about 0 to 6 ° C., if the first evaporator 131 is placed behind the temperature-controlled room, the cool air passage that is discharged from the first evaporator 131 to the temperature-controlled room Therefore, the depth space of the first box 151 can be secured, and the effective internal volume of the drawer chamber can be secured large. Moreover, the cooling loss in the cold air passage can be reduced, and the cooling efficiency of the variable temperature chamber can be improved.
  • the switching valve 106 is a three-way valve that selects whether to supply the refrigerant from the third condenser 126 to the first evaporator 131 or to supply the refrigerant directly from the third condenser 126 to the second evaporator 132. It is arranged in the same space as the machine 101 and the condenser 102.
  • the first capillary 108 connected to the first evaporator 131 and the second capillary 109 connected to the second evaporator 132 are connected to the downstream side of the switching valve 106 so as to be switchable.
  • the bypass pipe 105 is connected between the switching valve 106 and the second capillary 109, and directly connects the third condenser 126 and the second evaporator 132 via the switching valve 106.
  • the direct connection means that the refrigerant is not introduced into the second evaporator 132 via the first evaporator 131, but instead bypasses the first evaporator 131 from the switching valve 106 and directly enters the second evaporator 132.
  • bypass pipe 105 connecting the pipe is provided between the switching valve 106 and the second capillary 109, the second capillary 109 may be directly connected to the switching valve 106.
  • adopted for the cooling cycle unit 110 of the refrigerator 100 is not specifically limited, For example, a hydrocarbon type refrigerant
  • the hydrocarbon-based refrigerant is, for example, propane or isobutane. These are preferable because they have very little influence on global warming compared to hydrochlorofluorocarbons and hydrofluorocarbons.
  • the second evaporator 132 that cools the freezer compartment is connected in series downstream of the first evaporator 131 that cools the refrigerator compartment, and the refrigerant flow path is further switched by the switching valve 106 so that the second downstream side is switched.
  • the switching valve 106 is switched so that the refrigerant flows through both evaporators.
  • the second evaporator 132 that cools only the freezer compartment by switching the switching valve 106 so that the refrigerant does not flow to the first evaporator 131 that cools the refrigerator compartment. It becomes possible to control the cooling cycle through which the refrigerant flows only.
  • the compressor 101 When the freezer reaches the set temperature, the compressor 101 is stopped. This makes it possible to select introduction of the refrigerant into the first evaporator 131 while maintaining introduction of the refrigerant into the second evaporator 132. Thereby, even when the second evaporator 132 is continuously operated for a long time so that temperature unevenness does not occur in the second box body 152 (freezer compartment) that is long in the vertical direction, the first box body 151 (refrigerator room). It is possible to perform control suitable for the first evaporator 131.
  • the length of the connecting pipe 107 that connects the first evaporator 131 and the second evaporator 132 is shortened. Therefore, when the refrigerant is introduced into both the first evaporator 131 and the second evaporator 132 by the switching valve 106, the cooling loss in the connection pipe 107 can be reduced, and the second evaporator 132 can be reduced.
  • the cooling efficiency of the flammable refrigerant can be increased, the amount of the combustible refrigerant can be reduced, and the explosion-proof property can be improved.
  • the distance between the first evaporator 131 and the machine room in which the compressor is disposed is reduced. Even if it leaks from the vicinity of the flammable refrigerant, the flammable refrigerant has a specific gravity greater than that of air, so that it accumulates downward, and further easily passes to the machine room where the compressor 101 is disposed through the drain pipe for draining the defrost water of the first evaporator 131. Since it can be introduced and opened from the machine room to the outside of the cabinet, it is possible to reduce the leakage of the flammable refrigerant remaining in the cabinet and increase the concentration, thereby improving the explosion-proof property.
  • the leaked refrigerant can be discharged into the machine room through the drain pipe in the same manner as described above, and the leaked refrigerant can be prevented from staying in the cabinet. Explosion proof can be improved.
  • the first evaporator 131 and the second evaporator 132 are disposed below the refrigerator compartment and the freezer compartment, respectively, so that the lower ends of both the evaporators 103 are arranged so that the heights thereof are roughly aligned.
  • chamber to the exterior was improved through the chamber, the position of the 1st evaporator 131 shorter than the 2nd evaporator 132 is raised upwards, and the height of the upper end part of both evaporators 103 is roughly You may arrange
  • connection pipe 107 that connects the refrigerant outlet portion of the first evaporator 131 and the refrigerant inlet portion of the second evaporator 132 is connected between the first evaporator 131 and the second evaporator 132 substantially horizontally. Therefore, when the switching valve 106 is switched and the refrigerant flows through the first evaporator 131 and the second evaporator 132, the cooling loss in the connection pipe 107 is further reduced. And the amount of the combustible refrigerant can be further reduced.
  • the overall energy efficiency can be increased, and it is possible to contribute to energy saving.
  • FIG. 6 is a cross-sectional view schematically showing a refrigerator in which the indirect cooling method is adopted.
  • the refrigerator 100 that employs the indirect cooling method for the second box 152 (freezer compartment) has a second circulation composed of a blower 144, a duct 146, a blower port 148, and a suction port 154.
  • a device 162 is provided.
  • the second circulation device 162 is a device that cools the air introduced from the inside of the second box 152 by the second evaporator 132 and guides it to the second box 152. Is provided.
  • the second circulation device 162 prevents the air cooled by the second evaporator 132 from directly cooling the inside of the second box 152 so that the duct 146, the second evaporator 132, and the second box 152 The inward front is thermally blocked by a heat insulating material provided on the back of the back panel 158.
  • FIG. 7 is a perspective view showing the blower unit.
  • FIG. 8 is an exploded perspective view showing the blower unit.
  • the blower 144 is a device capable of creating an air flow, and an axial fan is employed in the present embodiment.
  • the blower 144 is obliquely attached to the upper portion of the housing 142 that houses the second evaporator 132 therein.
  • the blower 144 and the casing 142 constitute a blower unit, and can be easily placed in the duct 146 in the state of the blower unit.
  • the duct 146 is a path that guides air along a predetermined path, and is formed by a tubular member made of a heat insulating material.
  • the ventilation port 148 and the suction port 154 are openings provided in the back panel 158 and communicated with the duct 146, and the second box body is formed from the plurality of ventilation ports 148 in which the cooled air flowing through the duct 146 is arbitrarily opened. The air inside the second box 152 is sucked into the duct 146 through the suction port 154.
  • the air flow is directed to the inside of the second box body 152.
  • This can be forcibly generated, and it becomes possible to reduce temperature unevenness of the air inside the second box 152.
  • This is particularly effective for the second box 152 that is long in the vertical direction and has a relatively low inner temperature.
  • the temperature of the back panel 158 is not easily lowered by the second evaporator 132 or the air immediately after being cooled by the second evaporator 132, it is possible that dew condensation occurs on the front surface of the back panel 158. Can be prevented.
  • the temperature gradient between the temperature of the air cooled by the first evaporator 131 and the temperature inside the first box 151, and the temperature of the air cooled by the second evaporator 132 and the inside of the second box 152 Since the temperature gradient between the first evaporator 131 and the first box body 151 is relatively moderate, the second evaporator 132 and the second box body 152 are inward. It is possible to reduce the thickness of each of the heat insulating materials between them, and contribute to the capacity increase of the refrigerator 100.
  • a first circulation device 161 is provided on the back of the first box 151. Since the structure and operational effects of the first circulation device 161 are the same indirect cooling method as that of the second circulation device 162, detailed description of the first circulation device 161 is omitted.
  • FIG. 9 is a diagram schematically showing another cooling cycle unit provided in the refrigerator.
  • the cooling cycle unit 110 includes a first evaporator 131 and a second evaporator 132 that are connected to the condenser 102 in parallel.
  • the refrigerant discharged from the compressor 101 flows to the first condenser 124 that is the main condenser and is condensed, and then flows to the second condenser 125 that is the auxiliary condenser to promote condensation of the refrigerant.
  • the 3rd condenser 126 which is an auxiliary
  • the first evaporator 131 and the second evaporator 132 are connected in parallel via the switching valve 106.
  • a first capillary 108 is connected between the switching valve 106 and the first evaporator 131, and a second capillary 109 is connected between the switching valve 106 and the second evaporator 132. Then, the refrigerant is returned to the refrigerant return pipe 104 through the outlet pipes of the first evaporator 131 and the second evaporator 132 and circulated to the compressor 101.
  • the switching valve 106 By switching the switching valve 106, it is possible to switch between the case where the refrigerant is introduced only into the first evaporator 131 and the case where the refrigerant is introduced only into the second evaporator 132.
  • the refrigerant flow path is switched by the switching valve 106 according to the load state of the refrigerator compartment and the freezer compartment, the refrigerant is not circulated through both the first evaporator 131 and the second evaporator 132 at the same time. Since the refrigerant is circulated only in the evaporator, the amount of refrigerant can be reduced.
  • the amount of refrigerant can be reduced as compared with the case of the first embodiment, the explosion-proof property can be reduced, and the load on the compressor 101 can be reduced by reducing the refrigerant, thereby promoting energy saving. Can do.
  • FIG. 10 is a cross-sectional view schematically showing a refrigerator in which the direct cooling method is adopted.
  • the refrigerator 100 employs an indirect cooling method for the second box 152 (freezer compartment), and employs a direct cooling method for the first box 151 (refrigerator compartment). ing. Since the indirect cooling method is the same as that of the first embodiment, description thereof is omitted.
  • the refrigerator 100 that employs a direct cooling system includes a cooling plate 159 on the inner back of the first box 151.
  • the front surface of the cooling plate 159 faces the inside of the first box 151, and the first evaporator 131 is attached to the back surface of the cooling plate 159 in a contact state.
  • FIG. 11 is a perspective view showing the cooling plate viewed from the back.
  • the cooling plate 159 has a tubular first evaporator 131 attached in a meandering state, and is attached in contact with the cooling plate 159 so that heat can be exchanged via the cooling plate 159.
  • the first evaporator 131 and the second evaporator 132 are connected in parallel and the operation state can be selected to one of them, heat is generated by the refrigerant evaporated only in the second evaporator 132. Since it can absorb, the cooling capacity of the second evaporator 132 can be increased. Therefore, sufficient cooling capacity can be ensured even for the inner side of the second box that is long in the vertical direction, and temperature irregularities in the vertical direction of the second box 152 can be eliminated.
  • the direct cooling method is adopted for the inner side of the first box 151, the air flow path necessary for the indirect cooling method can be eliminated, and the devices disposed on the inner back of the first box 151 can be removed. It can be made thin, and a wide storage space can be secured inside the first box 151.
  • FIG. 12 is a diagram schematically illustrating another cooling cycle unit provided in the refrigerator.
  • the refrigerator 100 includes two cooling cycle units 110.
  • One cooling cycle unit 110 is an apparatus including a compressor 101, a condenser 102 (second condenser 125, third condenser 126), and a first evaporator 131, and the other cooling cycle unit 110 includes ,
  • An apparatus including a compressor 101, a condenser 102 (first condenser 124), and a second evaporator 132. That is, the refrigerator 100 includes two compressors and can supply the compressed refrigerant independently to the first evaporator 131 and the second evaporator 132.
  • the cooling cycle unit 110 can be operated under optimum conditions.
  • a different cooling method such as when the direct cooling method is adopted for the first box 151 and the indirect cooling method is adopted for the second box 152
  • the cooling cycle unit 110 is independently set. If it is operated, it can be operated under the optimum conditions for the cooling system.
  • the degree of freedom in designing the cooling cycle unit 110 itself is improved, and it becomes possible to design the cooling cycle unit 110 with high energy efficiency. That is, it becomes possible to contribute to energy saving.
  • the second condenser 125 and the third condenser 126 are connected to the cooling cycle unit side of the first evaporator 131 that cools the refrigerating room, but an appropriate cooling cycle for the set temperature of the refrigerating room and the freezing room.
  • the cooling efficiency is improved by connecting the second condenser 125 and the third condenser 126 to the cooling cycle unit side of the second evaporator 132 that cools the freezer compartment having a temperature lower than that of the refrigerator compartment. Can do.
  • the second condenser 125 is connected to the cooling cycle unit side of the first evaporator 131 that cools the refrigerator compartment, and the refrigerator compartment is cooled.
  • the third condenser 126 By connecting the third condenser 126 to the cooling cycle unit side of the two evaporators 132, it is possible to perform piping processing to the left and right without connecting piping to the refrigerator compartment and the freezer compartment arranged on the left and right. The length can be shortened, the raw material cost can be reduced, and the assembly workability can be improved.
  • Cooling cycle unit 110 including pipe 105, cooling cycle unit 110 capable of selectively operating first evaporator 131 and second evaporator 132, cooling cycle unit 110 including a plurality of compressors 101, predetermined refrigerant, etc.
  • these combinations are not limited to the above embodiment, and can be freely selected.
  • the present invention can be used for a refrigerator for home use or business use, and in particular, can be used for a refrigerator in which a refrigerator compartment and a freezer compartment are arranged adjacent to each other in the left-right direction.

