JP2005331187A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005331187A
JP2005331187A JP2004151086A JP2004151086A JP2005331187A JP 2005331187 A JP2005331187 A JP 2005331187A JP 2004151086 A JP2004151086 A JP 2004151086A JP 2004151086 A JP2004151086 A JP 2004151086A JP 2005331187 A JP2005331187 A JP 2005331187A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
refrigeration cycle
refrigerator
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151086A
Other languages
Japanese (ja)
Inventor
Munehiro Horie
宗弘 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2004151086A priority Critical patent/JP2005331187A/en
Publication of JP2005331187A publication Critical patent/JP2005331187A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of detecting leakage of a flammable refrigerant without using an expensive refrigerant leakage detecting instrument such as a gas sensor and without falsely detecting a behavior change caused by other factors as refrigerant leakage, in a refrigeration cycle using the flammable refrigerant. <P>SOLUTION: The refrigerant is provided with fans 8, 10 for respectively supplying cool air generated by each radiator in the refrigeration cycle 11 to a freezing space and refrigerating space, wherein the refrigeration cycle 11 with the flammable refrigerant sealed is structured of a capacity variable compressor 12, a switching valve 16 for switching a refrigerant flow passage provided on an outlet side of a condenser receiving discharge gas from the compressor, and a radiator 7 for freezing and a radiator 9 for refrigeration connected from the switching valve through respective decompressing mechanisms 17, 19. The refrigerant leakage on a refrigeration cycle low pressure side is detected from pressure fluctuation in the refrigeration cycle detected from a change rate of load fluctuation of the compressor, a pressure in the refrigeration cycle detected from an absolute value of a compressor load, an an abnormal operation signal of the compressor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷蔵庫に係り、特に炭化水素系など可燃性冷媒を使用した冷凍サイクルにおける冷媒漏れを検出する制御装置に関する。   The present invention relates to a refrigerator, and more particularly to a control device that detects refrigerant leakage in a refrigeration cycle that uses a flammable refrigerant such as a hydrocarbon.

近年、フロンガスによるオゾン層破壊や地球温暖化などに対する環境保護の観点から、冷蔵庫の冷凍サイクルに使用する冷媒は、これまでのHFC(ハイドロフルオロカーボン)から、オゾン層の破壊がなく、地球温暖化係数の低いハイドロカーボンなどの炭化水素系冷媒(以下、「HC冷媒」という。)への切り替え採用が拡大している。   In recent years, from the viewpoint of environmental protection against ozone layer destruction and global warming caused by chlorofluorocarbon gas, the refrigerant used in the refrigerator refrigeration cycle has no ozone layer destruction from conventional HFC (hydrofluorocarbon), and has a global warming potential. The adoption of hydrocarbon refrigerants such as low-carbon hydrocarbons (hereinafter referred to as “HC refrigerants”) is expanding.

しかしながら、このHC冷媒は可燃性冷媒であることから、冷媒漏れを生じて引火した場合には火災に発展する可能性がある。   However, since this HC refrigerant is a flammable refrigerant, there is a possibility of developing into a fire when ignited due to refrigerant leakage.

したがって、HC冷媒を使用する場合は、冷蔵庫の製造時の不具合や搬送時における衝撃によって、たとえ冷媒漏れが発生したとしても、火災などの問題のない安全性を確保する必要があり、冷却器の入口と出口に温度センサーあるいは圧力センサーを配置して、双方の温度差あるいは圧力差とあらかじめ設定記憶された値との比較から冷媒漏れの有無を判断する構成(例えば、特許文献1参照)や、冷却器周辺に冷媒漏れ検出機器を設け、冷媒漏れの際には除霜水の排水を兼ねた連通孔を通して漏れた冷媒を空気とともに強制的に外部に排出する構成(特許文献2参照)などが考えられている。   Therefore, when using HC refrigerant, it is necessary to ensure safety without problems such as fire even if refrigerant leakage occurs due to problems during manufacture of the refrigerator or impact during transportation. A configuration in which a temperature sensor or a pressure sensor is disposed at the inlet and the outlet, and the presence or absence of refrigerant leakage is determined from a comparison between the temperature difference or pressure difference between the two and a preset value stored (for example, see Patent Document 1), There is a configuration in which a refrigerant leak detection device is provided around the cooler, and when the refrigerant leaks, the refrigerant leaked through the communication hole also serving as the defrost water drainage is forcibly discharged together with air (see Patent Document 2). It is considered.

上記の場合は、冷媒漏れを検出する機器が必要となってコストが高くなり、また、冷媒が漏れてしまった後の事後処理にしかならないものであることから、これに代わる構成として、冷凍サイクルを構成する冷却器などの構成要素や接続配管が損傷により孔があいた場合に、冷媒が漏れることによる冷凍サイクルの圧力変動や圧縮機の負荷の変化などから、冷媒漏れを検知するようにした構成(特許文献3参照)が提案されている。
特開平9−14811号公報 特開平9−329386号公報 特開2003−139446号公報
In the above case, an apparatus for detecting refrigerant leakage is required, resulting in high costs and only post-processing after the refrigerant has leaked. A configuration in which refrigerant leakage is detected from pressure fluctuations in the refrigeration cycle and changes in compressor load due to refrigerant leakage when there are holes in the components such as coolers and connection pipes that are damaged due to damage. (See Patent Document 3).
JP-A-9-14811 JP-A-9-329386 JP 2003-139446 A

しかしながら、上記特許文献3に記載された発明によれば、冷媒漏れの検出する専用機器は不要となるが、圧縮機の負荷変動や負荷の変化のみで冷媒漏れと判断することは、食品の出し入れや冷蔵庫周辺の環境変化によって発生する挙動変化との判別が困難であり、これらの挙動変化を冷媒漏れと混同し誤検知する問題を生じていた。   However, according to the invention described in the above-mentioned Patent Document 3, a dedicated device for detecting refrigerant leakage is not necessary. However, it is determined that refrigerant leakage is caused only by load fluctuation or load change of the compressor. In addition, it is difficult to discriminate from behavior changes caused by environmental changes around the refrigerator, and these behavior changes are confused with refrigerant leaks, resulting in a problem of erroneous detection.

