JP2024054993A - Thermosetting resin composition, bulk molding compound and molded product thereof - Google Patents

Thermosetting resin composition, bulk molding compound and molded product thereof Download PDF

Info

Publication number
JP2024054993A
JP2024054993A JP2022161521A JP2022161521A JP2024054993A JP 2024054993 A JP2024054993 A JP 2024054993A JP 2022161521 A JP2022161521 A JP 2022161521A JP 2022161521 A JP2022161521 A JP 2022161521A JP 2024054993 A JP2024054993 A JP 2024054993A
Authority
JP
Japan
Prior art keywords
thermosetting resin
parts
mass
resin composition
molding compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022161521A
Other languages
Japanese (ja)
Inventor
建業 蒋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2022161521A priority Critical patent/JP2024054993A/en
Priority to CN202311260724.5A priority patent/CN117844215A/en
Publication of JP2024054993A publication Critical patent/JP2024054993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】流動性、射出成形性、圧縮成形性に優れ、熱伝導性に優れる成形品を得ることのできる熱硬化性樹脂組成物、バルクモールディングコンパウンド及びその成形品を提供することである。【解決手段】熱硬化性樹脂(A)、低収縮化剤(B)、増粘剤(C)、熱伝導性フィラー(D)、及び補強材(E)を含有する熱硬化性樹脂組成物であって、前記熱硬化性樹脂(A)が、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)を含有するものであり、前記増粘剤(C)が、アクリル樹脂粒子(c1)及び酸化マグネシウム(c2)を含有するものであることを特徴とする熱硬化性樹脂組成物を用いる。【選択図】なし[Problem] To provide a thermosetting resin composition that can give molded articles with excellent flowability, injection moldability, and compression moldability, and excellent thermal conductivity, a bulk molding compound, and a molded article thereof. [Solution] A thermosetting resin composition containing a thermosetting resin (A), a shrinkage reducing agent (B), a thickener (C), a thermally conductive filler (D), and a reinforcing material (E), wherein the thermosetting resin (A) contains an unsaturated polyester resin (a1) and a vinyl ester resin (a2), and the thickener (C) contains acrylic resin particles (c1) and magnesium oxide (c2), is used. [Selected Figure] None

Description

本発明は、熱硬化性樹脂組成物、バルクモールディングコンパウンド及びその成形品に関する。 The present invention relates to a thermosetting resin composition, a bulk molding compound, and a molded article made therefrom.

不飽和ポリエステル樹脂、ビニルエステル樹脂等の熱硬化性樹脂に、低収縮剤、禁止剤、硬化剤、充填材、離型剤、強化材等を加えて、混練機で混練した熱硬化性樹脂組成物は、電気絶縁性、耐熱性、難燃性、高剛性、寸法安定性等の利点があるため、家電、自動車やエネルギー分野等に関連する電子部品へ広く応用されている。前記熱硬化性樹脂組成物の中でも、バルク状にしたバルクモールディングコンパウンド(以下、「BMC」と略記することがある。)は、圧縮成形、トランスファー成形、射出成形等の成形方法により、成形品にすることができる。 Thermosetting resin compositions, which are made by adding low-shrinkage agents, inhibitors, curing agents, fillers, release agents, reinforcing materials, etc. to thermosetting resins such as unsaturated polyester resins and vinyl ester resins and kneading them in a kneader, have advantages such as electrical insulation, heat resistance, flame retardancy, high rigidity, and dimensional stability, and are therefore widely used in electronic parts related to home appliances, automobiles, and the energy field. Among the thermosetting resin compositions, bulk molding compounds (hereinafter sometimes abbreviated as "BMC") made into bulk form can be made into molded products by molding methods such as compression molding, transfer molding, and injection molding.

近年、電子部品は、高出力(高密度化)、小型化(軽量化)が進んでいるため、電子部品内部に発生した熱が蓄積され、この熱による電子部品出力低下、寿命短縮等の課題を抱えている。 In recent years, electronic components have become more powerful (higher density) and smaller (lighter weight), which causes heat to build up inside the components, resulting in issues such as reduced output and shorter life spans.

このような中、BMC成形品には優れた放熱性が求められており、熱伝導性フィラーを用いた熱硬化性樹脂組成物が提案されている(例えば、特許文献1参照。)。しかしながら、この樹脂組成物から得られる成形材料は、フィラーの高充填化により熱伝導性は向上する一方、流動性が不十分である場合があり、射出成形性に劣る問題があった。 In this situation, BMC molded products are required to have excellent heat dissipation properties, and thermosetting resin compositions using thermally conductive fillers have been proposed (see, for example, Patent Document 1). However, while the molding material obtained from this resin composition has improved thermal conductivity due to the high filler loading, it may have insufficient fluidity and suffer from poor injection moldability.

特開2020-132737号公報JP 2020-132737 A

本発明が解決しようとする課題は、流動性、射出成形性、圧縮成形性に優れ、熱伝導性に優れる成形品を得ることのできる熱硬化性樹脂組成物、バルクモールディングコンパウンド及びその成形品を提供することである。 The problem that the present invention aims to solve is to provide a thermosetting resin composition, a bulk molding compound, and a molded article thereof that have excellent flowability, injection moldability, and compression moldability, and that can produce molded articles with excellent thermal conductivity.