Abstract

A side-by-side type refrigerator in which uneven temperature distribution in the vertical direction is suppressed and which saves energy. A refrigerator (100) provided with a vertically long first box (151) forming a cold storage compartment, a vertically long second box (152) for forming a freezing compartment, and an outer box (156) for covering the first box (151) and the second box (152) which are adjacently arranged in the left-right direction. The refrigerator (100) is provided also with a compressor (101) for compressing a refrigerant, a condenser (102) for releasing heat of the refrigerant, a first evaporator (131) provided to the rear of the first box (151), a second evaporator (132) connected in series to the first evaporator (131) and provided to the rear of the second box (152), a bypass tube (105) for directly interconnecting the condenser (102) and the second evaporator (132), and a switching valve (106) for selecting whether the refrigerant is supplied from the condenser (102) to the first evaporator (131) or whether the refrigerant is directly supplied from the condenser (102) to the second evaporator (132).

Description

冷蔵庫refrigerator
 本願発明は冷蔵庫に関し、特に、冷蔵庫が備える冷却サイクルユニット、冷却方式に関する。 The present invention relates to a refrigerator, and more particularly to a cooling cycle unit and a cooling system provided in the refrigerator.
 従来、冷蔵庫は大容量化が進み、これに対応して、冷却システムの冷却能力も向上してきている。一方、地球温暖化等に対応するため、冷蔵庫についても環境に配慮し、いっそうの省エネルギー化が望まれている。 Conventionally, the capacity of refrigerators has been increasing, and the cooling capacity of the cooling system has been improved accordingly. On the other hand, in order to cope with global warming and the like, the refrigerator is also considered environmentally and further energy saving is desired.
 上記冷却能力の向上と、省エネルギー化は、原則として相反するものであり、如何にして冷却能力を犠牲にすることなく省エネルギー化を図るかが、冷却システム設計における課題である。 ∙ Improvement of cooling capacity and energy saving are contradictory in principle, and how to save energy without sacrificing cooling capacity is an issue in cooling system design.
 例えば、特許文献1に記載の冷却システムは、冷蔵室用の蒸発器と冷凍室用の蒸発器を二つ備え、必要に応じて冷蔵室用の蒸発器の稼働を完全に停止させることで、冷却能力を維持しながら、省エネルギー化を図ろうとしている。
特開2000-88428号公報
For example, the cooling system described in Patent Document 1 includes two evaporators for a refrigerator compartment and two evaporators for a freezer compartment, and completely stops the operation of the evaporator for the refrigerator compartment as necessary. It is trying to save energy while maintaining cooling capacity.
JP 2000-88428 A
 ところが、冷蔵庫の上下方向全体に長く延びた冷蔵室と、当該冷蔵室と同様に上下方向全体に長く延びた冷凍室とが左右に並んだ、いわゆるサイドバイサイド型の冷蔵庫が昨今の冷蔵庫の形態の傾向の一つとなってきている。 However, a so-called side-by-side refrigerator, in which a refrigerator compartment that extends long in the entire vertical direction of the refrigerator and a freezer compartment that extends in the same manner as the refrigerator compartment in the left-right direction, is a trend in the form of modern refrigerators. It has become one of the.
 このような形態の冷蔵庫の場合、冷蔵室や冷凍室が上下方向に長いため、室内の上側と下側とで温度差が大きくなる傾向にあり、室内に発生する温度ムラの抑制がサイドバイサイド型の冷蔵庫の課題となっている。一方、サイドバイサイド型の冷蔵庫であっても省エネルギー化を図り環境に配慮することは必要である。 In the case of such a refrigerator, since the refrigerator compartment and the freezer compartment are long in the vertical direction, the temperature difference tends to increase between the upper side and the lower side of the room, and the suppression of temperature unevenness occurring in the room is a side-by-side type. It has become a challenge for refrigerators. On the other hand, even in a side-by-side refrigerator, it is necessary to save energy and consider the environment.
 本願発明は、上記課題に鑑みなされたものであり、室内の温度分布を改善すると共に、省エネルギー化を図ることができる、サイドバイサイド型の冷蔵庫の提供を目的とする。 This invention is made in view of the said subject, and it aims at provision of the side-by-side type refrigerator which can aim at energy saving while improving indoor temperature distribution.
 上記課題を解決するために、本願発明にかかる冷蔵庫は、前面に開口部を有し冷蔵室を形成する上下方向に長い第一箱体と、前面に開口部を有し冷凍室を形成する上下方向に長い第二箱体と、左右方向に隣接して配置される前記第一箱体と前記第二箱体とを覆う金属製の外箱とを備える冷蔵庫であって、冷媒を圧縮する圧縮機と、前記圧縮機と直列に接続され、冷媒の熱を放出する凝縮器と、冷媒を蒸発させる蒸発器であって、前記凝縮器と直列に接続され、前記第一箱体の背部に設けられる第一蒸発器と、冷媒を蒸発させる蒸発器であって、前記第一蒸発器と直列に接続され、前記第二箱体の背部に設けられる第二蒸発器と、前記凝縮器と前記第二蒸発器とを直接接続する配管と、前記凝縮器から前記第一蒸発器に冷媒を供給するか前記凝縮器から直接第二蒸発器に冷媒を供給するかを選択する切替弁とを備えることを特徴とする。 In order to solve the above problems, a refrigerator according to the present invention includes a first box that is long in the vertical direction having an opening on the front surface and forming a refrigerator compartment, and an upper and lower portion that has an opening on the front surface and forms a freezer compartment. Compressor that compresses refrigerant, comprising a second box that is long in the direction, and a metal outer box that covers the first box and the second box that are arranged adjacent to each other in the left-right direction A condenser that is connected in series with the compressor and that releases the heat of the refrigerant, and an evaporator that evaporates the refrigerant, which is connected in series with the condenser and provided at the back of the first box. A first evaporator, an evaporator for evaporating the refrigerant, connected in series with the first evaporator, provided on the back of the second box, the condenser, and the first A pipe directly connecting the two evaporators, and supplying the refrigerant from the condenser to the first evaporator, or Characterized in that it comprises a switching valve for selecting whether to supply the refrigerant to the second evaporator directly from condenser.
 これによれば、冷蔵室の背部に冷蔵室用の蒸発器を配置し、冷凍室の背部に冷凍室用の蒸発器を配置することができるため、それぞれの蒸発器を各室に対応した能力で稼働させることができる。従って、上下方向の温度ムラを解消できる能力で各室を冷却することが可能となる。 According to this, since the evaporator for the refrigerator compartment can be arranged at the back of the refrigerator compartment and the evaporator for the freezer compartment can be arranged at the back of the refrigerator compartment, each evaporator has a capacity corresponding to each chamber. It can be operated with. Therefore, each chamber can be cooled with the capability of eliminating the temperature unevenness in the vertical direction.
 しかも、比較的温度の低い冷蔵室を冷却するために蒸発器を稼働させている場合でも冷蔵室用の蒸発器を停止させることができ、無駄なエネルギーを消費することを回避することができる。 Moreover, even when the evaporator is operated to cool the refrigerator compartment having a relatively low temperature, the evaporator for the refrigerator compartment can be stopped, and wasteful energy consumption can be avoided.
 また、蒸発器が左右方向に配置されているため、冷蔵室用の蒸発器を迂回するバイパスとして機能する配管が短くなる。従って、バイパス管を使用している場合におけるエネルギーロスを軽減することができ、省エネルギーに寄与することが可能となる。 Also, since the evaporators are arranged in the left-right direction, the piping functioning as a bypass that bypasses the evaporator for the refrigerator compartment is shortened. Therefore, it is possible to reduce energy loss when the bypass pipe is used, and to contribute to energy saving.
 また、前記凝縮器は、空気と直接熱交換をする第一凝縮器と、前記第一箱体と前記外箱との間に配置され、前記外箱を介して空気と熱交換する第二凝縮器とを備えることが好ましい。 In addition, the condenser is disposed between the first condenser that directly exchanges heat with air and the first box and the outer box, and the second condenser that exchanges heat with air through the outer box. It is preferable to provide a vessel.
 これによれば、第一凝縮器にほこりなどが付着して凝縮器としての能力が低下した場合でも、第二凝縮器によってその能力を補うことができる。従って、長期間にわたってエネルギー効率の高い冷却サイクルを維持することができ、省エネルギーに寄与することが可能となる。 According to this, even when dust or the like adheres to the first condenser and the capacity as the condenser decreases, the capacity can be supplemented by the second condenser. Therefore, a cooling cycle with high energy efficiency can be maintained over a long period of time, which can contribute to energy saving.
 また、サイドバイサイド型の冷蔵庫は、特に冷蔵室側の外箱の面積が広いため、第二凝縮器を広く配置し、広範囲で放熱させることが可能である。従って、第二凝縮器からの熱による冷蔵室の影響を可及的に低減することができる。従って、第一凝縮器の能力の補完を十分に果たすことができ、長期間にわたって高い冷却サイクルを維持することが可能となる。 Also, since the side-by-side refrigerator has a large outer box on the refrigerator compartment side, the second condenser can be widely arranged to dissipate heat over a wide area. Therefore, the influence of the refrigerator compartment by the heat from the second condenser can be reduced as much as possible. Accordingly, the capacity of the first condenser can be sufficiently supplemented, and a high cooling cycle can be maintained over a long period of time.
 前記凝縮器はさらに、前記第二箱体の開口部に配置される第三凝縮器を備えることが好ましい。 It is preferable that the condenser further includes a third condenser disposed at the opening of the second box.
 冷凍室の開口部周縁の温度を凝縮器からの熱で上昇させて、外気との温度差を低減し、結露の発生を防止することが可能となる。これにより、開口部周縁と扉との密着性を維持して冷気の漏れを防止し、省エネルギーに寄与することが可能となる。また、別途ヒータなどを設ける必要が無いため、冷蔵庫の省エネルギー化を図ることが可能となる。 It is possible to increase the temperature at the periphery of the opening of the freezer compartment with the heat from the condenser, reduce the temperature difference from the outside air, and prevent the occurrence of condensation. Thereby, it becomes possible to maintain the adhesiveness between the periphery of the opening and the door, prevent the leakage of cold air, and contribute to energy saving. In addition, since it is not necessary to provide a separate heater or the like, it is possible to save energy in the refrigerator.
 本願発明に係る冷蔵庫は、炭化水素系の冷媒に適した冷却サイクルの設計を容易にすることができ、炭化水素系の冷媒でも冷蔵室や冷凍室に適した能力を発揮させることができる。従って、地球温暖化などの環境問題に容易に対応することが可能となる。 The refrigerator according to the present invention can facilitate the design of a cooling cycle suitable for a hydrocarbon-based refrigerant, and even a hydrocarbon-based refrigerant can exhibit an ability suitable for a refrigerator compartment or a freezer compartment. Accordingly, it is possible to easily cope with environmental problems such as global warming.
 さらに、前記第一箱体の内方から導入する空気を前記第一蒸発器で冷却させ前記第一箱体の内方に導出する第一循環装置と、前記第二箱体の内方から導入する空気を前記第二蒸発器で冷却させ前記第二箱体の内方に導出する第二循環装置とを備えることが好ましい。 Furthermore, the first circulation device that cools the air introduced from the inside of the first box by the first evaporator and leads the air to the inside of the first box, and the air is introduced from the inside of the second box It is preferable to include a second circulation device that cools the air to be cooled by the second evaporator and guides the air to the inside of the second box.
 これによれば、上下方向に長い冷蔵室や冷凍室でも空気の流れにより均等に冷却することができる。また、空気は冷蔵室に適した蒸発器と冷凍室に適した蒸発器とで別々に冷却されているため、空気が過度に冷却されることを回避することができる。従って、エネルギー効率を向上させて省エネルギーに寄与することが可能となる。 According to this, even in a refrigerator room or freezer room that is long in the vertical direction, it can be evenly cooled by the flow of air. Moreover, since air is separately cooled by the evaporator suitable for the refrigerator compartment and the evaporator suitable for the freezer compartment, it is possible to avoid excessive cooling of the air. Therefore, it is possible to improve energy efficiency and contribute to energy saving.
 さらに、前記第二箱体の内方から導入する空気を前記第二蒸発器で冷却させ前記第二箱体の内方に導出する第二循環装置と、前面は前記第一箱体の内方を臨み背面は前記第一蒸発器が接触状態で取り付けられる冷却板とを備えることが好ましい。
Furthermore, the second circulating device that cools the air introduced from the inside of the second box body by the second evaporator and leads it to the inside of the second box body, and the front surface is the inside of the first box body It is preferable that the rear surface includes a cooling plate to which the first evaporator is attached in contact.
 これにより、上下方向の温度ムラが少ない冷蔵室に対しては直接冷却とすることで、蒸発器で冷却された空気を冷蔵室に運ぶための送風機が必要なくなる。従って、エネルギーの消費量を低下させることができ省エネルギーに寄与することが可能となる。 Therefore, by directly cooling the refrigerator compartment where the temperature unevenness in the vertical direction is small, a blower for carrying the air cooled by the evaporator to the refrigerator compartment becomes unnecessary. Therefore, it is possible to reduce the energy consumption and contribute to energy saving.
 また、間接冷却方式に比べて蒸発器などを薄くできるため、冷蔵室の容量を向上することも可能となる。 Also, since the evaporator can be made thinner than the indirect cooling method, the capacity of the refrigerator compartment can be improved.
 本願発明によれば、冷蔵庫としての能力の維持、向上を図りながら、省エネルギーに寄与しうる冷蔵庫を提供することが可能となる。 According to the present invention, it is possible to provide a refrigerator that can contribute to energy saving while maintaining and improving the capacity of the refrigerator.
図1は、冷蔵庫の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the refrigerator. 図2は、第一扉と第二扉とが開けられた冷蔵庫の外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of the refrigerator in which the first door and the second door are opened. 図3は、第一扉と第二扉とが省略された冷蔵庫の外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are omitted. 図4は、冷却サイクルユニットを模式的に示す図である。FIG. 4 is a diagram schematically showing the cooling cycle unit. 図5は、冷却サイクルユニットの構成機器を冷蔵庫に取り付けられた状態で模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing the components of the cooling cycle unit attached to the refrigerator. 図6は、間接冷却方式が採用される冷蔵庫を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a refrigerator in which the indirect cooling method is adopted. 図7は、送風機ユニットを示す斜視図である。FIG. 7 is a perspective view showing the blower unit. 図8は、送風機ユニットを分解して示す斜視図である。FIG. 8 is an exploded perspective view of the blower unit. 図9は、冷蔵庫に設けられる他の冷却サイクルユニットを模式的に示す図である。FIG. 9 is a diagram schematically showing another cooling cycle unit provided in the refrigerator. 図10は、直接冷却方式が採用される冷蔵庫を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a refrigerator in which the direct cooling method is adopted. 図11は、背方から見た冷却板を示す斜視図である。FIG. 11 is a perspective view showing the cooling plate viewed from the back. 図12は、冷蔵庫に設けられる他の冷却サイクルユニットを模式的に示す図である。FIG. 12 is a diagram schematically illustrating another cooling cycle unit provided in the refrigerator.
符号の説明Explanation of symbols
100 冷蔵庫
101 圧縮機
102 凝縮器
103 蒸発器
104 冷媒戻り配管
105 バイパス管
106 切替弁
107 接続管
108 第一毛細管
109 第二毛細管
110 冷却サイクルユニット
111 第一扉
112 第三扉
113 貫通孔
121 第二扉
122 第四扉
123 受け取り口
124 第一凝縮器
125 第二凝縮器
126 第三凝縮器