本発明は上記点を考慮してなされたものであり、可燃性であるHC冷媒を使用した冷凍サイクルにおいて、ガスセンサーなどの高価な冷媒漏れ検出機器を使用することなく、また、他の要因による挙動変化を冷媒漏れと誤検知することなく、冷凍サイクルからの可燃性冷媒の漏れを検出できるようにした冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above points, and in the refrigeration cycle using the flammable HC refrigerant, without using an expensive refrigerant leak detection device such as a gas sensor, and other factors. It is an object of the present invention to provide a refrigerator that can detect a leakage of a flammable refrigerant from a refrigeration cycle without erroneously detecting a behavior change as a refrigerant leak.

上記課題を解決するため、本発明による冷蔵庫は、能力可変圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路を切り替える切替弁と、この切替弁からそれぞれ減圧機構を介して接続された冷凍用冷却器および冷蔵用冷却器とから構成された可燃性冷媒を封入した冷凍サイクルの前記各冷却器で生成された冷気を冷凍空間および冷蔵空間にそれぞれ供給するファンを備えた冷蔵庫において、前記圧縮機の負荷変動の変化率から検知される冷凍サイクル内の圧力変動と、圧縮機負荷の絶対値から検知される冷凍サイクル内圧力と、圧縮機の異常運転信号とによって冷凍サイクル低圧側の冷媒漏れを検出することを特徴とするものである。   In order to solve the above problems, a refrigerator according to the present invention includes a variable capacity compressor, a switching valve that switches a refrigerant flow path provided on the outlet side of the condenser that receives the discharge gas from the compressor, and the switching valve. Supplying cold air generated by each cooler of the refrigeration cycle in which a flammable refrigerant composed of a refrigeration cooler and a refrigeration cooler connected via a decompression mechanism is enclosed to the refrigeration space and the refrigeration space, respectively In a refrigerator equipped with a fan, the pressure fluctuation in the refrigeration cycle detected from the change rate of the load fluctuation of the compressor, the pressure in the refrigeration cycle detected from the absolute value of the compressor load, and the abnormal operation of the compressor The refrigerant leakage on the low pressure side of the refrigeration cycle is detected based on the signal.

本発明の冷蔵庫によれば、専用の漏れ冷媒検知装置を使用することなく、冷凍サイクルの亀裂などによる冷媒漏れの発生を検出することができる。また、冷蔵庫内の負荷変動に影響されたり、負荷変動と混同して誤検知することのない冷媒漏れ検出によって火災に発展する可能性のない安全な制御構成を提供することができる。   According to the refrigerator of the present invention, it is possible to detect the occurrence of refrigerant leakage due to a crack in the refrigeration cycle or the like without using a dedicated leakage refrigerant detection device. In addition, it is possible to provide a safe control configuration that is not affected by load fluctuations in the refrigerator or that is not confused with load fluctuations and that does not erroneously detect the refrigerant leak and that may cause a fire.

以下、図面に基づき本発明の一実施形態について説明する。図1は、冷蔵庫の扉を除去した正面図であり、断熱箱体で形成された冷蔵庫本体(1)の内部を貯蔵空間として最上部に冷蔵室(2)、その下方に野菜室(3)、最下部には冷凍室(4)をそれぞれ独立して配置し、この冷凍室(4)と野菜室(3)との間には断熱仕切壁を介して自動製氷室(5)と、多温度切替室(6)とを左右に併置しており、各貯蔵室の前面開口には図示しないが各々専用の扉を設けて開閉自在に室内を閉塞している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view with the refrigerator door removed, with the inside of the refrigerator body (1) formed of a heat insulating box as a storage space at the top, the refrigerator compartment (2), and below it the vegetable compartment (3) The freezer compartment (4) is disposed independently at the bottom, and an automatic ice compartment (5) and a multi-purpose compartment are provided between the freezer compartment (4) and the vegetable compartment (3) through an insulating partition wall. The temperature switching chamber (6) is juxtaposed to the left and right, and although not shown, a dedicated door is provided at the front opening of each storage chamber to close the room so that it can be opened and closed.

冷凍室(4)の背面には、冷凍室や製氷室などの冷凍空間用の冷却器(7)および冷却ファン(8)を配置し、野菜室(3)の背面には冷蔵室(2)と野菜室(3)とを冷却する冷蔵温度用の冷却器(9)および冷却ファン(10)を設け、本体下部の機械室に設置した冷媒圧縮機(12)の駆動により、前記冷凍用冷却器(7)および冷蔵用冷却器(9)で冷却された冷気を冷却ファン(8)(10)の回転で各室に送風してそれぞれの貯蔵室を所定温度に冷却制御するものである。   A refrigerator (7) and a cooling fan (8) for a freezing space such as a freezing room or an ice making room are arranged on the back of the freezer room (4), and a refrigerator room (2) is placed on the back of the vegetable room (3). The refrigeration cooler (9) and the cooling fan (10) for cooling the vegetable room (3) and the vegetable compartment (3) are provided, and the refrigerant compressor (12) installed in the machine room at the bottom of the main body drives the cooling for freezing. The cool air cooled by the cooler (7) and the refrigerating cooler (9) is blown to the respective chambers by the rotation of the cooling fans (8) and (10) to control the cooling of the respective storage chambers to a predetermined temperature.