本発明者等は、上記の課題を解決するため鋭意研究した結果、特定の熱硬化性樹脂、低収縮化剤、特定の増粘剤、熱伝導性フィラー、及び補強材を含有する熱硬化性樹脂組成物は、上記課題を解決することを見出し、本発明を完成させた。 As a result of intensive research into solving the above problems, the inventors have discovered that a thermosetting resin composition containing a specific thermosetting resin, a shrinkage reducing agent, a specific thickener, a thermally conductive filler, and a reinforcing material solves the above problems, and have completed the present invention.

すなわち、本発明は、熱硬化性樹脂(A)、低収縮化剤(B)、増粘剤(C)、熱伝導性フィラー(D)、及び補強材(E)を含有する熱硬化性樹脂組成物であって、前記熱硬化性樹脂(A)が、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)を含有するものであり、前記増粘剤(C)が、アクリル樹脂粒子(c1)及び酸化マグネシウム(c2)を含有するものであることを特徴とする熱硬化性樹脂組成物を提供するものである。 That is, the present invention provides a thermosetting resin composition containing a thermosetting resin (A), a shrinkage reducing agent (B), a thickener (C), a thermally conductive filler (D), and a reinforcing material (E), characterized in that the thermosetting resin (A) contains an unsaturated polyester resin (a1) and a vinyl ester resin (a2), and the thickener (C) contains acrylic resin particles (c1) and magnesium oxide (c2).

本発明の熱硬化性樹脂組成物は、流動性、射出成形性、圧縮成形性に優れ、また、熱伝導性に優れる成形品を得られることから、家電、自動車等に用いられる電気・電子部品の支持体、電気自動車用モーター封止材、PC・スマートフォン等通信機器の筐体、各種センサー部品、電気自動車バッテリー保持体、LEDランプのヒートシンク等に非常に有用である。 The thermosetting resin composition of the present invention has excellent flowability, injection moldability, and compression moldability, and can be used to obtain molded products with excellent thermal conductivity. Therefore, it is very useful for applications such as supports for electric and electronic parts used in home appliances and automobiles, motor sealants for electric vehicles, housings for communication devices such as PCs and smartphones, various sensor parts, battery holders for electric vehicles, and heat sinks for LED lamps.

本発明の熱硬化性樹脂組成物は、熱硬化性樹脂(A)、低収縮化剤(B)、増粘剤(C)、熱伝導性フィラー(D)、及び補強材(E)を含有する熱硬化性樹脂組成物であって、前記熱硬化性樹脂(A)が、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)を含有するものであり、前記増粘剤(C)が、アクリル樹脂粒子(c1)及び酸化マグネシウム(c2)を含有するものである。 The thermosetting resin composition of the present invention is a thermosetting resin composition containing a thermosetting resin (A), a shrinkage reducing agent (B), a thickener (C), a thermally conductive filler (D), and a reinforcing material (E), in which the thermosetting resin (A) contains an unsaturated polyester resin (a1) and a vinyl ester resin (a2), and the thickener (C) contains acrylic resin particles (c1) and magnesium oxide (c2).

前記熱硬化性樹脂(A)は、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)を含有するものであるが、流動性及び射出成形性がより向上することから、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)の質量比(a1/a2)は、90/10~30/70が好ましく、70/30~50/50がより好ましい。 The thermosetting resin (A) contains an unsaturated polyester resin (a1) and a vinyl ester resin (a2). In order to improve flowability and injection moldability, the mass ratio (a1/a2) of the unsaturated polyester resin (a1) and the vinyl ester resin (a2) is preferably 90/10 to 30/70, and more preferably 70/30 to 50/50.

前記熱硬化性樹脂(A)には、不飽和ポリエステル樹脂(a1)、ビニルエステル樹脂(a2)以外の熱硬化性樹脂を含有することもできる。 The thermosetting resin (A) may contain a thermosetting resin other than the unsaturated polyester resin (a1) and the vinyl ester resin (a2).

本発明の熱硬化性樹脂組成物は、熱硬化性樹脂(A)及び低収縮化剤(B)を必須成分とする樹脂成分を含有するものであるが、成形収縮率とその他の物性のバランスから、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の質量比(A/B)は、95/5~50/50が好ましく、90/10~70/30がより好ましい。 The thermosetting resin composition of the present invention contains resin components that essentially include a thermosetting resin (A) and a low-shrinkage agent (B). In view of the balance between the molding shrinkage rate and other physical properties, the mass ratio (A/B) of the thermosetting resin (A) and the low-shrinkage agent (B) is preferably 95/5 to 50/50, and more preferably 90/10 to 70/30.

前記低収縮化剤(B)は、熱硬化性樹脂組成物の硬化収縮を抑制するために配合するものであるが、例えば、ポリメチルメタクリレート、ポリスチレン、飽和ポリエステル、スチレン-ブタジエン系ゴム、ポリ酢酸ビニル等が挙げられる。これらの低収縮化剤は、1種で用いることも2種以上併用することもできる。 The shrinkage reducing agent (B) is added to suppress the cure shrinkage of the thermosetting resin composition, and examples of such agents include polymethyl methacrylate, polystyrene, saturated polyester, styrene-butadiene rubber, polyvinyl acetate, etc. These shrinkage reducing agents can be used alone or in combination of two or more.