131 第一蒸発器
132 第二蒸発器
142 筐体
144 送風機
146 ダクト
148 送風口
150 箱本体
151 第一箱体
152 第二箱体
153 区画壁
154 吸入口
156 外箱
157 内箱
158 奥側パネル
159 冷却板
161 第一循環装置
162 第二循環装置
163 棚
164 引出し室
DESCRIPTION OF SYMBOLS 100 Refrigerator 101 Compressor 102 Condenser 103 Evaporator 104 Refrigerant return piping 105 Bypass pipe 106 Switching valve 107 Connection pipe 108 First capillary 109 Second capillary 110 Cooling cycle unit 111 First door 112 Third door 113 Through-hole 121 Second Door 122 Fourth door 123 Receiving port 124 First condenser 125 Second condenser 126 Third condenser

131 First evaporator 132 Second evaporator 142 Case 144 Blower 146 Duct 148 Air outlet 150 Box body 151 First box 152 Second box 153 Partition wall 154 Suction port 156 Outer box 157 Inner box 158 Back panel 159 Cooling plate 161 First circulation device 162 Second circulation device 163 Shelf 164 Drawer chamber
 以下、本願発明に係る冷蔵庫の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、冷蔵庫の外観を示す斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the refrigerator.
 冷蔵庫100は、内方に貯蔵する貯蔵品を冷蔵、または、冷凍して保管する装置であり、箱本体150と、第一扉111と、第二扉121と、第三扉112と、貫通孔113と、第四扉122とを備えている。また、冷蔵庫100は、高さ、幅、奥行きの内、高さが最も長い矩形の箱体である。 Refrigerator 100 is a device that refrigerates or stores stored items stored inward, and includes box body 150, first door 111, second door 121, third door 112, and through-hole. 113 and a fourth door 122. The refrigerator 100 is a rectangular box having the longest height among the height, width, and depth.
 第一扉111は、箱本体150に向かって右側の開口部分を開閉自在に塞ぐ扉である。本実施の形態の場合、第一扉111は、箱本体150の右側の壁の前方に上下方向に延びる回動軸を中心として回動するように、ヒンジ(図示せず)によって箱本体150に取り付けられている。また、第一扉111は、上下方向に長い長方形であり、冷蔵庫100の上部から下部にわたって配置され、第一扉111の右端縁部に前記回動軸が通っている。 The first door 111 is a door that opens and closes the opening on the right side toward the box body 150. In the case of the present embodiment, the first door 111 is hinged to the box body 150 by a hinge (not shown) so as to rotate about a rotation axis extending in the vertical direction in front of the right wall of the box body 150. It is attached. The first door 111 has a rectangular shape that is long in the vertical direction, and is arranged from the upper part to the lower part of the refrigerator 100, and the rotation shaft passes through the right end edge of the first door 111.
 第二扉121は、箱本体150に向かって左側の開口部分を開閉自在に塞ぐ扉である。本実施の形態の場合、第二扉121は、箱本体150の左側の壁の前方に上下方向に延びる回動軸を中心として回動するように、ヒンジ(図示せず)によって箱本体150に取り付けられている。また、第二扉121は、上下方向に長い長方形であり、冷蔵庫100の上部から下部にわたって配置され、第二扉121の左端縁部に前記回動軸が通っている。 The second door 121 is a door that opens and closes the opening on the left side toward the box body 150. In the case of the present embodiment, the second door 121 is attached to the box body 150 by a hinge (not shown) so as to rotate about a rotation axis extending in the vertical direction in front of the left wall of the box body 150. It is attached. The second door 121 has a rectangular shape that is long in the vertical direction, and is arranged from the upper part to the lower part of the refrigerator 100, and the rotation shaft passes through the left end edge of the second door 121.
 貫通孔113は、第一扉111を厚さ方向に貫通する孔である。貫通孔113は、第一扉111を開けることなく、第一扉111の後方に貯蔵されている貯蔵物を取り出し、また、第一扉111の後方に貯蔵するために貯蔵物を差し入れるための孔である。 The through hole 113 is a hole that penetrates the first door 111 in the thickness direction. The through-hole 113 is used to take out stored items stored behind the first door 111 without opening the first door 111, and to insert the stored items for storage behind the first door 111. It is a hole.
 第三扉112は、貫通孔113を開閉自在に塞ぐ扉である。本実施の形態の場合、第三扉112は、貫通孔113の下端縁に左右方向に延びる回動軸を中心として回動するように、ヒンジ(図示せず)によって第一扉111に取り付けられている。また、第三扉112は、前方から見た場合ほぼ正方形であり(角は丸められている)、第三扉112の下端縁部に前記回動軸が通っている。 The third door 112 is a door that closes the through hole 113 so as to be freely opened and closed. In the case of the present embodiment, the third door 112 is attached to the first door 111 by a hinge (not shown) so as to rotate about a rotation axis extending in the left-right direction at the lower end edge of the through hole 113. ing. Further, the third door 112 is substantially square when viewed from the front (the corners are rounded), and the rotation shaft passes through the lower edge of the third door 112.
 第四扉122は、冷蔵庫100の内方から供給される氷などを受け取る受け取り口123を開閉自在に塞ぐ扉である。 The fourth door 122 is a door that opens and closes the receiving port 123 that receives ice supplied from the inside of the refrigerator 100.
 図2は、第一扉と第二扉とが開けられた冷蔵庫の外観を示す斜視図である。 FIG. 2 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are opened.
 図3は、第一扉と第二扉とが省略された冷蔵庫の外観を示す斜視図である。なお、図2には、冷蔵庫100に貯蔵される貯蔵品Aも記載されている。 FIG. 3 is a perspective view showing the appearance of the refrigerator in which the first door and the second door are omitted. Note that FIG. 2 also shows a stored item A stored in the refrigerator 100.
 これらの図に示すように、冷蔵庫100は、第一箱体151と、第二箱体152と、外箱156とを備えている。 As shown in these drawings, the refrigerator 100 includes a first box 151, a second box 152, and an outer box 156.
 第一箱体151は、前面に開口部を有し冷蔵室を形成する上下方向に長い断熱性能を備えた箱体である。本実施の形態の場合、第一箱体151は、冷蔵庫100の上下方向全体にわたり冷蔵庫100の右側に配置されている。なお、冷蔵室とは、0℃以上の温度帯に庫内温度を維持する部屋で、特に野菜など高湿保存する場合は、冷蔵室内に引出しケースを構成して冷蔵室内を循環する冷気が直接野菜に当たらないように区画した部屋を内部に設けて保管する部屋である。 The first box body 151 is a box body having an opening on the front surface and having a long heat insulating performance in the vertical direction forming a refrigerator compartment. In the case of the present embodiment, the first box 151 is disposed on the right side of the refrigerator 100 over the entire vertical direction of the refrigerator 100. In addition, the refrigerator compartment is a room that maintains the inside temperature in a temperature range of 0 ° C. or higher, and especially when storing high humidity such as vegetables, a drawer case is formed in the refrigerator compartment and the cold air circulating in the refrigerator compartment is directly It is a room where a room that is partitioned so as not to hit vegetables is provided inside.
 第二箱体152は、前面に開口部を有し冷凍室を形成する上下方向に長い断熱性能を備えた箱体である。本実施の形態の場合、第二箱体152は、冷蔵庫100の上下方向全体にわたり冷蔵庫の左側に配置されている。なお、冷凍室とは、マイナス18℃前後の低い室温を維持し、冷凍食品などの貯蔵品を保管する部屋である。 The second box 152 is a box that has an opening on the front surface and has a long heat insulating performance in the vertical direction that forms a freezer compartment. In the case of the present embodiment, the second box 152 is disposed on the left side of the refrigerator over the entire vertical direction of the refrigerator 100. The freezer room is a room that maintains a low room temperature of around minus 18 ° C. and stores stored items such as frozen foods.
 外箱156は、左右方向に隣接して配置される第一箱体151と第二箱体152とを覆う金属板である。 The outer box 156 is a metal plate that covers the first box 151 and the second box 152 that are arranged adjacent to each other in the left-right direction.
 ここで、本実施の形態における箱本体150は、次のようにして製造される。すなわち、区画壁153で隔てる冷蔵室と冷凍室とが内箱157によってそれぞれ独立に樹脂による一体成型で製造される。内箱157の外側に内箱157と所定の間隔を隔てて内箱157を覆うように外箱を配置する。前記区画壁153の内部も、外箱156と内箱157との間にある隙間と連通する隙間が設けられている。外箱156と内箱157との間に設けられた隙間や区画壁153の隙間に、例えば硬質ウレタンフォームなどを充填発泡させて断熱材とする。以上により箱本体150が製造される。 Here, the box body 150 in the present embodiment is manufactured as follows. In other words, the refrigerator compartment and the freezer compartment separated by the partition wall 153 are manufactured independently by the inner box 157 by integral molding with resin. An outer box is arranged outside the inner box 157 so as to cover the inner box 157 at a predetermined interval from the inner box 157. A gap that communicates with the gap between the outer box 156 and the inner box 157 is also provided inside the partition wall 153. A space provided between the outer box 156 and the inner box 157 and a gap between the partition walls 153 are filled and foamed with, for example, hard urethane foam to obtain a heat insulating material. The box body 150 is manufactured as described above.
 従って、本実施の形態においては、第一箱体151と第二箱体152とが隣接する壁は不可分一体となっており、第一箱体151と第二箱体152とが区画壁153を壁部として共有するものとなっている。 Therefore, in the present embodiment, the walls adjacent to the first box 151 and the second box 152 are inseparably integrated, and the first box 151 and the second box 152 define the partition wall 153. It is intended to be shared as a wall.
 次に、冷蔵庫100に設けられる冷却サイクルユニットについて説明する。 Next, the cooling cycle unit provided in the refrigerator 100 will be described.
 図4は、冷却サイクルユニットを模式的に示す図である。 FIG. 4 is a diagram schematically showing the cooling cycle unit.
 図5は、冷却サイクルユニットの構成機器を冷蔵庫に取り付けられた状態で模式的に示す斜視図である。 FIG. 5 is a perspective view schematically showing components of the cooling cycle unit attached to the refrigerator.
 冷却サイクルユニット110は、凝縮器102で熱を放出し、蒸発器103で熱を吸収することで、一方の空間から他方の空間へ強制的に熱を移動させる機能を有するものであり、蒸発器103が冷蔵庫100の内方を冷やす位置に配置され、凝縮器102が冷蔵庫100の外方の機械室に配置されることで、冷蔵庫100の内方を冷却することが可能となっている。これらの図に示すように、冷蔵庫100が採用する冷却サイクルユニットは、圧縮機101(Compressor)と、凝縮器102(Condenser)と、蒸発器103(Evaporator)とを備える装置であり、冷媒の経路となる冷媒戻り配管104で前記機器を環状に接続し、冷媒を循環させることで冷却サイクルを実現している。本実施の形態の場合、冷蔵庫100はさらに、配管としてのバイパス管105と切替弁106とを備えている。 The cooling cycle unit 110 has a function of forcibly transferring heat from one space to the other space by releasing heat by the condenser 102 and absorbing heat by the evaporator 103. 103 is arranged at a position for cooling the inside of the refrigerator 100 and the condenser 102 is arranged in a machine room outside the refrigerator 100, so that the inside of the refrigerator 100 can be cooled. As shown in these drawings, the cooling cycle unit employed by the refrigerator 100 is a device including a compressor 101 (Compressor), a condenser 102 (Condenser), and an evaporator 103 (Evaporator), and a refrigerant path. A cooling cycle is realized by connecting the devices in a ring shape with the refrigerant return pipe 104 and circulating the refrigerant. In the case of the present embodiment, refrigerator 100 further includes a bypass pipe 105 and a switching valve 106 as pipes.
 圧縮機101と凝縮器102を配置する機械室と、庫内に配置された蒸発器103とは断熱材によって上下に区画配置され、蒸発器103の除霜水を機械室内へ導入する排水管によって庫内と機械室とは構造的に繋がっている。 The machine room in which the compressor 101 and the condenser 102 are arranged, and the evaporator 103 arranged in the cabinet are vertically arranged by a heat insulating material, and a drain pipe for introducing the defrost water of the evaporator 103 into the machine room. The chamber and the machine room are structurally connected.
 圧縮機101は、冷媒戻り配管104内に流通する気体状の冷媒を圧縮し、冷媒の圧力を高める装置である。 The compressor 101 is a device that compresses the gaseous refrigerant flowing in the refrigerant return pipe 104 and increases the pressure of the refrigerant.
 凝縮器102は、圧力が高められた気体状の冷媒の熱を大気中に放熱して冷媒を冷やし、冷媒を圧力の高い液体状の冷媒にする装置である。本実施の形態の場合、凝縮器102は、第一凝縮器124と、第二凝縮器125と、第三凝縮器126とで構成されている。 The condenser 102 is a device that radiates the heat of the gaseous refrigerant whose pressure has been increased to the atmosphere to cool the refrigerant, thereby converting the refrigerant into a liquid refrigerant having a high pressure. In the case of this embodiment, the condenser 102 includes a first condenser 124, a second condenser 125, and a third condenser 126.