前記各貯蔵室は、図2に示すように、周波数により能力を変化できる圧縮機(12)からの高温高圧の冷媒ガスを吐出パイプ(13)に吐出し、冷蔵庫本体周縁に配設した防露用の放熱パイプ(14)および凝縮器(15)に導入して放熱液化し、冷媒流路を切り替える三方弁(16)から、低温側絞り装置(17)と低温側である冷凍用冷却器(7)および吸込みパイプ(18)とを直列に接続して前記圧縮機(12)に戻す回路を形成するとともに、前記三方弁(16)から前記低温側絞り装置(17)と並列に高温側絞り装置(19)と高温側の冷蔵用冷却器(20)を連結し冷凍用冷却器(7)の入口部に接続して形成した冷凍サイクル(11)により冷却されるものであり、この冷凍サイクルの各配管は、前記圧縮機(12)を設置した機械室内においてそれぞれを接続してサイクルを形成するとともに、冷媒としてオゾン層の破壊がなく地球温暖化係数も低いが可燃性であるイソブタンなどのHC冷媒を封入している。   As shown in FIG. 2, each storage room discharges high-temperature and high-pressure refrigerant gas from a compressor (12) whose capacity can be changed according to frequency to a discharge pipe (13), and is provided at the periphery of the refrigerator body. From the three-way valve (16), which is introduced into the heat dissipating pipe (14) and the condenser (15) to liquefy the heat and change the refrigerant flow path, and the low-temperature side expansion device (17) and the refrigeration cooler ( 7) and a suction pipe (18) connected in series to form a circuit for returning to the compressor (12), and the three-way valve (16) to the high temperature side throttle in parallel with the low temperature side throttle device (17) The refrigeration cycle is formed by connecting the device (19) and the refrigeration cooler (20) on the high temperature side and connecting to the inlet of the refrigeration cooler (7). Each pipe is connected in the machine room where the compressor (12) is installed. As a refrigerant, an HC refrigerant such as isobutane that does not destroy the ozone layer and has a low global warming potential but is flammable is enclosed.

そして、冷蔵庫は、図3に概略をブロック図で示す制御回路(21)により制御されるものであり、制御装置(22)による三方弁(16)の流路の切り替えで冷媒を高温側冷却器(20)あるいは低温側冷却器(7)に交互に供給し、冷気循環ファン(8)(10)の回転駆動によって、高温側である冷蔵室(2)や野菜室(3)、あるいは低温側である冷凍室(4)や自動製氷室(5)などを所定温度に冷却制御するものであり、冷蔵温度帯と冷凍温度帯双方の貯蔵室が所定温度まで冷却された場合には、圧縮機(12)を停止し、その後貯蔵室内温度の上昇により、いずれかの貯蔵室温が設定温度より高くなった場合は、ふたたび圧縮機および冷気循環ファンを起動させて、該当する貯蔵室を冷却する。   The refrigerator is controlled by a control circuit (21) schematically shown in a block diagram in FIG. 3, and the high temperature side cooler is supplied by switching the flow path of the three-way valve (16) by the control device (22). (20) Or the low temperature side cooler (7) is alternately supplied, and the cold air circulation fans (8) and (10) are driven to rotate, so that the cold room (2) and vegetable room (3) on the high temperature side, or the low temperature side The freezing room (4) and the automatic ice making room (5) are controlled to be cooled to a predetermined temperature. When the storage rooms in both the refrigeration temperature zone and the freezing temperature zone are cooled to the predetermined temperature, the compressor (12) is stopped, and when any storage room temperature becomes higher than the set temperature due to a rise in the storage room temperature, the compressor and the cold air circulation fan are started again to cool the corresponding storage room.

前記圧縮機(12)は、圧縮機駆動装置(23)により運転され、その運転状態は、電流値などの情報から運転検知回路(24)を介して監視されている。また、圧縮機駆動装置(23)は、運転検知回路(24)を通して得られた電流値などのデータから圧縮機(12)の負荷を測定しており、制御装置(22)はその情報から圧縮機(12)の負荷の変動を監視しているものであるが、本発明の1実施例において使用する負荷変動率は、
「負荷変動率=基準点と現時点での電力の差/基準点での電力の絶対値×100(%)」
のように定義し、圧縮機(12)の運転中は、電力値を上式に当てはめて冷凍サイクル(11)の負荷変動を監視している。
The compressor (12) is operated by a compressor driving device (23), and the operation state is monitored via an operation detection circuit (24) from information such as a current value. The compressor drive unit (23) measures the load on the compressor (12) from data such as the current value obtained through the operation detection circuit (24). Although the load fluctuation of the machine (12) is monitored, the load fluctuation rate used in one embodiment of the present invention is:
"Load fluctuation rate = difference between the reference point and the current power / the absolute value of the power at the reference point x 100 (%)"
During the operation of the compressor (12), the load value of the refrigeration cycle (11) is monitored by applying the power value to the above equation.

上記式中の基準点は、冷蔵庫制御での圧縮機(12)の運転周波数変更や三方弁(16)の切り替えによる冷凍サイクル(11)の圧力変化の影響を受けないように、前記冷蔵庫制御を実施した後の時点でそれぞれ決定する。すなわち、冷蔵側冷却から冷凍側冷却へ運転を移行するために三方弁(16)の冷媒流路方向を切り替えたようなときには、切り替え前の基準値は破棄して、切り替え後1分の時点での電力値を基準値とするものである。   The reference point in the above formula is the control of the refrigerator so that it is not affected by the pressure change of the refrigeration cycle (11) caused by changing the operating frequency of the compressor (12) or switching the three-way valve (16) in the refrigerator control. It is determined at each time point after implementation. That is, when the refrigerant flow direction of the three-way valve (16) is switched in order to shift the operation from the refrigeration side cooling to the refrigeration side cooling, the reference value before switching is discarded and at the point of 1 minute after switching. The power value is used as a reference value.