前記増粘剤(C)は、アクリル樹脂粒子(c1)及び酸化マグネシウム(c2)を含有するものであるが、これらを併用することにより、後述するBMCの流動性が良くなり、射出成形性(計量性)、射出成形性(充填性)の確保ができる。 The thickener (C) contains acrylic resin particles (c1) and magnesium oxide (c2). By using these in combination, the fluidity of the BMC (described below) is improved, and injection moldability (measurement ability) and injection moldability (filling ability) can be ensured.

前記アクリル樹脂粒子(c1)は特に限定されないが、BMCの流動性が良くなり、射出成形性(計量性)、射出成形性(充填性)をより向上することから、平均粒子径が0.1~8μmが好ましく、0.1~3μmがより好ましい。なお、本発明において、アクリル樹脂粒子の平均粒子径は動的光散乱法で測定したものである。 The acrylic resin particles (c1) are not particularly limited, but the average particle size is preferably 0.1 to 8 μm, and more preferably 0.1 to 3 μm, because this improves the fluidity of the BMC and further improves the injection moldability (measurement ability) and injection moldability (filling ability). In the present invention, the average particle size of the acrylic resin particles is measured by dynamic light scattering.

前記アクリル樹脂粒子(c1)は、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、1~20質量部が好ましく、1~10質量部がより好ましい。 The amount of the acrylic resin particles (c1) is preferably 1 to 20 parts by mass, and more preferably 1 to 10 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the shrinkage reducing agent (B) combined.

前記酸化マグネシウム(c2)は、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、0.05~5質量部が好ましく、0.1~2質量部がより好ましい。 The amount of the magnesium oxide (c2) is preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the shrinkage reducing agent (B) combined.

前記熱伝導性フィラー(D)としては、例えば、銀、銅、アルミニウム、鉄、ステンレス等の金属系フィラー;アルミナ、マグネシア、ベリリア、シリカ、窒化ホウ素、窒化アルミニウム、炭化ケイ素、炭化ホウ素、炭化チタン等の無機系フィラー;ダイヤモンド、黒鉛、グラファイト、炭素繊維等の炭素系フィラーなどが挙げられる。これらの中でも、熱伝導性向上と軽量化の観点から、炭素系フィラーが好ましく、黒鉛がより好ましい。これらの熱伝導性フィラーは、単独で用いることも、2種以上を併用することもできる。 Examples of the thermally conductive filler (D) include metal-based fillers such as silver, copper, aluminum, iron, and stainless steel; inorganic fillers such as alumina, magnesia, beryllia, silica, boron nitride, aluminum nitride, silicon carbide, boron carbide, and titanium carbide; and carbon-based fillers such as diamond, graphite, and carbon fiber. Among these, carbon-based fillers are preferred, and graphite is more preferred, from the viewpoints of improving thermal conductivity and reducing weight. These thermally conductive fillers can be used alone or in combination of two or more types.

前記熱伝導性フィラー(D)は、本発明の熱硬化性樹脂組成物の流動性及び成形品の熱伝導性向上の観点から、粒子状のものが好ましく、その平均粒径は、10~500μmが好ましく、30~400μmがより好ましい。 From the viewpoint of improving the flowability of the thermosetting resin composition of the present invention and the thermal conductivity of the molded product, the thermally conductive filler (D) is preferably particulate, and its average particle size is preferably 10 to 500 μm, and more preferably 30 to 400 μm.

前記熱伝導性フィラー(D)は、流動性及び射出成形性と熱伝導性のバランスがより向上することから、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、100~500質量部が好ましく、150~350質量部がより好ましい。 The thermally conductive filler (D) is preferably present in an amount of 100 to 500 parts by mass, more preferably 150 to 350 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the low shrinkage agent (B) in total, because this improves the balance between fluidity, injection moldability, and thermal conductivity.

前記補強材(E)としては、例えば、ガラス繊維、ビニロン繊維、フェノール繊維、炭素繊維、ポリエステル繊維等の繊維状の材料が挙げられる。これらの中でも、入手容易性、BMC低流動性、及びBMC成形品強度物性向上の観点からガラス繊維が好ましい。このガラス繊維は、ガラスチョップドストランド、ミルドガラス等のいずれのものも用いることができる。BMCの流動性が良くなり、射出成形性(計量性)、射出成形性(充填性)またBMC成形品の物性をより向上することから、繊維長1.5~12mmのものが用いられるが好ましく、1.5~9mmのものがより好ましい。 Examples of the reinforcing material (E) include fibrous materials such as glass fiber, vinylon fiber, phenol fiber, carbon fiber, and polyester fiber. Among these, glass fiber is preferred from the viewpoints of availability, low BMC fluidity, and improved strength properties of BMC molded products. Any glass fiber such as glass chopped strands or milled glass can be used. Since this improves the fluidity of the BMC and further improves injection moldability (measurement ability), injection moldability (filling ability), and the physical properties of the BMC molded products, a fiber length of 1.5 to 12 mm is preferably used, and 1.5 to 9 mm is more preferred.

前記補強材の配合量は、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、10~80質量部が好ましく、15~50質量部がより好ましい。 The amount of the reinforcing material is preferably 10 to 80 parts by mass, and more preferably 15 to 50 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the shrinkage reducing agent (B) combined.