 第一凝縮器124は、空気と直接熱交換をする主凝縮器であり、空気に暴露した状態で冷蔵庫100の背方下部に配置されている。実施の形態では、主凝縮器は配管にアルミなどの良熱伝導性材料にて形成された薄板の放熱フィンをらせん状に巻きつけたスパイラルフィンコイル仕様であり、配管を複数回蛇行して折り曲げて構成している。 The first condenser 124 is a main condenser that directly exchanges heat with air, and is disposed at the lower back of the refrigerator 100 while being exposed to air. In the embodiment, the main condenser is a spiral fin coil specification in which thin heat-radiating fins formed of a heat-conductive material such as aluminum are spirally wound around the pipe, and the pipe is meandered several times and bent. Is configured.
 第二凝縮器125は、第一箱体151の外側の側壁と外箱156との間で、外箱156裏面に密着させて蛇行状態で配置されており、金属製の外箱156を介して空気と熱交換する補助凝縮器である。なお、第二凝縮器125と第一箱体151の内方との間には断熱材があるため、第二凝縮器125から発生する熱は、第一箱体151の内方に影響しにくいものとなっている。また、第一箱体151の内方は比較的温度の高い冷蔵室であるため、第二凝縮器125と第一箱体151内方との熱勾配が低く、熱が伝わりにくいものとなっている。 The second condenser 125 is arranged in a meandering manner in close contact with the back surface of the outer box 156 between the outer side wall of the first box 151 and the outer box 156, and the second condenser 125 is arranged through the metal outer box 156. It is an auxiliary condenser that exchanges heat with air. In addition, since there is a heat insulating material between the second condenser 125 and the inner side of the first box 151, the heat generated from the second condenser 125 hardly affects the inner side of the first box 151. It has become a thing. Further, since the inside of the first box 151 is a refrigerating room having a relatively high temperature, the thermal gradient between the second condenser 125 and the inside of the first box 151 is low, and heat is not easily transmitted. Yes.
 第三凝縮器126は、第二箱体152の開口部の周縁に配置される補助凝縮器であり、放熱によって冷媒を冷やすと共に第二箱体152の開口部の周縁を昇温して結露を防止する機能も併せ持っている。 The third condenser 126 is an auxiliary condenser arranged at the periphery of the opening of the second box 152, cools the refrigerant by heat dissipation, and raises the temperature of the periphery of the opening of the second box 152 to cause condensation. It also has a function to prevent.
 以上のように凝縮器102を構成すると、ほこりなどが堆積することによって大気中に暴露している第一凝縮器124の能力が低下した場合でも、第二凝縮器125が凝縮器102としての能力を補完するため、冷却サイクルユニット110の能力を確保するためにメンテナンスを必要とすることなく長期にわたって維持することが可能となる。 When the condenser 102 is configured as described above, even when the ability of the first condenser 124 exposed to the atmosphere is reduced due to accumulation of dust or the like, the ability of the second condenser 125 as the condenser 102 is reduced. Therefore, it is possible to maintain the cooling cycle unit 110 over a long period of time without requiring maintenance in order to secure the capacity of the cooling cycle unit 110.
 また、冷凍室の開口部の結露を防止することができるため、着霜による第二扉121の密閉性の低下を防止することができ、冷蔵庫100のエネルギー効率を向上、または、維持することが可能となる。 Moreover, since the dew condensation of the opening part of a freezer compartment can be prevented, the fall of the sealing performance of the 2nd door 121 by frost formation can be prevented, and the energy efficiency of the refrigerator 100 can be improved or maintained. It becomes possible.
 蒸発器103は、内部で冷媒を蒸発させ周りに存在する空気などが有する熱を吸収する装置である。本実施の形態の場合、蒸発器103は、接続管107で直列に接続される第一蒸発器131と第二蒸発器132とで構成されている。接続管107は第一箱体151の背面と第二箱体152の背面を貫通して断熱材内を通り、蒸発器は接続管107の両端部に接続している。 The evaporator 103 is a device that evaporates the refrigerant in the interior and absorbs the heat of the surrounding air. In the case of the present embodiment, the evaporator 103 includes a first evaporator 131 and a second evaporator 132 that are connected in series by a connecting pipe 107. The connecting pipe 107 passes through the back surface of the first box 151 and the back surface of the second box 152 and passes through the heat insulating material, and the evaporator is connected to both ends of the connecting pipe 107.
 第一蒸発器131は、第三凝縮器126と直列に接続され第一箱体151の背部に設けられる蒸発器であり、第一箱体151の内方を冷却する役割を担っている。なお、冷蔵室高さと冷凍室高さが同じサイドバイサイド型冷蔵庫では、冷凍室を万遍なく約マイナス18℃に冷却するために冷凍室内の高さ方向に第二蒸発器132を配置するのに対して、冷蔵室を約0~6℃程度に冷凍室と比較して高温に冷却する第一蒸発器131は、第二蒸発器132と比較して、冷蔵室内の高さ方向に高く配置せず、冷蔵室の奥行き方向の庫内容積を大きく確保するために、第二蒸発器132よりは小型となっている。 The first evaporator 131 is an evaporator connected in series with the third condenser 126 and provided on the back of the first box 151, and plays a role of cooling the inside of the first box 151. In a side-by-side refrigerator where the refrigerator compartment height and the freezer compartment height are the same, the second evaporator 132 is arranged in the freezer compartment height direction in order to cool the freezer compartment to about minus 18 ° C. Thus, the first evaporator 131 that cools the refrigerating room to a temperature higher than that of the freezing room at about 0 to 6 ° C. is not arranged higher in the height direction of the refrigerating room than the second evaporator 132. In order to ensure a large internal volume in the depth direction of the refrigerator compartment, the second evaporator 132 is smaller.
 第二蒸発器132は、第一蒸発器131と直列に接続され、第二箱体152の背部に設けられる蒸発器であり、第二箱体152の内方を冷却する役割を担っている。なお、第二蒸発器132は、冷凍室を冷却するものであるため、第一蒸発器131よりは大型となっている。 The second evaporator 132 is an evaporator connected in series with the first evaporator 131 and provided on the back of the second box 152, and plays a role of cooling the inside of the second box 152. In addition, since the 2nd evaporator 132 cools a freezer compartment, it is larger than the 1st evaporator 131. FIG.
 また、蒸発器はフィンアンドチューブ式の熱交換器が用いられているが、本願発明はこれに限定されるわけではなく、コルゲートフィンと扁平管とが採用される熱交換器など任意の熱交換器を適用することができる。 Further, the evaporator uses a fin-and-tube heat exchanger, but the present invention is not limited to this, and any heat exchange such as a heat exchanger employing corrugated fins and flat tubes is used. A vessel can be applied.
 第一蒸発器131と第二蒸発器132ともに配管は複数回蛇行して折り曲げられ、蒸発器の上部に冷媒流入の入口と出口が配置されるように構成されている。 Both the first evaporator 131 and the second evaporator 132 are configured such that the pipe meanders and bends a plurality of times, and an inlet and an outlet for refrigerant inflow are arranged at the upper part of the evaporator.
 以上のように、第一箱体151(冷蔵室)を冷却するための第一蒸発器131と、第二箱体152(冷凍室)を冷却するための第二蒸発器132とを別体として備えることで、それぞれの設定温度帯に適した冷却を行うことが可能となる。 As described above, the first evaporator 131 for cooling the first box 151 (refrigeration room) and the second evaporator 132 for cooling the second box 152 (freezer room) are separated. By providing, it becomes possible to perform cooling suitable for each set temperature zone.
 特に、本実施の形態のような縦に長い冷凍室を備える場合、冷凍室の上下方向の温度差を少なくするためには、十分な冷却能力を備えた蒸発器を備える必要がある。しかし、このような蒸発器が冷蔵室の背部にあると、冷蔵室が過度に冷却されるおそれがあり、冷蔵室と蒸発器とを十分に断熱する必要がある。この場合断熱材により冷蔵室の容量が圧迫される。そこで、本願発明のように、第一箱体151(冷蔵室)の背部に冷蔵室の冷却に適した第一蒸発器131を設け、第二箱体152(冷凍室)の背部に冷凍室を均一に冷却するのに適した第二蒸発器132を設けることで、冷蔵室の容量アップを図ることが可能となる。 In particular, when a vertically long freezer compartment as in the present embodiment is provided, it is necessary to provide an evaporator having sufficient cooling capacity in order to reduce the temperature difference in the vertical direction of the freezer compartment. However, if such an evaporator is in the back of the refrigerator compartment, the refrigerator compartment may be excessively cooled, and it is necessary to sufficiently insulate the refrigerator compartment from the evaporator. In this case, the capacity of the refrigerator compartment is pressed by the heat insulating material. Therefore, as in the present invention, the first evaporator 131 suitable for cooling the refrigerator compartment is provided at the back of the first box 151 (refrigerator compartment), and the freezer compartment is provided at the back of the second box 152 (freezer compartment). By providing the second evaporator 132 suitable for uniform cooling, the capacity of the refrigerator compartment can be increased.
 また、第一箱体151(冷蔵室)内は、上部に複数の棚163を配置した冷蔵室、棚163の下方に複数の引出し室164を上下に配置し、特に複数の引出し室のうち少なくとも一室を約0~6℃程度の範囲で変温できる変温室とした場合、この変温室の後方に第一蒸発器131を配置すれば、第一蒸発器131から変温室へ吐出する冷気通路を短くできるので、第一箱体151の奥行きスペースを確保でき、引出し室の有効内容積を大きく確保することができる。また冷気通路内での冷却損失を低減でき変温室の冷却効率を向上できる。 The first box 151 (refrigeration room) includes a refrigerating room in which a plurality of shelves 163 are arranged at the top, a plurality of drawer chambers 164 in the top and bottom below the shelves 163, and at least of the plurality of drawer rooms. If one room is a temperature-controlled room that can change the temperature in the range of about 0 to 6 ° C., if the first evaporator 131 is placed behind the temperature-controlled room, the cool air passage that is discharged from the first evaporator 131 to the temperature-controlled room Therefore, the depth space of the first box 151 can be secured, and the effective internal volume of the drawer chamber can be secured large. Moreover, the cooling loss in the cold air passage can be reduced, and the cooling efficiency of the variable temperature chamber can be improved.
 切替弁106は、第三凝縮器126から第一蒸発器131に冷媒を供給するか、第三凝縮器126から直接第二蒸発器132に冷媒を供給するかを選択する三方弁であり、圧縮機101や凝縮器102と同じ空間に配置している。 The switching valve 106 is a three-way valve that selects whether to supply the refrigerant from the third condenser 126 to the first evaporator 131 or to supply the refrigerant directly from the third condenser 126 to the second evaporator 132. It is arranged in the same space as the machine 101 and the condenser 102.
 切替弁106の下流側には第一蒸発器131に接続される第一毛細管108と第二蒸発器132に接続される第二毛細管109とが切り替え可能に接続されている。 The first capillary 108 connected to the first evaporator 131 and the second capillary 109 connected to the second evaporator 132 are connected to the downstream side of the switching valve 106 so as to be switchable.
 バイパス管105は、切替弁106と第二毛細管109との間に接続され、第三凝縮器126と第二蒸発器132とを切替弁106を介して直接接続する管である。ここで、直接接続とは、冷媒を第一蒸発器131を経て第二蒸発器132に導入するのではなく、切替弁106から第一蒸発器131を迂回して直接第二蒸発器132に冷媒を導入することを示す。 The bypass pipe 105 is connected between the switching valve 106 and the second capillary 109, and directly connects the third condenser 126 and the second evaporator 132 via the switching valve 106. Here, the direct connection means that the refrigerant is not introduced into the second evaporator 132 via the first evaporator 131, but instead bypasses the first evaporator 131 from the switching valve 106 and directly enters the second evaporator 132. Indicates that
 切替弁106と第二毛細管109との間に管を繋ぐバイパス管105を設けたが、切替弁106に直接第二毛細管109を接続してもよい。 Although the bypass pipe 105 connecting the pipe is provided between the switching valve 106 and the second capillary 109, the second capillary 109 may be directly connected to the switching valve 106.
 冷蔵庫100の冷却サイクルユニット110に採用される冷媒は、特に限定されるものではないが、例えば、炭化水素系の冷媒を例示することができる。 Although the refrigerant | coolant employ | adopted for the cooling cycle unit 110 of the refrigerator 100 is not specifically limited, For example, a hydrocarbon type refrigerant | coolant can be illustrated.
 ここで、炭化水素系の冷媒とは、例えばプロパンやイソブタンである。これらはハイドロクロロフルオロカーボンやハイドロフルオロカーボンに比べて地球温暖化への影響が極めて少ないため好ましい。 Here, the hydrocarbon-based refrigerant is, for example, propane or isobutane. These are preferable because they have very little influence on global warming compared to hydrochlorofluorocarbons and hydrofluorocarbons.