しかして、図4は、冷凍サイクル(11)における低圧側、すなわち、低温側および高温側絞り装置(17)(19)から圧縮機(12)の吸込口(12a)までの間のサイクル配管に生じたピンホールや亀裂から冷媒が漏洩した場合の冷蔵庫の各運転挙動を示す波形グラフである。   Therefore, FIG. 4 shows the cycle piping between the low pressure side, that is, the low temperature side and high temperature side expansion devices (17) and (19) to the suction port (12a) of the compressor (12) in the refrigeration cycle (11). It is a waveform graph which shows each driving | running behavior of a refrigerator when a refrigerant | coolant leaks from the generated pinhole and a crack.

これに対して、図5は、冷蔵庫の正常な運転状況を示すグラフであり、この図4と図5との比較からも理解されるように、低圧側サイクル配管中に損傷が発生した場合、孔あき部から大気がサイクル配管中に吸引され始めるが、当初はサイクル配管内が低圧であることに対して外気の圧力が大きいのでその圧力差によって吸込み量が多く、急激に冷凍サイクルの負荷、すなわち圧縮機(12)の電力値変動率が増大する(A部参照)。   On the other hand, FIG. 5 is a graph showing a normal operation state of the refrigerator, and as understood from a comparison between FIG. 4 and FIG. 5, when damage occurs in the low-pressure side cycle pipe, Atmospheric air begins to be sucked into the cycle pipe from the perforated part, but initially the pressure of the outside air is large compared to the low pressure in the cycle pipe, so the suction amount is large due to the pressure difference, and the load of the refrigeration cycle suddenly That is, the power value fluctuation rate of the compressor (12) increases (see part A).

外気を吸い込み続けるとサイクル配管内外の圧力差が小さくなっていくので、吸い込み量は時間経過とともに徐々に減少し、孔の大きさにも関係するが約10分程度でバランスして外気の吸込みはなくなり、内部圧力が大気圧以上になった時点で、冷媒が外方に漏出するものである。   If the outside air continues to be sucked in, the pressure difference between the inside and outside of the cycle piping will become smaller, so the amount of suction will gradually decrease with time, and although it is related to the size of the hole, it will be balanced in about 10 minutes and the outside air will be sucked in. When the internal pressure becomes equal to or higher than the atmospheric pressure, the refrigerant leaks outward.

なお、冷凍サイクル(11)の高圧側、すなわち、圧縮機(12)の吐出口(12b)から低温側および高温側の絞り装置(17)(19)までの間で冷媒漏れが発生する可能性のある配管箇所は、冷蔵庫本体外の機械室内に配設されており、漏れた冷媒のガス濃度が燃焼下限以上に達すると、機械室内に設置されている圧縮機の始動リレーなどの電気接点が開閉動作した際に、引火する可能性がある。しかしながら、機械室においては、圧縮機(12)の運転中は空冷ファンが駆動しており、たとえ冷媒漏れが発生しても外気中に拡散するため引火する危険はきわめて少ないものであり特に問題とはならない。また、その他のサイクル配管は冷蔵庫本体(1)の断熱材層の内部に埋設されており、冷媒が滞留することがなく引火する可能性はほとんどないため、本発明の対象からは除外する。   In addition, there is a possibility that refrigerant leakage may occur between the high pressure side of the refrigeration cycle (11), that is, between the discharge port (12b) of the compressor (12) and the expansion devices (17) and (19) on the low temperature side and the high temperature side. The piping section with is located in the machine room outside the refrigerator body, and when the gas concentration of the leaked refrigerant reaches the combustion lower limit or more, electrical contacts such as a start relay of the compressor installed in the machine room There is a possibility of igniting when opening and closing. However, in the machine room, the air cooling fan is driven during the operation of the compressor (12), and even if refrigerant leakage occurs, the risk of igniting is extremely low because it diffuses into the outside air. Must not. Moreover, since other cycle piping is embed | buried in the inside of the heat insulating material layer of a refrigerator main body (1), and a refrigerant | coolant does not stay and there is almost no possibility of igniting, it excludes from the object of this invention.

そして、図5のように、冷凍サイクル中に孔あきなどが存在しない正常な冷却運転中においても、貯蔵室扉の開放や食材の出し入れなど貯蔵室内状態の変化によって冷凍サイクル(11)の負荷がB部に示すように、変動し増大するが、この場合の電力値変動率は、前記式によれば、30%程度であるのに対し、サイクル配管の孔あき損傷発生時には、90%程度まで上昇するものであり、電力値変動率には明確な相違を生じる。   As shown in FIG. 5, even during a normal cooling operation in which there is no perforation or the like in the refrigeration cycle, the load on the refrigeration cycle (11) is affected by changes in the state of the storage chamber such as opening of the storage chamber door and taking in and out of food. As shown in part B, it fluctuates and increases. In this case, the power value fluctuation rate is about 30% according to the above equation, but up to about 90% when perforation damage occurs in the cycle piping. The power value fluctuation rate is clearly different.

なお、電力値の変動率は、冷凍側冷却運転か冷蔵側冷却運転かなど貯蔵室内冷却運転状態の違いや、冷凍サイクル中の損傷孔の大きさなどによって差があり一定値ではない。すなわち、サイクルの損傷孔は、孔径の大きな方が一度に吸い込む外気量が多いため負荷が急激に上昇して電力変動の増加率が高くなり、また、冷蔵側冷却の場合は冷凍側冷却に比べ、冷凍サイクル(11)内の圧力が低いので、同じ孔径でも冷蔵側冷却時の方が負荷の増加率が高くなるのはいうまでもない。   Note that the fluctuation rate of the electric power value is not a constant value because it varies depending on the state of the storage room cooling operation such as the refrigeration side cooling operation or the refrigeration side cooling operation, the size of the damaged hole in the refrigeration cycle, and the like. That is, the larger the hole diameter, the greater the amount of outside air that is sucked in at a time, so the load increases rapidly and the rate of increase in power fluctuations is high. Since the pressure in the refrigeration cycle (11) is low, it goes without saying that the rate of increase in load is higher during refrigeration-side cooling even with the same hole diameter.