本発明の熱硬化性樹脂組成物には、上記の成分(A)~(E)以外に、本発明の効果を損なわない範囲で、熱可塑性樹脂、重合禁止剤、硬化剤、硬化促進剤、分散剤、離型剤、、顔料、着色剤、消泡剤等を配合してもよい。 In addition to the above components (A) to (E), the thermosetting resin composition of the present invention may contain thermoplastic resins, polymerization inhibitors, curing agents, curing accelerators, dispersants, release agents, pigments, colorants, defoamers, etc., within the scope of the invention.

前記重合禁止剤としては、例えば、トルハイドロキノン、ハイドロキノン、ハイドロキノンモノメチルエーテル、1,4-ナフトキノン、パラベンゾキノン、p-t-ブチルカテコール、2,6-t-ブチル-4-メチルフェノール等が挙げられる。本発明の熱硬化性樹脂組成物に重合禁止剤を配合する際の配合量は、本発明の熱硬化性樹脂組成物中10~1500ppmの範囲が好ましい。 Examples of the polymerization inhibitor include toluhydroquinone, hydroquinone, hydroquinone monomethyl ether, 1,4-naphthoquinone, parabenzoquinone, p-t-butylcatechol, 2,6-t-butyl-4-methylphenol, etc. When a polymerization inhibitor is blended into the thermosetting resin composition of the present invention, the blending amount is preferably in the range of 10 to 1500 ppm in the thermosetting resin composition of the present invention.

前記硬化剤としては、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド系有機過酸化物、パーオキシエステル系有機過酸化物、ハイドロパーオキサイド系有機過酸化物、ジアルキルパーオキサイド系有機過酸化物、ケトンパーオキサイド系有機過酸化物、パーオキシケタール系有機過酸化物、アルキルパーエステル系有機過酸化物、パーカーボネート系有機過酸化物等が挙げられる。なお、これらの硬化剤は、単独で用いることも、2種以上併用することもできる。 The curing agent is preferably an organic peroxide, such as diacyl peroxide-based organic peroxides, peroxyester-based organic peroxides, hydroperoxide-based organic peroxides, dialkyl peroxide-based organic peroxides, ketone peroxide-based organic peroxides, peroxyketal-based organic peroxides, alkyl perester-based organic peroxides, and percarbonate-based organic peroxides. These curing agents can be used alone or in combination of two or more.

前記硬化剤の配合量は、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、0.5~5質量部が好ましく、1~3質量部がより好ましい。 The amount of the curing agent is preferably 0.5 to 5 parts by mass, and more preferably 1 to 3 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the low shrinkage agent (B) combined.

前記離型剤は、本発明の熱硬化性樹脂組成物を、金型を用いて成形した後、金型から得られた成形品の取り出しを容易にするためのものである。前記離型剤としては、例えば、不飽和脂肪酸アミド系離型剤、ポリエチレンワックス系離型剤、金属石鹸系離型剤、シリコーン系離型剤、フッ素系離型剤等が挙げられる。また、前記金属石鹸系離型剤としては、例えば、ラウリル酸亜鉛、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ミリスチン酸亜鉛、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸アルミニウム、ベヘン酸カルシウム、ベヘン酸マグネシウム、ベヘン酸亜鉛等が挙げられる。なお、これらの離型剤は、単独で用いることも、2種以上併用することもできる。 The release agent is intended to facilitate removal of the molded product obtained by molding the thermosetting resin composition of the present invention using a mold. Examples of the release agent include unsaturated fatty acid amide-based release agents, polyethylene wax-based release agents, metal soap-based release agents, silicone-based release agents, and fluorine-based release agents. Examples of the metal soap-based release agents include zinc laurate, calcium laurate, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, zinc myristate, calcium montanate, zinc montanate, aluminum montanate, calcium behenate, magnesium behenate, and zinc behenate. These release agents can be used alone or in combination of two or more.

前記離型剤の配合量は、前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、1~10質量部が好ましく、3~8質量部がより好ましい。 The amount of the release agent is preferably 1 to 10 parts by mass, and more preferably 3 to 8 parts by mass, per 100 parts by mass of the thermosetting resin (A) and the shrinkage reducing agent (B) combined.

本発明の熱硬化性樹脂組成物は、上記の各成分をニーダー等の混練機を用いて混練することにより製造することができる。また、得られる樹脂組成物がバルク状になるように、配合組成を調整することで、バルクモールディングコンパウンド(BMC)とすることができる。 The thermosetting resin composition of the present invention can be produced by kneading the above-mentioned components using a kneader or other kneading machine. In addition, by adjusting the compounding composition so that the resulting resin composition is in a bulk form, it can be made into a bulk molding compound (BMC).

本発明の熱硬化性樹脂組成物をBMCとすることで、圧縮成形、トランスファー成形、射出成形等の成形方法により、容易に成形品にすることができる。 By using the thermosetting resin composition of the present invention as a BMC, it can be easily made into a molded product by molding methods such as compression molding, transfer molding, and injection molding.

以下に実施例により本発明をより具体的に説明する。なお、樹脂の酸価は、JIS K6901に準拠し測定した。 The present invention will be explained in more detail below with reference to the following examples. The acid value of the resin was measured in accordance with JIS K6901.