 以上のように、冷蔵室を冷却する第一蒸発器131の下流に冷凍室を冷却する第二蒸発器132を直列に接続し、さらに切替弁106によって冷媒流路を切替えて下流側の第二蒸発器132のみに冷媒を流せる冷却サイクルを構成することで、冷蔵室と冷凍室とが設定温度に冷却されていない場合は、両方の蒸発器に冷媒が流れるように切替弁106を切替えて冷却サイクルを制御し、冷蔵室が設定温度に達した場合は、冷蔵室を冷却する第一蒸発器131に冷媒が流れないように切替弁106を切替えて冷凍室のみを冷却する第二蒸発器132のみに冷媒が流れる冷却サイクルを制御することが可能となる。 As described above, the second evaporator 132 that cools the freezer compartment is connected in series downstream of the first evaporator 131 that cools the refrigerator compartment, and the refrigerant flow path is further switched by the switching valve 106 so that the second downstream side is switched. By constructing a cooling cycle in which the refrigerant can flow only to the evaporator 132, when the refrigerator compartment and the freezer compartment are not cooled to the set temperature, the switching valve 106 is switched so that the refrigerant flows through both evaporators. When the cycle is controlled and the refrigerator compartment reaches a set temperature, the second evaporator 132 that cools only the freezer compartment by switching the switching valve 106 so that the refrigerant does not flow to the first evaporator 131 that cools the refrigerator compartment. It becomes possible to control the cooling cycle through which the refrigerant flows only.
 そして冷凍室も設定温度に達すれば圧縮機101の運転を停止する。これにより、第二蒸発器132への冷媒の導入を維持しながら、第一蒸発器131への冷媒の導入を選択することが可能となる。これにより、上下方向に長い第二箱体152(冷凍室)に温度ムラが発生しないように連続して第二蒸発器132を長時間稼働させた場合でも、第一箱体151(冷蔵室)に適した制御を第一蒸発器131に対して行うことが可能となる。 When the freezer reaches the set temperature, the compressor 101 is stopped. This makes it possible to select introduction of the refrigerant into the first evaporator 131 while maintaining introduction of the refrigerant into the second evaporator 132. Thereby, even when the second evaporator 132 is continuously operated for a long time so that temperature unevenness does not occur in the second box body 152 (freezer compartment) that is long in the vertical direction, the first box body 151 (refrigerator room). It is possible to perform control suitable for the first evaporator 131.
 また、第一蒸発器131と第二蒸発器132とを左右方向に配置することができるため、第一蒸発器131と第二蒸発器132とを接続する接続管107の長さを短くすることができるので、切替弁106によって第一蒸発器131と第二蒸発器132の両方の蒸発器に冷媒を導入する場合、接続管107での冷却損失を低減することができ、第二蒸発器132の冷却効率を高めることが可能となり、可燃性冷媒の冷媒量を低減でき防爆性を向上できる。 In addition, since the first evaporator 131 and the second evaporator 132 can be arranged in the left-right direction, the length of the connecting pipe 107 that connects the first evaporator 131 and the second evaporator 132 is shortened. Therefore, when the refrigerant is introduced into both the first evaporator 131 and the second evaporator 132 by the switching valve 106, the cooling loss in the connection pipe 107 can be reduced, and the second evaporator 132 can be reduced. The cooling efficiency of the flammable refrigerant can be increased, the amount of the combustible refrigerant can be reduced, and the explosion-proof property can be improved.
 また、第一蒸発器131を冷蔵室の下方に配置することで、第一蒸発器131と圧縮機を配置する機械室との距離が近くなり、万一、可燃性冷媒が第一蒸発器131の近傍から漏れた場合でも、可燃性冷媒は空気よりも比重が大きいので下方へ溜まり、さらに第一蒸発器131の除霜水を排水する排水管を通して圧縮機101を配置する機械室へ容易に導入することができ、機械室から庫外へ開放することができるので漏れた可燃性冷媒が庫内に滞留して濃度を高めるのを低減することができ防爆性を高めることができる。 Further, by disposing the first evaporator 131 below the refrigerator compartment, the distance between the first evaporator 131 and the machine room in which the compressor is disposed is reduced. Even if it leaks from the vicinity of the flammable refrigerant, the flammable refrigerant has a specific gravity greater than that of air, so that it accumulates downward, and further easily passes to the machine room where the compressor 101 is disposed through the drain pipe for draining the defrost water of the first evaporator 131. Since it can be introduced and opened from the machine room to the outside of the cabinet, it is possible to reduce the leakage of the flammable refrigerant remaining in the cabinet and increase the concentration, thereby improving the explosion-proof property.
 第二蒸発器132から可燃性冷媒が漏れた場合も、上記と同様に、排水管を通して機械室内へ漏洩冷媒を排出することができ、庫内に漏洩冷媒が滞留するのを防止することができ防爆性を向上できる。 When the flammable refrigerant leaks from the second evaporator 132, the leaked refrigerant can be discharged into the machine room through the drain pipe in the same manner as described above, and the leaked refrigerant can be prevented from staying in the cabinet. Explosion proof can be improved.
 上記のように第一蒸発器131と第二蒸発器132をそれぞれ冷蔵室と冷凍室の下方に配置することで、両方の蒸発器103の下端部の高さが大体揃うように配置して機械室を通じて庫内から庫外への排出性を高めたが、第二蒸発器132より背の低い第一蒸発器131の位置を上方へ上げ、両方の蒸発器103の上端部の高さが大体揃うように配置してもよい。 As described above, the first evaporator 131 and the second evaporator 132 are disposed below the refrigerator compartment and the freezer compartment, respectively, so that the lower ends of both the evaporators 103 are arranged so that the heights thereof are roughly aligned. Although the discharge | emission property from the inside of a store | warehouse | chamber to the exterior was improved through the chamber, the position of the 1st evaporator 131 shorter than the 2nd evaporator 132 is raised upwards, and the height of the upper end part of both evaporators 103 is roughly You may arrange | position so that it may align.
 これによって第一蒸発器131の冷媒出口部と第二蒸発器132の冷媒入口部とを接続する接続管107は第一蒸発器131と第二蒸発器132との間をほぼ水平に配管することができ、接続管107の配管距離を最短にすることができ、切替弁106を切替えて第一蒸発器131と第二蒸発器132に冷媒を流す場合、接続管107での冷却損失をさらに低減することができ、また可燃性冷媒の冷媒量をさらに低減することができる。 Accordingly, the connection pipe 107 that connects the refrigerant outlet portion of the first evaporator 131 and the refrigerant inlet portion of the second evaporator 132 is connected between the first evaporator 131 and the second evaporator 132 substantially horizontally. Therefore, when the switching valve 106 is switched and the refrigerant flows through the first evaporator 131 and the second evaporator 132, the cooling loss in the connection pipe 107 is further reduced. And the amount of the combustible refrigerant can be further reduced.
 以上の構成の冷蔵庫100を採用することにより、全体のエネルギー効率を高めることができ、省エネルギーに寄与することが可能となる。 By adopting the refrigerator 100 having the above configuration, the overall energy efficiency can be increased, and it is possible to contribute to energy saving.
 図6は、間接冷却方式が採用される冷蔵庫を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing a refrigerator in which the indirect cooling method is adopted.
 同図に示すように、第二箱体152(冷凍室)に対し間接冷却方式を採用する冷蔵庫100は、送風機144と、ダクト146と、送風口148と、吸入口154とからなる第二循環装置162を備えている。第二循環装置162は、第二箱体152の内方から導入する空気を第二蒸発器132で冷却させ、第二箱体152に導出する装置であり、第二箱体152の内方背部に備えられている。また、第二循環装置162は、第二蒸発器132で冷却された空気が第二箱体152の内方を直接冷却しないように、ダクト146や第二蒸発器132と第二箱体152の内方前方とは奥側パネル158の背部に設けられた断熱材によって熱的に遮断されている。 As shown in the figure, the refrigerator 100 that employs the indirect cooling method for the second box 152 (freezer compartment) has a second circulation composed of a blower 144, a duct 146, a blower port 148, and a suction port 154. A device 162 is provided. The second circulation device 162 is a device that cools the air introduced from the inside of the second box 152 by the second evaporator 132 and guides it to the second box 152. Is provided. In addition, the second circulation device 162 prevents the air cooled by the second evaporator 132 from directly cooling the inside of the second box 152 so that the duct 146, the second evaporator 132, and the second box 152 The inward front is thermally blocked by a heat insulating material provided on the back of the back panel 158.
 図7は、送風機ユニットを示す斜視図である。 FIG. 7 is a perspective view showing the blower unit.
 図8は、送風機ユニットを分解して示す斜視図である。 FIG. 8 is an exploded perspective view showing the blower unit.
 これらの図に示すように、送風機144は、空気の流れを作ることのできる装置であり、本実施の形態の場合、軸流ファンが採用されている。また、送風機144は、第二蒸発器132を内部に収容する筐体142の上部に斜めに取り付けられている。送風機144と筐体142とは送風機ユニットを構成しており、送風機ユニットの状態で容易にダクト146内に配置できるものとなっている。 As shown in these drawings, the blower 144 is a device capable of creating an air flow, and an axial fan is employed in the present embodiment. In addition, the blower 144 is obliquely attached to the upper portion of the housing 142 that houses the second evaporator 132 therein. The blower 144 and the casing 142 constitute a blower unit, and can be easily placed in the duct 146 in the state of the blower unit.
 ダクト146は、空気を所定経路で案内する経路であり、断熱材からなる管状の部材によって形成される。 The duct 146 is a path that guides air along a predetermined path, and is formed by a tubular member made of a heat insulating material.
 送風口148、吸入口154は、奥側パネル158に設けられダクト146と連通する開口であり、ダクト146を流通する冷却された空気が任意に開口された複数の送風口148から第二箱体152の内方に吐出され、第二箱体152の内方にある空気が吸入口154からダクト146内に吸引される。 The ventilation port 148 and the suction port 154 are openings provided in the back panel 158 and communicated with the duct 146, and the second box body is formed from the plurality of ventilation ports 148 in which the cooled air flowing through the duct 146 is arbitrarily opened. The air inside the second box 152 is sucked into the duct 146 through the suction port 154.
 以上のように、第二循環装置162を第二箱体152の背部に備え、第二箱体152の内方を間接冷却方式で冷却すると、第二箱体152の内方に空気の流れを強制的に発生させることができ、第二箱体152内方の空気の温度ムラを低減することが可能となる。特に上下方向に長い第二箱体152であって、内方の温度が比較的低い第二箱体152に対しては特に有効である。 As described above, when the second circulation device 162 is provided on the back portion of the second box body 152 and the inside of the second box body 152 is cooled by the indirect cooling method, the air flow is directed to the inside of the second box body 152. This can be forcibly generated, and it becomes possible to reduce temperature unevenness of the air inside the second box 152. This is particularly effective for the second box 152 that is long in the vertical direction and has a relatively low inner temperature.
 また、第二蒸発器132や、第二蒸発器132で冷却された直後の空気により、奥側パネル158の温度が低下し難いため、奥側パネル158の前面に結露が発生することを可及的に防止することができる。 In addition, since the temperature of the back panel 158 is not easily lowered by the second evaporator 132 or the air immediately after being cooled by the second evaporator 132, it is possible that dew condensation occurs on the front surface of the back panel 158. Can be prevented.
 また、第一蒸発器131で冷却された空気の温度と第一箱体151内方の温度との温度勾配、及び、第二蒸発器132で冷却された空気の温度と第二箱体152内方の温度との温度勾配が比較的緩やかとなるため、第一蒸発器131と第一箱体151内方の間にある断熱材、及び、第二蒸発器132と第二箱体152内方の間にある断熱材、それぞれの厚さを薄くすることができ、冷蔵庫100の容量向上に寄与することが可能となる。 Further, the temperature gradient between the temperature of the air cooled by the first evaporator 131 and the temperature inside the first box 151, and the temperature of the air cooled by the second evaporator 132 and the inside of the second box 152 Since the temperature gradient between the first evaporator 131 and the first box body 151 is relatively moderate, the second evaporator 132 and the second box body 152 are inward. It is possible to reduce the thickness of each of the heat insulating materials between them, and contribute to the capacity increase of the refrigerator 100.
 なお、本実施の形態の場合、第一箱体151の背部には、第一循環装置161が設けられている。第一循環装置161の構造、及び、作用効果は、前記第二循環装置162と同様の間接冷却方式であるため、第一循環装置161の詳細な説明は省略する。 In the case of the present embodiment, a first circulation device 161 is provided on the back of the first box 151. Since the structure and operational effects of the first circulation device 161 are the same indirect cooling method as that of the second circulation device 162, detailed description of the first circulation device 161 is omitted.
 以下、本願発明に係る冷蔵庫の他の実施の形態について、図面を参照しながら説明する。 Hereinafter, other embodiments of the refrigerator according to the present invention will be described with reference to the drawings.
 (実施の形態2)
 図9は、冷蔵庫に設けられる他の冷却サイクルユニットを模式的に示す図である。
(Embodiment 2)
FIG. 9 is a diagram schematically showing another cooling cycle unit provided in the refrigerator.