したがって、上記事情を考慮すれば、上記式で求められる電力値変動率のみを冷媒漏れの判別基準とすることは適切ではない。   Therefore, in consideration of the above circumstances, it is not appropriate to use only the power value fluctuation rate obtained by the above equation as a criterion for determining refrigerant leakage.

そこで、上記電力値変動率の増加による判定を一次判定として、さらに、負荷電力の絶対値を冷媒漏れ検出判定の条件とする。すなわち、電力値変動率が冷媒漏れの可能性が大きい50%を越えたかどうかを検知し、電力値変動率が図4のA部のように50%を越えた場合は、二次判定として、電力の絶対値を抽出する。   Therefore, the determination based on the increase in the power value fluctuation rate is set as the primary determination, and the absolute value of the load power is set as the condition for the refrigerant leak detection determination. That is, it is detected whether or not the power value fluctuation rate exceeds 50% where the possibility of refrigerant leakage is large, and when the power value fluctuation rate exceeds 50% as shown in part A of FIG. Extract the absolute value of power.

電力値は、冷凍サイクルや圧縮機に異常がなければ、圧縮機(12)の運転周波数や冷凍側冷却か冷蔵側冷却かの三方弁(16)の切り替え方向に対して安定した値を示すが、冷凍サイクル(11)の低圧側で冷媒漏れが発生した場合は、孔あき部から外気を吸い込んでいき、負荷の増大により値が大きくなる。そこで、正常な運転では、この電力の絶対値がほとんど超過しないような値を基準値とし、電力値が基準値以上となるか否かを検知するようにする。   If there is no abnormality in the refrigeration cycle or compressor, the power value shows a stable value with respect to the operating frequency of the compressor (12) and the switching direction of the three-way valve (16) between refrigeration side cooling and refrigeration side cooling. When a refrigerant leak occurs on the low pressure side of the refrigeration cycle (11), outside air is sucked from the perforated portion, and the value increases as the load increases. Therefore, in normal operation, a value that hardly exceeds the absolute value of the power is set as a reference value, and it is detected whether the power value is equal to or higher than the reference value.

この二次判定の電力値の検知は、圧縮機(12)の周波数や三方弁(16)の切り替え方向など種々の条件を考慮した最大の値、例えば150Wを基準値として求めておき、冷凍運転の間に電力値が150Wを越えた場合(C部参照)には冷媒漏れがあると判定する。   The detection of the power value of the secondary determination is performed by obtaining a maximum value in consideration of various conditions such as the frequency of the compressor (12) and the switching direction of the three-way valve (16), for example, 150 W as a reference value, If the power value exceeds 150 W during this period (see part C), it is determined that there is a refrigerant leak.

前記基準値は、圧縮機(12)の各運転周波数と三方弁(16)による冷凍側あるいは冷蔵側の冷却方向で区分した各々の状態における値を決定しておき、現実の運転条件に沿った基準値により判定するようにすれば、精度の高い検知が早い段階でできる長所があり、負荷条件の少ない制御構成に適用すれば有効であるが、その反面、負荷条件の数に比例して制御が複雑になる難点がある。   The reference value is determined in accordance with the actual operating conditions by determining the values in each state divided by the operating frequency of the compressor (12) and the cooling direction of the freezing side or the refrigerating side by the three-way valve (16). If judged based on the reference value, there is an advantage that detection with high accuracy is possible at an early stage, and it is effective if applied to a control configuration with few load conditions, but on the other hand, control is performed in proportion to the number of load conditions. There is a difficult point.

したがって、圧縮機(12)の運転周波数や三方弁(16)の切り替え方向による種々の負荷条件がある場合には、冷蔵庫の運転中で最も負荷が大きくなる条件での最大の値を測定しておき、これを運転周波数や三方弁の動作に関係なく共通の基準値とすることによって、検知はやや遅くなるが、簡単な制御装置を実現することができる。この場合の最大負荷条件は、実験例によれば、冷蔵側冷却で圧縮機の運転周波数が最大の63Hzの場合であり、求められた電力基準値は100Wであった。   Therefore, when there are various load conditions depending on the operating frequency of the compressor (12) and the switching direction of the three-way valve (16), measure the maximum value under the condition that the load is greatest during the operation of the refrigerator. In addition, by making this a common reference value regardless of the operation frequency and the operation of the three-way valve, detection is slightly delayed, but a simple control device can be realized. According to the experimental example, the maximum load condition in this case is the case where the compressor operating frequency is 63 Hz, which is the maximum in the refrigerator side cooling, and the obtained power reference value is 100 W.

上記説明において、電力値による負荷変動率を一次判定とし、電力の絶対値を二次判定とした理由は、冷媒漏洩に関係なく、例えば、圧縮機(12)自体がロック状態になるなど異常モードになった際にも電力の絶対値が基準値を超える場合があり、これを冷媒漏れと誤検知する可能性があるためである。   In the above description, the reason why the load fluctuation rate due to the power value is the primary determination and the absolute value of the power is the secondary determination is the abnormal mode, for example, the compressor (12) itself is in a locked state regardless of refrigerant leakage. This is because the absolute value of the electric power may exceed the reference value even when the error occurs, and this may be erroneously detected as refrigerant leakage.

なお、前記圧縮機(12)のロック現象の際には電力の絶対値が突発的に増加するものであり、サイクルの低圧側に冷媒漏れが発生したときのように外気を徐々に吸い込むことにともなう圧縮機の負荷の増加形態とはならない。そして、圧縮機(12)がロックした場合は、圧縮機自体の異常モードとして、冷媒漏れと判定せず圧縮機を停止するように制御する。   It should be noted that the absolute value of electric power suddenly increases during the lock phenomenon of the compressor (12), and the outside air is gradually sucked in as if a refrigerant leak occurs on the low pressure side of the cycle. This is not an increase in compressor load. And when a compressor (12) locks, it controls to stop a compressor, without determining with refrigerant | coolant leakage as an abnormal mode of compressor itself.

上記によれば、一次判定として電力値変動率によって圧力変動の検知をおこない、電力値変動率が所定値以上であれば、二次判定として電力絶対値により冷凍サイクル内圧力の増大を検知することで、冷媒漏れの有無を検出するようにしているが、前記電力値変動率の基準値や電力基準値が冷蔵庫運転の全てのバラツキを網羅しているとは言い難いものである。そこで、冷媒漏れ検知の確率を向上するために、二次判定の後に三次判定として、圧縮機(12)の異常動作を監視する。   According to the above, pressure fluctuation is detected by the power value fluctuation rate as the primary determination, and if the power value fluctuation rate is equal to or greater than the predetermined value, the increase in the pressure in the refrigeration cycle is detected by the power absolute value as the secondary judgment. Thus, the presence or absence of refrigerant leakage is detected, but it is difficult to say that the reference value of the power value fluctuation rate and the power reference value cover all variations in refrigerator operation. Therefore, in order to improve the probability of refrigerant leakage detection, abnormal operation of the compressor (12) is monitored as a tertiary determination after the secondary determination.

冷凍サイクル(11)においては、通常、圧縮機(12)の負荷が異常に大きくなって圧縮機のモータ電流が増加し電流値が3.5Aを越えた場合には、過電流保護装置が動作して圧縮機を停止するように制御している。過電流保護装置の動作により、圧縮機(12)は一時停止するが、通常は所定時間後、例えば6分後には再起動(異常リトライ)させるように制御されており、この再起動制御を、例えば6回繰り返しても起動しない場合には、異常として圧縮機を永久停止させている。   In the refrigeration cycle (11), when the compressor (12) load becomes abnormally large and the compressor motor current increases and the current value exceeds 3.5A, the overcurrent protection device operates. The compressor is controlled to stop. Although the compressor (12) is temporarily stopped by the operation of the overcurrent protection device, it is normally controlled to restart (abnormal retry) after a predetermined time, for example, 6 minutes. For example, if it does not start even after 6 repetitions, the compressor is permanently stopped as an abnormality.

そして、低圧側の冷媒漏れによって外気を吸い込み続けている冷凍サイクル(11)においても、外気を吸い込んだ場合は、冷凍サイクル内が1気圧になって圧縮機(12)の負荷が異常に大きくなり、過電流保護装置が動作するとともに再起動が不可能になるものである。したがって、再起動制御を繰り返しても起動しない場合(D部)は、上記のように永久停止モードとなるため、前記一次および二次判定を経由した第3段階で前記圧縮機の異常停止判定をおこなった場合には、サイクル低圧側の冷媒漏れと判定するものである。   Even in the refrigeration cycle (11) that continues to suck in the outside air due to refrigerant leakage on the low pressure side, if the outside air is sucked in, the inside of the refrigeration cycle becomes 1 atm and the load on the compressor (12) becomes abnormally large. The overcurrent protection device operates and cannot be restarted. Therefore, when the restart is not repeated even after repeated restart control (part D), the permanent stop mode is set as described above. Therefore, the abnormal stop determination of the compressor is performed in the third stage via the primary and secondary determinations. If it is performed, it is determined that the refrigerant leaks on the low pressure side of the cycle.

また、冷媒漏れが発生した場合には、圧縮機(12)の過電流保護装置が動作する前に、圧縮機自体が故障に至る場合がある。すなわち、図6に示すように、孔あき部から外気を吸い込み続けたことによってサイクル内の圧力が上昇し、その結果、圧縮機(12)内の弁が破損したり、パッキンが外れてしまう不良が発生(E部)する。このようになった圧縮機(12)は、冷媒の圧縮ができず空転しているのみの状態となり、運転周波数の変化や三方弁(16)の切り替えに対して何の負荷変動も示さなくなるものである(F部参照)。   In addition, when refrigerant leakage occurs, the compressor itself may fail before the overcurrent protection device of the compressor (12) operates. That is, as shown in FIG. 6, the pressure in the cycle rises due to the continuous intake of outside air from the perforated part, and as a result, the valve in the compressor (12) is damaged or the packing is removed. Occurs (E section). The compressor (12) thus configured is in a state where the refrigerant cannot be compressed and is only idling, and does not show any load fluctuation in response to changes in the operating frequency or switching of the three-way valve (16). (See section F).

上記において、正常な冷凍サイクルでは、同じ周波数で運転していれば、冷凍側空間のより冷蔵側空間の冷却の方が冷媒の蒸発温度が高く電力値が大きいため、三方弁(16)の切り替え動作では10W程度の差を生じる。そこで、基準値を5W以下に設定し、一次および二次判定を経由した後の時点で、三方弁(16)の切り替えを1回乃至数回繰り返した際に、冷蔵側冷却と冷凍側冷却との電力値の差が5W以下であれば、圧縮機(12)の異常と判定し、低圧側の冷媒漏れと判定するものである。   In the above, in a normal refrigeration cycle, if the refrigeration side space is cooled rather than the refrigeration side space, the refrigerant evaporating temperature is higher and the power value is larger than the refrigeration side space. In operation, a difference of about 10 W occurs. Therefore, when the reference value is set to 5 W or less and the switching of the three-way valve (16) is repeated once to several times after passing through the primary and secondary determinations, the refrigerating side cooling and the freezing side cooling are performed. If the difference between the electric power values is 5 W or less, it is determined that the compressor (12) is abnormal, and it is determined that the refrigerant leaks on the low pressure side.

しかして、図7のフローチャートで示すように、第1段階として電力値変動率によって圧力変動の検知をおこない、電力値変動率が50%以上であれば、冷凍サイクル低圧側での冷媒漏れありとの一次判定(ステップ1)をおこない、第2段階で電力の絶対値が150W以上であれば冷凍サイクル内の圧力が冷媒漏れにより増大しているとの二次判定(ステップ2)をおこなう。   Therefore, as shown in the flowchart of FIG. 7, as a first stage, pressure fluctuation is detected based on the power value fluctuation rate, and if the power value fluctuation rate is 50% or more, there is a refrigerant leak on the refrigeration cycle low pressure side. Primary determination (step 1), and if the absolute value of electric power is 150 W or more in the second stage, secondary determination (step 2) is made that the pressure in the refrigeration cycle has increased due to refrigerant leakage.

次に、第3段階として、圧縮機(12)の異常動作を監視し、圧縮機(12)の過電流保護装置の動作回数(異常リトライ)が6回以上であるか(ステップ3)、また、そうでなければ三方弁(16)の切り替え時の電力値の変動が5W以下であるか(ステップ4)を検知する。さらに、運転周波数を変更しても電力の変化がないか否か(ステップ5)を検知し、それぞれの検知に該当した場合には、冷凍サイクル(11)の低圧側配管において冷媒漏れが発生しているとの三次判定をおこなうものである。   Next, as a third stage, the abnormal operation of the compressor (12) is monitored, and whether the number of operations (abnormal retry) of the overcurrent protection device of the compressor (12) is 6 times or more (step 3), or Otherwise, it is detected whether the fluctuation of the power value at the time of switching the three-way valve (16) is 5 W or less (step 4). Furthermore, it is detected whether or not there is no change in electric power even if the operating frequency is changed (step 5). If each of the detections is met, refrigerant leakage occurs in the low-pressure side piping of the refrigeration cycle (11). It is a third-order judgment that it is.

冷媒が漏れている場合は、冷凍サイクルの冷却力が低下することになり、冷媒漏れ有りとの判定をおこなった際には、これを冷蔵庫扉の表示パネル面に表示したり、アラームなど警報音として使用者に報知するものである。   If the refrigerant is leaking, the cooling power of the refrigeration cycle will be reduced, and when it is determined that there is a refrigerant leak, this will be displayed on the display panel surface of the refrigerator door or an alarm sound such as an alarm. Is notified to the user.

本発明は、可燃性冷媒を使用した冷蔵庫における冷媒漏れ検出制御構成として利用することができる。   The present invention can be used as a refrigerant leak detection control configuration in a refrigerator using a combustible refrigerant.

本発明の1実施形態を示す冷蔵庫の扉を除去した正面図である。It is the front view which removed the door of the refrigerator which shows one Embodiment of this invention. 図1に示す冷蔵庫の冷凍サイクル概略図である。It is the refrigerating cycle schematic of the refrigerator shown in FIG. 図1の冷蔵庫の制御回路を示すブロック図である。It is a block diagram which shows the control circuit of the refrigerator of FIG. 図2の冷凍サイクルから冷媒漏れが発生した状態の運転挙動を示す波形グラフである。It is a waveform graph which shows the driving | running behavior in the state which the refrigerant | coolant leak generate | occur | produced from the refrigerating cycle of FIG. 正常な冷蔵庫の運転状況を示す図4と同一部分の波形グラフである。It is a waveform graph of the same part as FIG. 4 which shows the driving | running state of a normal refrigerator. 圧縮機に故障が発生した状態を示す図4と同一部分の波形グラフである。It is a waveform graph of the same part as Drawing 4 showing the state where failure occurred in the compressor. 本件発明の1実施例を示す冷媒漏れ検出の制御フローチャートである。It is a control flowchart of the refrigerant | coolant leak detection which shows one Example of this invention.

符号の説明Explanation of symbols

1 冷蔵庫本体 2 冷蔵室 4 冷凍室
7 冷凍用冷却器 8 冷凍用ファン 9 冷蔵用冷却器
10 冷蔵用ファン 11 冷凍サイクル 12 圧縮機
12a 吸込口 12b 吐出口 16 三方弁
17 低温側絞り装置 18 吸込みパイプ 19 高温側絞り装置
21 冷蔵庫制御回路 22 制御装置 23 圧縮機駆動装置
24 運転検知装置
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Refrigeration room 4 Freezing room 7 Refrigeration cooler 8 Refrigeration fan 9 Refrigeration cooler
10 Refrigeration fan 11 Refrigeration cycle 12 Compressor
12a Suction port 12b Discharge port 16 Three-way valve
17 Low temperature side expansion device 18 Suction pipe 19 High temperature side expansion device
21 Refrigerator control circuit 22 Controller 23 Compressor drive unit
24 Driving detection device

Claims (7)

能力可変圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路を切り替える切替弁と、この切替弁からそれぞれ減圧機構を介して接続された冷凍用冷却器および冷蔵用冷却器とから構成された可燃性冷媒を封入した冷凍サイクルの前記各冷却器で生成された冷気を冷凍空間および冷蔵空間にそれぞれ供給するファンを備えた冷蔵庫において、前記圧縮機の負荷変動の変化率から検知される冷凍サイクル内の圧力変動と、圧縮機負荷の絶対値から検知される冷凍サイクル内圧力と、圧縮機の異常運転信号とによって冷凍サイクル低圧側の冷媒漏れを検出することを特徴とする冷蔵庫。   A variable capacity compressor, a switching valve for switching a refrigerant flow path provided on the outlet side of a condenser that receives discharge gas from the compressor, and a refrigeration cooler connected from the switching valve via a pressure reducing mechanism, respectively. And a refrigerator having a fan for supplying cold air generated by each cooler of the refrigeration cycle in which a flammable refrigerant composed of a refrigeration cooler is sealed to the refrigeration space and the refrigeration space, respectively, Refrigerant leakage on the low pressure side of the refrigeration cycle is detected based on the pressure fluctuation in the refrigeration cycle detected from the change rate of the fluctuation, the refrigeration cycle pressure detected from the absolute value of the compressor load, and the abnormal operation signal of the compressor. A refrigerator characterized by that. 圧縮機負荷変動の所定値以上の変化率により冷凍サイクル内の圧力変動を検知することを第1段階とした後に、圧縮機負荷の絶対量が基準値以上であった場合を第2段階と判定すること特徴とする請求項1記載の冷蔵庫。   Detecting pressure fluctuation in the refrigeration cycle based on the rate of change of the compressor load fluctuation over a predetermined value as the first stage, and then determining the second stage when the absolute amount of the compressor load is above the reference value The refrigerator according to claim 1. 圧縮機負荷の絶対量が基準値以上であった場合を第2段階とした後、圧縮機の異常運転を検知した場合を第3段階として冷凍サイクル低圧側の冷媒漏れを検出することを特徴とする請求項2記載の冷蔵庫。   The case where the absolute amount of the compressor load is equal to or more than the reference value is set as the second stage, and then the refrigerant leakage on the refrigeration cycle low pressure side is detected as the third stage when the abnormal operation of the compressor is detected. The refrigerator according to claim 2. 圧縮機負荷の絶対量の基準値として、冷蔵庫の運転状況に応じた複数の基準値を持つことを特徴とする請求項1記載の冷蔵庫。   The refrigerator according to claim 1, wherein the refrigerator has a plurality of reference values corresponding to operating conditions of the refrigerator as reference values for the absolute amount of the compressor load. 圧縮機負荷の絶対量の基準値として、冷蔵庫の使用上最大となる負荷の値から単一の基準値を設定したことを特徴とする請求項1記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein a single reference value is set as a reference value for the absolute amount of the compressor load from a load value that is maximum in use of the refrigerator. 過電流による異常停止を所定回数繰り返した場合を圧縮機の異常運転と判定することを特徴とする請求項2記載の冷蔵庫。   The refrigerator according to claim 2, wherein a case where the abnormal stop due to overcurrent is repeated a predetermined number of times is determined as an abnormal operation of the compressor. 切替弁の切り替えで圧縮機負荷が変化しない場合を圧縮機の異常運転と判定することを特徴とする請求項2記載の冷蔵庫。     The refrigerator according to claim 2, wherein a case where the compressor load does not change due to switching of the switching valve is determined as an abnormal operation of the compressor.
JP2004151086A 2004-05-20 2004-05-20 Refrigerator Pending JP2005331187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151086A JP2005331187A (en) 2004-05-20 2004-05-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151086A JP2005331187A (en) 2004-05-20 2004-05-20 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005331187A true JP2005331187A (en) 2005-12-02

Family

ID=35485973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151086A Pending JP2005331187A (en) 2004-05-20 2004-05-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005331187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127218A (en) * 2008-11-28 2010-06-10 Panasonic Corp Compressor
WO2010092625A1 (en) * 2009-02-12 2010-08-19 パナソニック株式会社 Refrigerator
WO2017104929A1 (en) * 2015-12-16 2017-06-22 삼성전자 주식회사 Refrigerator, operation method of refrigerator, and computer-readable recording medium
WO2022091243A1 (en) * 2020-10-28 2022-05-05 三菱電機株式会社 Refrigerator
WO2023002520A1 (en) * 2021-07-19 2023-01-26 三菱電機株式会社 Refrigeration cycle device and refrigeration air-conditioning device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127218A (en) * 2008-11-28 2010-06-10 Panasonic Corp Compressor
WO2010092625A1 (en) * 2009-02-12 2010-08-19 パナソニック株式会社 Refrigerator
EP2397797A1 (en) * 2009-02-12 2011-12-21 Panasonic Corporation Refrigerator
CN102317713A (en) * 2009-02-12 2012-01-11 松下电器产业株式会社 Refrigerator
EP2397797A4 (en) * 2009-02-12 2014-07-23 Panasonic Corp Refrigerator
WO2017104929A1 (en) * 2015-12-16 2017-06-22 삼성전자 주식회사 Refrigerator, operation method of refrigerator, and computer-readable recording medium
WO2022091243A1 (en) * 2020-10-28 2022-05-05 三菱電機株式会社 Refrigerator
JPWO2022091243A1 (en) * 2020-10-28 2022-05-05
JP7387024B2 (en) 2020-10-28 2023-11-27 三菱電機株式会社 refrigerator
WO2023002520A1 (en) * 2021-07-19 2023-01-26 三菱電機株式会社 Refrigeration cycle device and refrigeration air-conditioning device

Similar Documents

Publication Publication Date Title
JP3999961B2 (en) refrigerator
US20050086952A1 (en) Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
JP3708405B2 (en) Home appliances using flammable refrigerants
JP6689413B2 (en) Cooling warehouse
TW574493B (en) Refrigerator
JP2005090925A (en) Refrigerant leakage detecting device and refrigerator using the same
JP2007205681A (en) Refrigerator
JP2005331187A (en) Refrigerator
JP4141671B2 (en) refrigerator
JP2014089021A (en) Freezing apparatus
JP2005207666A (en) Refrigerator
JPH11211293A (en) Refrigerator
JP2003042655A (en) Refrigerator
JP2004286315A (en) Safety device of refrigerating circuit
JP2003207244A (en) Refrigerator
JP2001336869A (en) Freezer/refrigerator
JP2003090654A (en) Refrigerator
JP4165373B2 (en) vending machine
JP2003214743A (en) Refrigerator
JP4425104B2 (en) refrigerator
JP2003214734A (en) Control device of refrigerator and refrigerant leakage determination method for refrigerator
JP2004125215A (en) Refrigerator
JP3712126B2 (en) Freezer refrigerator
JP2000088407A (en) Refrigeration apparatus
JP2004286392A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Effective date: 20090127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A02