(製造例1:不飽和ポリエステル樹脂(a1)の合成)
窒素ガス導入管、温度計、還流コンデンサ、攪拌機を備えた2Lのガラス製フラスコに、ネオペンチルグリコール206質量部、プロピレングリコール53質量部、水素化ビスフェノールA 266質量部、イソフタル酸288質量部を仕込み窒素気流下、加熱を開始した。内温215℃、常法にて脱水縮合反応を行い、固形分酸価が6(mgKOH/g)になったところで、190℃まで冷却した。次いで、マレイン酸198質量部を添加し脱水縮合反応を継続し、固形分酸価28(mgKOH/g)になったところで、トルハイドロキノン0.4質量部を添加した。不飽和ポリエステル濃度が65質量%となるようスチレンモノマーに溶解させ、不飽和ポリエステル樹脂(a1)を得た。
(Production Example 1: Synthesis of Unsaturated Polyester Resin (a1))
A 2L glass flask equipped with a nitrogen gas inlet tube, a thermometer, a reflux condenser, and a stirrer was charged with 206 parts by mass of neopentyl glycol, 53 parts by mass of propylene glycol, 266 parts by mass of hydrogenated bisphenol A, and 288 parts by mass of isophthalic acid, and heating was started under a nitrogen stream. At an internal temperature of 215°C, a dehydration condensation reaction was carried out in a conventional manner, and when the solid acid value became 6 (mgKOH/g), the reaction was cooled to 190°C. Next, 198 parts by mass of maleic acid was added to continue the dehydration condensation reaction, and when the solid acid value became 28 (mgKOH/g), 0.4 parts by mass of toluhydroquinone was added. The unsaturated polyester was dissolved in styrene monomer so that the concentration of the unsaturated polyester was 65% by mass, and an unsaturated polyester resin (a1) was obtained.

(製造例2:ビニルエステル樹脂(a2)の合成)
窒素導入管、温度計、撹拌機を設けた2Lフラスコに、エポキシ樹脂(DIC株式会社製「エピクロン860-C」、ビスフェノールA型エポキシ樹脂、エポキシ当量240)246質量部、エポキシ樹脂(DIC株式会社製「エピクロン1050」、ビスフェノールA型エポキシ樹脂、エポキシ当量470)730質量部、メタクリル酸215質量部、及びジブチルヒドロキシトルエン0.45質量部添加し、窒素と空気とを1対1で混合したガス流通下で、100℃まで昇温した。ここに2-メチルイミダゾール0.96質量部を添加し、110℃まで昇温し、反応を行った。固形分酸価が6(mgKOH/g)以下になったところで、トルハイドロキノン0.46質量部を添加し、ビニルエステル濃度が70質量%となるようスチレンモノマーに溶解させ、ビニルエステル樹脂(a2)を得た。
(Production Example 2: Synthesis of vinyl ester resin (a2))
In a 2L flask equipped with a nitrogen inlet tube, a thermometer, and a stirrer, 246 parts by mass of epoxy resin (DIC Corporation's "Epicron 860-C", bisphenol A type epoxy resin, epoxy equivalent 240), 730 parts by mass of epoxy resin (DIC Corporation's "Epicron 1050", bisphenol A type epoxy resin, epoxy equivalent 470), 215 parts by mass of methacrylic acid, and 0.45 parts by mass of dibutylhydroxytoluene were added, and the temperature was raised to 100 ° C. under a gas flow in which nitrogen and air were mixed in a ratio of 1:1. 0.96 parts by mass of 2-methylimidazole was added thereto, and the temperature was raised to 110 ° C. to carry out the reaction. When the solid acid value became 6 (mgKOH / g) or less, 0.46 parts by mass of toluhydroquinone was added, and the vinyl ester concentration was dissolved in styrene monomer to 70 mass%, to obtain a vinyl ester resin (a2).

(製造例3:低収縮化剤(B)の製造)
窒素導入管、温度計、撹拌機を設けた2Lフラスコに、スチレンモノマー900質量部、ポリスチレン(DIC株式会社製「ディックスチレンCR-3500」)600質量部、トルハイドロキノン0.25質量部を添加し、窒素ガスを流通下で、50℃まで昇温した。熱可塑性樹脂ポリスチレンを完全に溶融するまで撹拌、その後40℃以下に降温し、ポリスチレン濃度40質量%の低収縮化剤(B)を得た。
(Production Example 3: Production of Low Profile Agent (B))
A 2 L flask equipped with a nitrogen inlet tube, a thermometer, and a stirrer was charged with 900 parts by mass of styrene monomer, 600 parts by mass of polystyrene (DIC Corporation's "DIC Styrene CR-3500"), and 0.25 parts by mass of toluhydroquinone, and the temperature was raised to 50° C. under a nitrogen gas flow. The thermoplastic resin polystyrene was stirred until completely melted, and then the temperature was lowered to 40° C. or lower, to obtain a low shrinkage agent (B) with a polystyrene concentration of 40% by mass.

(実施例1:熱硬化性樹脂組成物(1)の調製)
製造例1で得られた不飽和ポリエステル樹脂(a1)50質量部、製造例2で得られたビニルエステル樹脂(a2)30質量部、製造例3で得られたポリスチレン低収縮化剤(B)20質量部、アクリル樹脂粒子(c1)(アイカ工業株式会社製「ゼフィアックF303」;平均粒径2μm)5質量部、酸化マグネシウム(c2)(協和化学工業株式会社製「キョーワマグ40」)0.5質量部、硬化剤(1)(日油株式会社製「パーブチルO」;パーオキシエステル系有機過酸化物)0.6質量部、硬化剤(2)(日油株式会社製「パーブチルZ」;パーオキシエステル系有機過酸化物)1.2質量部、離型剤(1)(堺化学工業株式会社製「ステアリン酸亜鉛」)4質量部、離型剤(2)(日油株式会社製「カルシウムステアレート」)1.2質量部、黒鉛粉末(D1)(伊藤黒鉛工業株式会社製「AGB-32」;平均粒径200~300μm)100質量部、及び黒鉛粉末(D2)(伊藤黒鉛工業株式会社製「AGB-100」;平均粒径110μm)160質量部を、プラネタリーミキサーを用いて9分間混練した後、補強材(E)(ガラス繊維/チョップドストランド;重慶国際複合材料有限公司製「ECS404-6」;繊維長6mm)33質量部を加えて、さらに6分間混練することで、バルク状物を得た。得られたバルク状物をアルミ蒸着フィルムで梱包し、40℃恒温槽中に12時間放置し、BMCとして、熱硬化性樹脂組成物(1)を得た。
(Example 1: Preparation of thermosetting resin composition (1))
50 parts by mass of unsaturated polyester resin (a1) obtained in Production Example 1, 30 parts by mass of vinyl ester resin (a2) obtained in Production Example 2, 20 parts by mass of polystyrene shrinkage reducing agent (B) obtained in Production Example 3, 5 parts by mass of acrylic resin particles (c1) ("Zefiac F303" manufactured by AICA Corporation; average particle size 2 μm), 0.5 parts by mass of magnesium oxide (c2) ("Kyowamag 40" manufactured by Kyowa Chemical Industry Co., Ltd.), 0.6 parts by mass of curing agent (1) ("Perbutyl O" manufactured by NOF Corporation; peroxyester-based organic peroxide), 1.2 parts by mass of curing agent (2) ("Perbutyl Z" manufactured by NOF Corporation; peroxyester-based organic peroxide), and a release agent (1) ("zinc stearate" manufactured by Sakai Chemical Industry Co., Ltd.) 4 parts by mass, release agent (2) ("calcium stearate" manufactured by NOF Corporation) 1.2 parts by mass, graphite powder (D1) ("AGB-32" manufactured by Ito Graphite Industry Co., Ltd.; average particle size 200 to 300 μm) 100 parts by mass, and graphite powder (D2) ("AGB-100" manufactured by Ito Graphite Industry Co., Ltd.; average particle size 110 μm) 160 parts by mass were kneaded for 9 minutes using a planetary mixer, and then 33 parts by mass of reinforcing material (E) (glass fiber / chopped strand; "ECS404-6" manufactured by Chongqing International Composite Materials Co., Ltd.; fiber length 6 mm) were added and kneaded for another 6 minutes to obtain a bulk-like material. The obtained bulk-like material was packed in an aluminum deposition film and left in a 40 ° C. constant temperature bath for 12 hours, and a thermosetting resin composition (1) was obtained as BMC.

(実施例2~5)
表1に示した配合組成に変更した以外は実施例1と同様にして、BMCとして、熱硬化性樹脂組成物(2)~(5)を得た。
(Examples 2 to 5)
Thermosetting resin compositions (2) to (5) were obtained as BMC in the same manner as in Example 1, except that the blending composition was changed to that shown in Table 1.

(比較例1~2)
表1に示した配合組成に変更した以外は実施例1と同様にして、BMCとして、熱硬化性樹脂組成物(R1)~(R2)を得た。
(Comparative Examples 1 to 2)
Thermosetting resin compositions (R1) to (R2) were obtained as BMC in the same manner as in Example 1, except that the blending composition was changed to that shown in Table 1.

上記の実施例1~5及び比較例1~2で得られた熱硬化性樹脂組成物(1)~(5)及び(R1)~(R2)を用いて、それぞれ下記の評価を行った。 The following evaluations were carried out using the thermosetting resin compositions (1) to (5) and (R1) to (R2) obtained in the above Examples 1 to 5 and Comparative Examples 1 to 2.

[流動性の評価]
上記で得られた熱硬化性樹脂組成物の初期粘度を測定した。粘度測定は、キャピラリー粘度計(細管型レオメータ)により以下の条件で行った。樹脂組成物投入量(サンプル量):75g、測定温度条件:50℃、押出速度:50mm/分、ノズル径:6mm、ノズル長さ:10mm
なお、高粘度のため測定できないものは、測定不可とした。
[Evaluation of Liquidity]
The initial viscosity of the thermosetting resin composition obtained above was measured. The viscosity measurement was performed using a capillary viscometer (thin tube type rheometer) under the following conditions: resin composition input amount (sample amount): 75 g, measurement temperature conditions: 50° C., extrusion speed: 50 mm/min, nozzle diameter: 6 mm, nozzle length: 10 mm
In addition, those that could not be measured due to high viscosity were marked as not measurable.

[射出成形性(計量性)の評価]
上記で得られた熱硬化性樹脂組成物の所定量(75cm)について、所定時間(30秒間)で、スクリューにより材料庫(押込みホッパー)からシリンダーへの移動が可能な量を測定し、下記の基準により射出成形性(計量性)を評価した。
測定条件:押込め圧力5MPa、スクリュー回転数20rpm、押込みホッパーとシリンダー温度35℃
○:30秒未満で、75cm
△:30秒間で、40~75cm
×:30秒間で、40cm未満
[Evaluation of injection moldability (measureability)]
For a given amount (75 cm3 ) of the thermosetting resin composition obtained above, the amount that could be moved by the screw from the material storage (push-in hopper) to the cylinder in a given time (30 seconds) was measured, and the injection moldability (measurability) was evaluated according to the following criteria.
Measurement conditions: compression pressure 5 MPa, screw rotation speed 20 rpm, compression hopper and cylinder temperature 35°C
○: Less than 30 seconds, 75 cm3
△: 40 to 75 cm3 in 30 seconds
×: Less than 40 cm3 in 30 seconds

[射出成形性(充填性)の評価]
上記計量評価結果が○となった熱硬化性樹脂組成物について、流動性評価用金型を用い、射出成形を行い、成形品の外観を目視観察し、下記の基準により射出成形性(充填性)を評価した。
成形条件:金型温度160℃、型締力750kN、射出速度70mm/秒、硬化時間55秒
○:ショートなし、成形品表面にボイドなし
△:ショートなし、成形品表面にボイドあり
×:ショートあり、成形品表面にボイドあり
[Evaluation of injection moldability (filling ability)]
For the thermosetting resin compositions for which the above-mentioned weighing evaluation result was ◯, injection molding was performed using a mold for fluidity evaluation, and the appearance of the molded product was visually observed, and the injection moldability (filling property) was evaluated according to the following criteria.
Molding conditions: mold temperature 160°C, mold clamping force 750 kN, injection speed 70 mm/sec, curing time 55 sec. ◯: no shorts, no voids on the molded product surface △: no shorts, voids on the molded product surface ×: shorts, voids on the molded product surface

[圧縮成形性の評価]
上記で得られた熱硬化性樹脂組成物について、圧縮成形を行い、下記の基準により圧縮成形性を評価した。
成形条件:成形温度145℃、圧力10MPa、加圧時間300秒、金型220mm×220mm
○:厚み3mm、4mm、10mmの成形品全てでショートなし
△:厚み3mmの成形品でショートあり、4mm及び10mmの成形品でショートなし
×:厚み3mm及び4mmの成形品でショートあり、10mmの成形品でショートなし
[Evaluation of compression moldability]
The thermosetting resin composition obtained above was subjected to compression molding, and the compression moldability was evaluated according to the following criteria.
Molding conditions: Molding temperature 145°C, pressure 10 MPa, pressure time 300 seconds, mold 220 mm x 220 mm
○: No short circuit in any of the molded products with thicknesses of 3 mm, 4 mm, and 10 mm. △: Short circuit occurred in the molded product with a thickness of 3 mm, and no short circuit occurred in the molded products with a thickness of 4 mm and 10 mm. ×: Short circuit occurred in the molded products with thicknesses of 3 mm and 4 mm, and no short circuit occurred in the molded product with a thickness of 10 mm.

[熱伝導性の評価]
成形温度145℃、成形圧力10MPa、成形保圧時間300秒の条件で圧縮成形して、220mm×220mm×厚さ10mmの平板を作製し、熱線法(JIS R2616)に準拠し熱伝導率を測定し、熱伝導性を評価した。
[Evaluation of thermal conductivity]
The mixture was compression molded under conditions of a molding temperature of 145°C, a molding pressure of 10 MPa, and a molding pressure holding time of 300 seconds to prepare a flat plate of 220 mm x 220 mm x 10 mm thickness. The thermal conductivity was measured according to the hot wire method (JIS R2616) to evaluate the thermal conductivity.

上記で得られた熱硬化性樹脂組成物の組成及び評価結果を表1及び2に示す。 The composition and evaluation results of the thermosetting resin composition obtained above are shown in Tables 1 and 2.

Figure 2024054993000001
Figure 2024054993000001

Figure 2024054993000002
Figure 2024054993000002

表中の「黒鉛粉末(D3)」は、伊藤黒鉛工業株式会社製「AGB-604」(平均粒径55μm)である。 The "graphite powder (D3)" in the table is "AGB-604" (average particle size 55 μm) manufactured by Ito Graphite Industries Co., Ltd.

実施例1~5の本発明の熱硬化性樹脂組成物は、流動性、射出成形性、圧縮成形性に優れ、熱伝導性に優れる成形品を得られることが確認された。 It was confirmed that the thermosetting resin compositions of the present invention in Examples 1 to 5 have excellent flowability, injection moldability, and compression moldability, and can produce molded products with excellent thermal conductivity.

一方、比較例1は、不飽和ポリエステルを含有しない例であるが、流動性、射出成形性が不十分であることが確認された。 On the other hand, Comparative Example 1 is an example that does not contain unsaturated polyester, but it was confirmed that the flowability and injection moldability were insufficient.

比較例2は、ビニルエステルを含有しない例であるが、流動性、射出成形性が不十分であることが確認された。 Comparative Example 2 is an example that does not contain vinyl ester, but it was confirmed that the flowability and injection moldability were insufficient.

Claims (6)

熱硬化性樹脂(A)、低収縮化剤(B)、増粘剤(C)、熱伝導性フィラー(D)、及び補強材(E)を含有する熱硬化性樹脂組成物であって、前記熱硬化性樹脂(A)が、不飽和ポリエステル樹脂(a1)及びビニルエステル樹脂(a2)を含有するものであり、前記増粘剤(C)が、アクリル樹脂粒子(c1)及び酸化マグネシウム(c2)を含有するものであることを特徴とする熱硬化性樹脂組成物。 A thermosetting resin composition containing a thermosetting resin (A), a shrinkage reducing agent (B), a thickener (C), a thermally conductive filler (D), and a reinforcing material (E), characterized in that the thermosetting resin (A) contains an unsaturated polyester resin (a1) and a vinyl ester resin (a2), and the thickener (C) contains acrylic resin particles (c1) and magnesium oxide (c2). 前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、前記アクリル樹脂粒子(c1)が、1~20質量部であり、前記酸化マグネシウム(c2)が0.05~5質量部である請求項1記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the acrylic resin particles (c1) are 1 to 20 parts by mass and the magnesium oxide (c2) is 0.05 to 5 parts by mass per 100 parts by mass of the total of the thermosetting resin (A) and the low shrinkage agent (B). 前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、前記熱伝導性フィラー(D)が、100~500質量部である請求項1記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the thermally conductive filler (D) is 100 to 500 parts by mass per 100 parts by mass of the total of the thermosetting resin (A) and the low shrinkage agent (B). 前記熱硬化性樹脂(A)及び前記低収縮化剤(B)の合計100質量部に対して、前記補強材(E)が、10~80質量部である請求項1記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the reinforcing material (E) is 10 to 80 parts by mass per 100 parts by mass of the thermosetting resin (A) and the shrinkage reducing agent (B) combined. 請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物からなることを特徴とするバルクモールディングコンパウンド。 A bulk molding compound comprising the thermosetting resin composition according to any one of claims 1 to 4. 請求項5記載のバルクモールディングコンパウンドを用いて得られた成形品。 A molded article obtained using the bulk molding compound according to claim 5.
JP2022161521A 2022-10-06 2022-10-06 Thermosetting resin composition, bulk molding compound and molded product thereof Pending JP2024054993A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022161521A JP2024054993A (en) 2022-10-06 2022-10-06 Thermosetting resin composition, bulk molding compound and molded product thereof
CN202311260724.5A CN117844215A (en) 2022-10-06 2023-09-27 Thermosetting resin composition, bulk molding compound and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022161521A JP2024054993A (en) 2022-10-06 2022-10-06 Thermosetting resin composition, bulk molding compound and molded product thereof

Publications (1)

Publication Number Publication Date
JP2024054993A true JP2024054993A (en) 2024-04-18

Family

ID=90540766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022161521A Pending JP2024054993A (en) 2022-10-06 2022-10-06 Thermosetting resin composition, bulk molding compound and molded product thereof

Country Status (2)

Country Link
JP (1) JP2024054993A (en)
CN (1) CN117844215A (en)

Also Published As

Publication number Publication date
CN117844215A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP6346323B2 (en) Method for producing liquid crystal polyester composition
JP2019014785A (en) Liquid crystal polyester resin composition and molding
JP6025241B2 (en) Method for producing foam molded article and resin composition
TW200808860A (en) Liquid crystalling polymer composition and use thereof
JPWO2019098228A1 (en) Liquid crystal polyester composition and resin molded article
JP2011006542A (en) Unsaturated polyester resin composition and encapsulated motor
JP2008260830A (en) Heat-conductive resin composition
WO2018159387A1 (en) Crystalline radical-polymerizable composition for electric/electronic component, molded electric/electronic component obtained using said composition, and production method for said molded electric/electronic component
JP2009173855A (en) Thermosetting resin composition
JP2012122057A (en) Inorganic organic composite composition
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2024054993A (en) Thermosetting resin composition, bulk molding compound and molded product thereof
JP7205280B2 (en) Thermosetting resin composition, bulk molding compound, and molded article
JP2010285581A (en) Insulating resin composition
JP2011084657A (en) Thermosetting resin composition
JP2001226573A (en) Unsaturated polyester resin composition
JP2007146129A (en) Resin composition, method for producing tablet therefrom and molded article
JP5834725B2 (en) High heat dissipation polyarylene sulfide resin composition and molded article
JP2019131736A (en) Thermosetting resin composition, bulk molding compound and molded article thereof
JP2024005578A (en) Thermosetting resin composition, bulk molding compound and molded article thereof
JP4604716B2 (en) Composition for solid-state imaging device storage case, solid-state imaging device storage case, and solid-state imaging device
JP6251490B2 (en) Unsaturated polyester resin composition and slice table using the same
JP5322729B2 (en) Diallyl phthalate resin molding material
JP2004359712A (en) High heat-conducting member and method for producing the same
JP2020079358A (en) Thermosetting resin composition and cured product thereof