 本実施の形態に係る冷却サイクルユニット110は、凝縮器102に並列に接続されている第一蒸発器131と第二蒸発器132とを備えている。具体的には、圧縮機101から吐出された冷媒は主凝縮器である第一凝縮器124に流れて凝縮され、補助凝縮器である第二凝縮器125に流れて冷媒の凝縮を促進し、さらに補助凝縮器である第三凝縮器126に流れて放熱作用により、外気温度と温度差の大きい冷凍室の開口部の結露を防止する。そして切替弁106を介して第一蒸発器131と第二蒸発器132が並列接続されている。 The cooling cycle unit 110 according to the present embodiment includes a first evaporator 131 and a second evaporator 132 that are connected to the condenser 102 in parallel. Specifically, the refrigerant discharged from the compressor 101 flows to the first condenser 124 that is the main condenser and is condensed, and then flows to the second condenser 125 that is the auxiliary condenser to promote condensation of the refrigerant. Furthermore, it flows into the 3rd condenser 126 which is an auxiliary | assistant condenser, and the dew condensation of the opening part of a freezer compartment with a large temperature difference with outside temperature is prevented by heat dissipation. The first evaporator 131 and the second evaporator 132 are connected in parallel via the switching valve 106.
 また減圧器として第一毛細管108が切替弁106と第一蒸発器131の間に、第二毛細管109が切替弁106と第二蒸発器132の間に接続されている。そして第一蒸発器131と第二蒸発器132の出口配管で冷媒戻り配管104に合流して圧縮機101に循環する。 Further, as a pressure reducer, a first capillary 108 is connected between the switching valve 106 and the first evaporator 131, and a second capillary 109 is connected between the switching valve 106 and the second evaporator 132. Then, the refrigerant is returned to the refrigerant return pipe 104 through the outlet pipes of the first evaporator 131 and the second evaporator 132 and circulated to the compressor 101.
 切替弁106を切替えることで、第一蒸発器131のみに冷媒を導入する場合と、第二蒸発器132のみに冷媒を導入する場合とを切り替えることができる。 By switching the switching valve 106, it is possible to switch between the case where the refrigerant is introduced only into the first evaporator 131 and the case where the refrigerant is introduced only into the second evaporator 132.
 冷蔵室と冷凍室の負荷状態に応じて、切替弁106で冷媒流路を切替えるので、第一蒸発器131と第二蒸発器132の両方に同時に冷媒を循環させる場合はなく、常にどちらか一方の蒸発器にのみ冷媒循環させるので、冷媒量を低減することができる。 Since the refrigerant flow path is switched by the switching valve 106 according to the load state of the refrigerator compartment and the freezer compartment, the refrigerant is not circulated through both the first evaporator 131 and the second evaporator 132 at the same time. Since the refrigerant is circulated only in the evaporator, the amount of refrigerant can be reduced.
 したがって可燃性冷媒を用いた場合、実施の形態1の場合よりも冷媒量を少なくすることができ防爆性を低減できるとともに、省冷媒化により圧縮機101の負荷も低減できるので省エネを促進することができる。 Therefore, when a flammable refrigerant is used, the amount of refrigerant can be reduced as compared with the case of the first embodiment, the explosion-proof property can be reduced, and the load on the compressor 101 can be reduced by reducing the refrigerant, thereby promoting energy saving. Can do.
 その他は、実施の形態1における冷却サイクルユニット110と同じであるため説明を省略する。 Others are the same as those of the cooling cycle unit 110 in the first embodiment, and thus the description thereof is omitted.
 図10は、直接冷却方式が採用される冷蔵庫を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing a refrigerator in which the direct cooling method is adopted.
 本実施の形態において冷蔵庫100は、第二箱体152(冷凍室)に対しては間接冷却方式が採用されており、第一箱体151(冷蔵室)に対しては直接冷却方式が採用されている。なお、間接冷却方式に関しては前記実施の形態1と同様であるため説明を省略する。 In the present embodiment, the refrigerator 100 employs an indirect cooling method for the second box 152 (freezer compartment), and employs a direct cooling method for the first box 151 (refrigerator compartment). ing. Since the indirect cooling method is the same as that of the first embodiment, description thereof is omitted.
 同図に示すように、直接冷却方式を採用する冷蔵庫100は、冷却板159を第一箱体151の内方背部に備えている。冷却板159の前面は第一箱体151の内方を臨み、冷却板159の背面は第一蒸発器131が接触状態で取り付けられるものとなっている。 As shown in the figure, the refrigerator 100 that employs a direct cooling system includes a cooling plate 159 on the inner back of the first box 151. The front surface of the cooling plate 159 faces the inside of the first box 151, and the first evaporator 131 is attached to the back surface of the cooling plate 159 in a contact state.
 図11は、背方から見た冷却板を示す斜視図である。 FIG. 11 is a perspective view showing the cooling plate viewed from the back.
 同図に示すように、冷却板159は、管状の第一蒸発器131が蛇行状態で取り付けられており、冷却板159を介して熱交換できるよう冷却板159と接触状態で取り付けられている。 As shown in the figure, the cooling plate 159 has a tubular first evaporator 131 attached in a meandering state, and is attached in contact with the cooling plate 159 so that heat can be exchanged via the cooling plate 159.
 以上のように、第一蒸発器131と第二蒸発器132とが並列に接続され、稼働状態をいずれか一方に選択できるものとすれば、第二蒸発器132でのみ蒸発した冷媒で熱を吸収することができるため、第二蒸発器132の冷却能力を高めることが可能となる。従って、上下方向に長い第二箱体の内方に対しても十分な冷却能力を確保することができ、第二箱体152の上下方向の温度ムラなどを解消することが可能となる。 As described above, if the first evaporator 131 and the second evaporator 132 are connected in parallel and the operation state can be selected to one of them, heat is generated by the refrigerant evaporated only in the second evaporator 132. Since it can absorb, the cooling capacity of the second evaporator 132 can be increased. Therefore, sufficient cooling capacity can be ensured even for the inner side of the second box that is long in the vertical direction, and temperature irregularities in the vertical direction of the second box 152 can be eliminated.
 また、第一箱体151の内方に対し直接冷却方式を採用すると、間接冷却方式で必要な空気の流路を無くすことができ、第一箱体151の内方背部に配置する機器類を薄くすることができ、第一箱体151の内方に広い貯蔵スペースを確保することが可能となる。 Further, if the direct cooling method is adopted for the inner side of the first box 151, the air flow path necessary for the indirect cooling method can be eliminated, and the devices disposed on the inner back of the first box 151 can be removed. It can be made thin, and a wide storage space can be secured inside the first box 151.
 以下、本願発明に係る冷蔵庫の他の実施の形態について、図面を参照しながら説明する。 Hereinafter, other embodiments of the refrigerator according to the present invention will be described with reference to the drawings.
 (実施の形態3)
 図12は、冷蔵庫に設けられる他の冷却サイクルユニットを模式的に示す図である。
(Embodiment 3)
FIG. 12 is a diagram schematically illustrating another cooling cycle unit provided in the refrigerator.
 本実施の形態の場合、冷蔵庫100は、二つの冷却サイクルユニット110を備えている。一方の冷却サイクルユニット110は、圧縮機101と、凝縮器102(第二凝縮器125、第三凝縮器126)と、第一蒸発器131とを備える装置であり、他方の冷却サイクルユニット110は、圧縮機101と、凝縮器102(第一凝縮器124)と、第二蒸発器132とを備える装置である。つまり、冷蔵庫100は、二つの圧縮機を備え、第一蒸発器131と第二蒸発器132とに対しそれぞれ独立して圧縮された冷媒を供給できるものとなっている。 In the case of the present embodiment, the refrigerator 100 includes two cooling cycle units 110. One cooling cycle unit 110 is an apparatus including a compressor 101, a condenser 102 (second condenser 125, third condenser 126), and a first evaporator 131, and the other cooling cycle unit 110 includes , An apparatus including a compressor 101, a condenser 102 (first condenser 124), and a second evaporator 132. That is, the refrigerator 100 includes two compressors and can supply the compressed refrigerant independently to the first evaporator 131 and the second evaporator 132.
 その他は、実施の形態1における冷却サイクルユニット110と同じであるため説明を省略する。 Others are the same as those of the cooling cycle unit 110 in the first embodiment, and thus the description thereof is omitted.
 以上のように、圧縮機101を複数備え、複数の蒸発器103に対して独立して圧縮機101を稼働できるものとすれば、複数の箱体(例えば第一箱体151と第二箱体152)に対して最適な条件で冷却サイクルユニット110を稼働させることができる。特に、第一箱体151に対して直接冷却方式を採用し、第二箱体152に対して間接冷却方式を採用する場合など、異なる冷却方式を採用する場合、独立して冷却サイクルユニット110を稼働させれば、冷却方式に対して最適な条件で稼働させることが可能となる。また、冷却サイクルユニット110自体の設計の自由度が向上し、エネルギー効率の高い冷却サイクルユニット110を設計することも可能となる。つまり、省エネルギーに寄与することが可能となる。 As described above, if a plurality of compressors 101 are provided and the compressor 101 can be operated independently with respect to the plurality of evaporators 103, a plurality of boxes (for example, the first box 151 and the second box) are provided. 152), the cooling cycle unit 110 can be operated under optimum conditions. In particular, when a different cooling method is adopted, such as when the direct cooling method is adopted for the first box 151 and the indirect cooling method is adopted for the second box 152, the cooling cycle unit 110 is independently set. If it is operated, it can be operated under the optimum conditions for the cooling system. In addition, the degree of freedom in designing the cooling cycle unit 110 itself is improved, and it becomes possible to design the cooling cycle unit 110 with high energy efficiency. That is, it becomes possible to contribute to energy saving.
 上記のように、冷蔵室を冷却する第一蒸発器131の冷却サイクルユニット側に第二凝縮器125と第三凝縮器126を接続したが、冷蔵室と冷凍室の設定温度に対する適正な冷却サイクル設計を考慮した場合、冷蔵室より温度の低い冷凍室を冷却する第二蒸発器132の冷却サイクルユニット側に第二凝縮器125と第三凝縮器126を接続することで冷却効率を向上させることができる。 As described above, the second condenser 125 and the third condenser 126 are connected to the cooling cycle unit side of the first evaporator 131 that cools the refrigerating room, but an appropriate cooling cycle for the set temperature of the refrigerating room and the freezing room. When the design is taken into consideration, the cooling efficiency is improved by connecting the second condenser 125 and the third condenser 126 to the cooling cycle unit side of the second evaporator 132 that cools the freezer compartment having a temperature lower than that of the refrigerator compartment. Can do.
 または、冷蔵室と冷凍室とで冷却サイクルユニット110を独立しているので冷蔵室を冷却する第一蒸発器131の冷却サイクルユニット側に第二凝縮器125を接続し、冷凍室を冷却する第二蒸発器132の冷却サイクルユニット側に第三凝縮器126を接続することで、左右に配置した冷蔵室と冷凍室に対して接続配管が交差しないで左右に配管処理を行うことができ、配管長さを短くでき原材料コストを低減できるとともに組立作業性を向上する。 Alternatively, since the cooling cycle unit 110 is independent in the refrigerator compartment and the freezer compartment, the second condenser 125 is connected to the cooling cycle unit side of the first evaporator 131 that cools the refrigerator compartment, and the refrigerator compartment is cooled. By connecting the third condenser 126 to the cooling cycle unit side of the two evaporators 132, it is possible to perform piping processing to the left and right without connecting piping to the refrigerator compartment and the freezer compartment arranged on the left and right. The length can be shortened, the raw material cost can be reduced, and the assembly workability can be improved.
 なお、上記実施の形態1~3において、第一蒸発器131、第二蒸発器132、第一凝縮器124、第二凝縮器125、第三凝縮器126、間接冷却方式、直接冷却方式、バイパス管105を備える冷却サイクルユニット110、第一蒸発器131と第二蒸発器132とを選択的に稼働させることのできる冷却サイクルユニット110、圧縮機101を複数備える冷却サイクルユニット110、冷媒等を所定の組合せで説明したが、これらの組合せは、上記実施の形態に限定されるわけではなく、自由に選択できるものである。 In the first to third embodiments, the first evaporator 131, the second evaporator 132, the first condenser 124, the second condenser 125, the third condenser 126, the indirect cooling method, the direct cooling method, and the bypass. Cooling cycle unit 110 including pipe 105, cooling cycle unit 110 capable of selectively operating first evaporator 131 and second evaporator 132, cooling cycle unit 110 including a plurality of compressors 101, predetermined refrigerant, etc. However, these combinations are not limited to the above embodiment, and can be freely selected.
 本願発明は、家庭用や業務用の冷蔵庫に利用可能であり、特に、冷蔵室と冷凍室とが左右方向に隣接して配置される冷蔵庫に利用可能である。 The present invention can be used for a refrigerator for home use or business use, and in particular, can be used for a refrigerator in which a refrigerator compartment and a freezer compartment are arranged adjacent to each other in the left-right direction.

Claims (7)

  1.  前面に開口部を有し冷蔵室を形成する上下方向に長い第一箱体と、前面に開口部を有し冷凍室を形成する上下方向に長い第二箱体と、左右方向に隣接して配置される前記第一箱体と前記第二箱体とを覆う金属製の外箱とを備える冷蔵庫であって、
     冷媒を圧縮する圧縮機と、
     前記圧縮機と直列に接続され、冷媒の熱を放出する凝縮器と、
     冷媒を蒸発させる蒸発器であって、前記凝縮器と直列に接続され、前記第一箱体の背部に設けられる第一蒸発器と、
     冷媒を蒸発させる蒸発器であって、前記第一蒸発器と直列に接続され、前記第二箱体の背部に設けられる第二蒸発器と、
     前記凝縮器と前記第二蒸発器とを直接接続する配管と、
     前記凝縮器から前記第一蒸発器に冷媒を供給するか前記凝縮器から直接第二蒸発器に冷媒を供給するかを選択する切替弁と
    を備える冷蔵庫。
    A first box that is long in the vertical direction that has an opening on the front surface and forms a refrigerator compartment, a second box that is long in the vertical direction that has an opening on the front surface and forms a freezer compartment, and is adjacent to the left and right direction A refrigerator comprising a metal outer box that covers the first box and the second box to be arranged,
    A compressor for compressing the refrigerant;
    A condenser connected in series with the compressor and releasing the heat of the refrigerant;
    An evaporator for evaporating the refrigerant, connected in series with the condenser, and provided on the back of the first box;
    An evaporator for evaporating the refrigerant, connected in series with the first evaporator, and provided on the back of the second box;
    A pipe directly connecting the condenser and the second evaporator;
    A refrigerator comprising: a switching valve for selecting whether to supply the refrigerant from the condenser to the first evaporator or to supply the refrigerant directly from the condenser to the second evaporator.
  2.  前記凝縮器は、
     空気と直接熱交換をする第一凝縮器と、
     前記第一箱体と前記外箱との間に配置され、前記外箱を介して空気と熱交換する第二凝縮器とを備える
    請求項1に記載の冷蔵庫。
    The condenser is
    A first condenser that directly exchanges heat with air;
    The refrigerator according to claim 1, further comprising a second condenser that is disposed between the first box and the outer box and exchanges heat with air through the outer box.
  3.  前記第二凝縮器は、前記第一箱体の側方に蛇行状に配置される請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the second condenser is arranged in a meandering manner on the side of the first box.
  4.  前記凝縮器はさらに、
     前記第二箱体の開口部に配置される第三凝縮器を備える
    請求項2に記載の冷蔵庫。
    The condenser further includes
    The refrigerator of Claim 2 provided with the 3rd condenser arrange | positioned at the opening part of said 2nd box.
  5.  前記冷媒は、炭化水素系である請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the refrigerant is hydrocarbon-based.
  6.  さらに、
     前記第一箱体の内方から導入する空気を前記第一蒸発器で冷却させ前記第一箱体の内方に導出する第一循環装置と、
     前記第二箱体の内方から導入する空気を前記第二蒸発器で冷却させ前記第二箱体の内方に導出する第二循環装置と
    を備える請求項1に記載の冷蔵庫。
    further,
    A first circulation device that cools air introduced from the inside of the first box by the first evaporator and leads the air to the inside of the first box;
    The refrigerator according to claim 1, further comprising: a second circulation device that cools air introduced from the inside of the second box body by the second evaporator and guides the air to the inside of the second box body.
  7.  さらに、
     前記第二箱体の内方から導入する空気を前記第二蒸発器で冷却させ前記第二箱体の内方に導出する第二循環装置と、
     前面は前記第一箱体の内方を臨み背面は前記第一蒸発器が接触状態で取り付けられる冷却板と
    を備える請求項1に記載の冷蔵庫。
    further,
    A second circulation device that cools air introduced from the inside of the second box by the second evaporator and leads the air to the inside of the second box;
    The refrigerator according to claim 1, wherein a front surface faces the inside of the first box and a back surface includes a cooling plate to which the first evaporator is attached in contact.
PCT/JP2009/001041 2009-02-12 2009-03-09 Refrigerator WO2010092625A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09839948.8A EP2397797A4 (en) 2009-02-12 2009-03-09 Refrigerator
CN200980156602.3A CN102317713B (en) 2009-02-12 2009-03-09 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-029303 2009-02-12
JP2009029303 2009-02-12

Publications (1)

Publication Number Publication Date
WO2010092625A1 true WO2010092625A1 (en) 2010-08-19

Family

ID=42561479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001041 WO2010092625A1 (en) 2009-02-12 2009-03-09 Refrigerator

Country Status (3)

Country Link
EP (1) EP2397797A4 (en)
CN (1) CN102317713B (en)
WO (1) WO2010092625A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH713693A2 (en) * 2018-07-18 2018-10-15 V Zug Ag Cooling unit with at least two evaporators.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416119A (en) * 1982-01-08 1983-11-22 Whirlpool Corporation Variable capacity binary refrigerant refrigeration apparatus
JPH08166184A (en) * 1994-12-12 1996-06-25 Sharp Corp Refrigerating equipment with freezing function
JP2000088428A (en) 1998-09-18 2000-03-31 Toshiba Corp Refrigerator
JP2005331187A (en) * 2004-05-20 2005-12-02 Toshiba Corp Refrigerator
JP2006234219A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687934B1 (en) * 2005-09-28 2007-02-27 삼성전자주식회사 Refrigerator and controlling method for the same
US20080178621A1 (en) * 2007-01-26 2008-07-31 Samsung Electronics Co., Ltd. Refrigerator and operation control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416119A (en) * 1982-01-08 1983-11-22 Whirlpool Corporation Variable capacity binary refrigerant refrigeration apparatus
JPH08166184A (en) * 1994-12-12 1996-06-25 Sharp Corp Refrigerating equipment with freezing function
JP2000088428A (en) 1998-09-18 2000-03-31 Toshiba Corp Refrigerator
JP2005331187A (en) * 2004-05-20 2005-12-02 Toshiba Corp Refrigerator
JP2006234219A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397797A4 *

Also Published As

Publication number Publication date
EP2397797A1 (en) 2011-12-21
EP2397797A4 (en) 2014-07-23
CN102317713A (en) 2012-01-11
CN102317713B (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP4488966B2 (en) refrigerator
JP4867758B2 (en) refrigerator
EP2431687B1 (en) Refrigerator
JP5450462B2 (en) refrigerator
JP5872143B2 (en) refrigerator
JP2007064597A (en) Refrigerator
JP3904866B2 (en) refrigerator
JP2018096662A (en) Refrigerator
WO2011114656A1 (en) Refrigerator
CN103917837B (en) Refrigerator
JP2008121939A (en) Refrigerator
JP2014048030A (en) Cooling warehouse
JP2012127629A (en) Cooling storage cabinet
JP2008111640A (en) Refrigerator
JP2005345061A (en) Refrigerator
WO2010092625A1 (en) Refrigerator
JP2007064596A (en) Refrigerator
JP2007064598A (en) Refrigerator
JP2018048799A (en) refrigerator
JP2017156027A (en) refrigerator
JP2007147100A (en) Refrigerator
JP2005221144A (en) Refrigerator
JP6603017B2 (en) refrigerator
JP2005345060A (en) Refrigerator
JP4701909B2 (en) refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156602.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009839948

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP