JP2024041026A - Face plane hydraulic support pedestal group state detection/description method - Google Patents

Face plane hydraulic support pedestal group state detection/description method Download PDF

Info

Publication number
JP2024041026A
JP2024041026A JP2023062009A JP2023062009A JP2024041026A JP 2024041026 A JP2024041026 A JP 2024041026A JP 2023062009 A JP2023062009 A JP 2023062009A JP 2023062009 A JP2023062009 A JP 2023062009A JP 2024041026 A JP2024041026 A JP 2024041026A
Authority
JP
Japan
Prior art keywords
support
hydraulic support
laser
target
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023062009A
Other languages
Japanese (ja)
Other versions
JP7429379B1 (en
Inventor
昭勝 孟
Zhaosheng Meng
慶良 曽
Qingliang Zeng
晨 馬
Chen Ma
麗栄 万
Lirong Wan
魁東 高
Kuidong Gao
▲しん▼ 張
Xin Zhang
青海 李
Qinghai Li
金海 趙
Jinhai Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Application granted granted Critical
Publication of JP7429379B1 publication Critical patent/JP7429379B1/en
Publication of JP2024041026A publication Critical patent/JP2024041026A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

To provide a face plane hydraulic support pedestal group state detection/description method which can enhance the accuracy of a position description with respect to a hydraulic support, and can secure the linearity of the position of a face plane hydraulic support group.SOLUTION: A face plane hydraulic support pedestal group detection/description method includes the steps of: setting an end-part hydraulic support as a reference as a whole, and setting a succeeding hydraulic support as an objective support with respect to a preceding adjacent hydraulic support; installing three monitoring points of D1, D2 and D3 at a side facing a camera of the preceding adjacent hydraulic support at a hydraulic support pedestal, making the D1, D2 and D3 not common in lines, incapable of forming an isosceles triangle, and making a line for connecting the D1 and D2 parallel with an edge line of the pedestal; imaging the monitoring points of the succeeding adjacent hydraulic supports by the camera, and transmitting the monitoring points to a processor; and analyzing coordinates of the monitoring points by the processor, and acquiring an objective hydraulic support pedestal space state.SELECTED DRAWING: Figure 19

Description

本発明は液圧支保位置姿勢検出分野に関し、特に切羽面液圧支保架台群状態検知記述方法に関する。 The present invention relates to the field of hydraulic support position/attitude detection, and more particularly to a method for detecting and describing the state of a group of hydraulic support gantry faces.

炭鉱総合採掘の自動化は無人化、省力化に進んでおり、より安全な採掘を実現するために、液圧支保の姿勢を監視し、軽微の場合は作業の進度に悪影響を与え作業効率を下げてしまい、深刻な場合は液圧支保が損壊し作業者の死傷を引き起こしてしまうなどの、液圧支保の誤動作による採掘への重大な安全上の事故や経済的損失を回避する必要がある。現在、液圧支保の天板、底板の姿勢検出にはすでに多くの監視方法が知られており、多くの場合、傾斜角センサやストラップダウン慣性航法などの方式が使用されているが、傾斜角センサを用いて天板、底板で液圧支保の姿勢や角度を検出する場合に、その傾斜角誤差が累積して増大し、さらに、傾斜角センサによる液圧支保の姿勢検出には、角度の急激な変化に対してひずみが生じ、かつ、精度が一般的に高くないなど、いくつかの課題が存在している。 Automation of coal mine comprehensive mining is progressing towards unmanned operation and labor saving, and in order to achieve safer mining, the posture of hydraulic support is monitored, and if there is a slight problem, it will adversely affect the progress of the work and reduce work efficiency. It is necessary to avoid serious safety accidents and economic losses to the mining industry due to hydraulic support malfunctions, such as damage to the hydraulic support and death or injury of workers in serious cases. Currently, many monitoring methods are already known for detecting the attitude of the top and bottom plates of hydraulic support, and in many cases, methods such as inclination angle sensors and strap-down inertial navigation are used. When using sensors to detect the attitude and angle of the hydraulic support using the top and bottom plates, the inclination angle error increases cumulatively. There are several issues, such as distortion occurring due to rapid changes and generally not having high accuracy.

本発明は、上記の問題を解決し、切羽面液圧支保架台群状態検知記述方法を提供することを目的とし、採用される技術的方案は以下のとおりである。 The present invention aims to solve the above-mentioned problems and provide a method for detecting and describing the condition of a face hydraulic support gantry group, and the technical solutions adopted are as follows.

切羽面液圧支保架台群状態検知記述方法であって、ここで、液圧支保架台に撮像装置が設けられており、前記撮像装置は隣接する液圧支保に向くカメラを含み、 A face hydraulic support cradle group state detection and description method, wherein the hydraulic support cradle is provided with an imaging device, the imaging device includes a camera facing an adjacent hydraulic support,

切羽面液圧支保架台群状態検知記述方法は、
端部の液圧支保を全体基準とし、先行の隣接する液圧支保に対して後続液圧支保を対象支保とし、後続の隣接する液圧支保に対して先行液圧支保を基準支保とし、X方向を基準支保の幅方向と、Y方向を基準支保の長さ方向と、Z方向を基準支保の作業高さ方向とそれぞれ定義するステップS1と、
The method for detecting and describing the condition of the face hydraulic support gantry group is as follows:
The hydraulic support at the end is the overall reference, the subsequent hydraulic support is the target support for the preceding adjacent hydraulic support, the preceding hydraulic support is the reference support for the subsequent adjacent hydraulic support, and Step S1 of defining the direction as the width direction of the standard support, the Y direction as the length direction of the standard support, and the Z direction as the working height direction of the standard support;

液圧支保架台(11)における、先行の隣接する液圧支保のカメラを向く側において、D1とD2とD3との3つの監視点を設置するステップであって、前記D1とD2とD3とは共線ではなく、二等辺三角形を形成することができず、D1とD2とを結ぶ線が架台のエッジラインに平行であるステップS2と、 A step of installing three monitoring points D1, D2, and D3 on the side facing the camera of the preceding and adjacent hydraulic supports in the hydraulic support frame (11), wherein the D1, D2, and D3 are step S2, in which the line connecting D1 and D2 is parallel to the edge line of the pedestal;

カメラによって後続の隣接する液圧支保の監視点を撮像し、撮像した画像をプロセッサに伝送するステップS3と、 Step S3 of imaging a monitoring point of a subsequent adjacent hydraulic support with a camera and transmitting the captured image to a processor;

プロセッサによって各監視点の座標を解析し、対象液圧支保架台空間状態を得るステップS4と、を含む。 The method includes a step S4 in which the processor analyzes the coordinates of each monitoring point to obtain the target hydraulic support frame space state.

上記の方案に基づいて、前記ステップS4において各監視点を解析することは、
01(D01x, D01y, D01z)、D02(D02x, D02y, D02z)、D03(D03x, D03y, D03z)が、基準支保におけるD1とD2とD3との3つの点の基準支保座標系Xでの座標であり、D11(D11x, D11y, D11z)、D12(D12x, D12y, D12z)、D13(D13x, D13y, D13z)が、対象支保におけるD1とD2とD3との3つの点のXでの座標であると想定して、ベクトルD0102、D0203の基準支保座標系Xでの法線ベクトルnを構築する場合、n0=0102×D0203となり、ベクトルD1112、D1213の基準支保座標系Xでの法線ベクトルnを構築する場合、n1=1112×D1213となるステップS4-1と、
Based on the above scheme, analyzing each monitoring point in step S4 includes:
D 01 (D 01x , D 01y , D 01z ), D 02 (D 02x , D 02y , D 02z ), and D 03 (D 03x , D 03y , D 03z ) are the same as D1, D2, and D3 in the standard support. The coordinates of the three points in the standard supporting coordinate system , D 13z ) are the coordinates at X 0 of the three points D1, D2 , and D3 on the target support, and the vectors D 01 D 02 , D 02 D 03 in the reference support coordinate system When constructing the normal vector n 0 of When constructing, step S4-1 where n 1 = D 11 D 12 ×D 12 D 13 ;

01を通りnをベクトル方向としてD4の点を構築する場合、基準支保座標系XでのベクトルはD04=n+D01となり、D11を通りnをベクトル方向としてD4’の点を構築する場合、基準支保座標系XでのベクトルはD14=n+D11となるステップS4-2と、 When constructing the point D4 through D 01 with n 0 as the vector direction, the vector in the standard supporting coordinate system When constructing a point, the vector in the reference supporting coordinate system X 0 is D 14 =n 1 +D 11 , step S4-2;

基準支保におけるD1、D2、D3、D4の点が回転(回転マトリックスRとし、回転軸をユーザの選択に応じてカスタマイズすると、Rは3×3マトリックスとなり、9つの未知量を含む。)してから並進(並進マトリックスSとし、Sは3×1マトリックスとなり、3つの未知量を含む。)し、対象支保における対応する点に変換可能であると定義し、基準支保におけるD1、D2、D3、D4の点と対象支保におけるD1、D2、D3、D4’の点との座標に基づいて、式(1)に示すマトリックスPとPを構築するステップS4-3と、 Points D1, D2, D3, and D4 on the reference support are rotated (If rotation matrix R1 is used and the rotation axis is customized according to the user's selection, R1 becomes a 3 × 3 matrix and contains nine unknown quantities.) Then, we define that it can be translated (translation matrix S 1 , S 1 is a 3 × 1 matrix and contains three unknown quantities), and can be converted to the corresponding point on the target support, D1 on the reference support, Step S4-3 of constructing matrices P 0 and P 1 shown in equation (1) based on the coordinates of points D2, D3, and D4 and points D1, D2, D3, and D4' on the target support;

式(2)のようにするステップであって、ここで、式(3)に示すようにTは4次マトリックスである場合に、対象支保における任意の点の座標D0mは、変換マトリックスTによって、その基準支保での座標D1mを、式(4)に示すように得るステップS4-4と、 The step is to do as shown in equation (2), where T is a quartic matrix as shown in equation (3), and the coordinates D 0m of any point on the target support are determined by the transformation matrix T. , a step S4-4 in which the coordinate D 1m at the reference support is obtained as shown in equation (4);

後続の各対象支保の架台状態を順次検知し、n番目支保におけるD0pの点とすると、その1番目支保におけるマッピング座標D (n-1)pは、式(5)に示すようになるステップS4-5と、を含む。
If the frame state of each subsequent target support is sequentially detected and the n-th support is set as a point D 0p , the mapping coordinate D (n-1)p of the first support becomes as shown in equation (5). S4-5.

上記の方案に基づいて、切羽面液圧支保架台群状態検知記述方法は、
端部の液圧支保を記述基準とし、端部の液圧支保架台の重心Dg1を中心とし、切羽面要件Ly及びLzを辺長とし、YOZ平面において記述平面を作成し、後続の各対象支保の座標を式(5)に従って記述平面にマッピングさせ、液圧支保架台空間の記述空間を形成し、各液圧支保のY方向及びZ方向の整列度合を観察するステップS5をさらに含む。
Based on the above scheme, the face hydraulic support gantry group status detection and description method is as follows:
Using the hydraulic support at the end as the description standard, centering on the center of gravity D g1 of the hydraulic support mount at the end, and using the face requirements Ly and Lz as the side lengths, create a description plane in the YOZ plane, and create a description plane for each subsequent object. The method further includes step S5 of mapping the coordinates of the supports to a description plane according to equation (5) to form a description space of the hydraulic support gantry space, and observing the degree of alignment of each hydraulic support in the Y direction and the Z direction.

好ましくは、カメラのY方向における撮像範囲は、対象支保推移ステップLpをカバーすると共に、Y方向における動き閾値±Δyを含み、カメラのX方向における撮像範囲は、X方向における動き閾値-Δx1と+Δx2とを含み、カメラのZ方向における撮像範囲は、Z方向における動き閾値±Δzを含む。 Preferably, the imaging range of the camera in the Y direction covers the target support transition step Lp and includes a motion threshold ±Δy in the Y direction, and the imaging range of the camera in the X direction covers the motion thresholds −Δx1 and +Δx2 in the X direction. The imaging range of the camera in the Z direction includes a motion threshold value ±Δz in the Z direction.

好ましくは、カメラの裏面にマークポイントが設けられており、基準支保のカメラによって対象支保におけるマークポイントを撮像した後、マークポイントの座標を解析したうえ、監視点の座標を解析する。 Preferably, a mark point is provided on the back side of the camera, and after the camera of the reference support images the mark point on the target support, the coordinates of the mark point are analyzed, and then the coordinates of the monitoring point are analyzed.

好ましくは、架台には、レーザ照射装置とレーザ受光装置とが設けられており、前記レーザ照射装置は、対象支保に向かって設けられたレーザ照射器を含み、前記レーザ照射器の円心位置において中心強光源が設けられ、中心強光源の外側において環状弱光源が周方向に沿って均等に配置され、前記中心強光源の半径がr1とし、環状弱光源のエッジ包絡線の包絡半径がr2とし、レーザ受光装置は、基準支保に向かって設けられた第1レーザ受光器を含み、前記第1レーザ受光器の円心位置において中心受光領域が設けられ、第1レーザ受光器の残りの領域においてレーザ受光モジュールが埋められ、前記中心受光領域の半径がr3とし、第1レーザ受光器の半径がr4とし、中心強光源のレーザを受光する際に、照射された中心受光領域及び/又はレーザ受光モジュールはハイレベル信号を発生し、環状弱光源のレーザを受光する際に、照射された中心受光領域及び/又はレーザ受光モジュールはローレベル信号を発生し、レーザが照射されていない際に、中心受光領域及びレーザ受光モジュールはレベル信号を発生しない。 Preferably, the pedestal is provided with a laser irradiation device and a laser light receiving device, and the laser irradiation device includes a laser irradiation device provided toward the target support, and the laser irradiation device includes a laser irradiation device provided at a center position of the laser irradiation device. A central strong light source is provided, annular weak light sources are arranged evenly along the circumferential direction outside the central strong light source, the radius of the central strong light source is r1, and the envelope radius of the edge envelope of the annular weak light source is r2. , the laser light receiving device includes a first laser receiver provided facing a reference support, a center light receiving area is provided at a circular center position of the first laser receiver, and a center light receiving area is provided in the remaining area of the first laser receiver. The laser light receiving module is buried, the radius of the center light receiving area is r3, the radius of the first laser receiver is r4, and when receiving the laser from the central strong light source, the irradiated center light receiving area and/or laser light receiving The module generates a high-level signal, and when receiving the laser of the annular weak light source, the illuminated center light-receiving area and/or the laser receiver module generates a low-level signal, and when the laser is not illuminated, the center The light receiving area and the laser light receiving module do not generate a level signal.

上記の方案に基づいて、対象支保空間状態を得た後、対象支保姿勢検出精度に対して誤差水準分類を行い、ここで、誤差水準分類を行うことは、 Based on the above scheme, after obtaining the target support space state, perform error level classification on the target support posture detection accuracy. Here, performing the error level classification is as follows:

対象支保に対する位置検出誤差Δと、L1水準閾値δ1(δ1=r1+r3)と、L2水準閾値δ2(δ2=r1+r4)と、L3水準閾値δ3(δ3=r2+r4)と、それぞれ定義するステップS6-1と、 Step S6-1 of defining the position detection error Δ for the target support, the L1 level threshold δ1 (δ1=r1+r3), the L2 level threshold δ2 (δ2=r1+r4), and the L3 level threshold δ3 (δ3=r2+r4), respectively; ,

(1)連続的な複数の対象支保の間で、Δ≦δ1の場合に、検出結果がL1水準であると判定し、
(2)対象支保がδ1<Δ≦δ2の場合に、検出結果がL2水準であると判定し、
(1) If Δ≦δ1 between a plurality of continuous target supports, the detection result is determined to be at the L1 level,
(2) If the target support is δ1<Δ≦δ2, the detection result is determined to be at the L2 level,

(3)対象支保がδ2<Δ≦δ3の場合に、検出結果がL3水準であると判定し、
(4)対象支保がΔ>δ3の場合に、検出結果がL4水準であると判定する、ステップS6-2と、を含む。
(3) If the target support is δ2<Δ≦δ3, the detection result is determined to be at the L3 level,
(4) If the target support is Δ>δ3, it is determined that the detection result is at the L4 level, step S6-2.

上記の方案に基づいて、前記レーザ照射装置は、支持ベースと、第1モータと、支持台と、レーザ照射器と、第2モータと、をさらに含み、前記支持ベースが架台に固定して連結され、第1モータが垂直方向に沿って支持ベースに設けられ、支持台が第1モータの上方に連結されると共に、第1モータの駆動によって水平方向に回動可能であり、レーザ照射器が支持台に回動可能に設けられると共に、第2モータが水平方向に沿って支持台に取り付けられ、第2モータがレーザ照射器を回動駆動し、架台には、第3モータと、伸長軸と、第2レーザ受光器と、を含む累積誤差検査装置がさらに設けられており、前記第3モータが水平方向に沿って架台に設けられると共に、伸長軸を回動駆動し、第2レーザ受光器が伸長軸に固定して連結され、前記第2レーザ受光器が、第1レーザ受光器と同じ構成を有する。 Based on the above scheme, the laser irradiation device further includes a support base, a first motor, a support stand, a laser irradiator, and a second motor, and the support base is fixedly connected to a pedestal. The first motor is provided on the support base along the vertical direction, the support base is connected above the first motor and is rotatable in the horizontal direction by the drive of the first motor, and the laser irradiator is mounted on the support base. A second motor is rotatably provided on the support base, and a second motor is attached to the support base along the horizontal direction, the second motor rotationally drives the laser irradiator, and the base includes a third motor and an extension shaft. and a second laser light receiver, and the third motor is installed on the pedestal along the horizontal direction and rotatably drives the extension shaft to detect the second laser light receiver. The second laser receiver has the same configuration as the first laser receiver, and the second laser receiver has the same configuration as the first laser receiver.

上記の方案に基づいて、誤差水準分類を行った後、累積誤差検査を行い、ここで、累積誤差検査を行うことは、 Based on the above scheme, after performing the error level classification, the cumulative error test is performed, and here, the cumulative error test is as follows:

第2レーザ受光器の中心座標をD1j(D1jx, D1jy, D1jz)と定義する場合、
式(6)によって得られた2つの結果のうち、対象支保架台から明らかに外れた座標を排除することで、第2レーザ受光器の中心座標D1j(D1jx, D1jy, D1jz)を得、レーザ照射器の基準支保座標系での座標をD0c(D0cx, D0cy, D0cz)と定義し、中心強光源を第2レーザ受光器の中心受光領域に合わせる際に、第1モータ及び第2モータの回転の角度がそれぞれA及びAとなる必要があり、A及びAは式(7)に示すようになるステップS7を含む。
When the center coordinates of the second laser receiver are defined as D 1j (D 1jx , D 1jy , D 1jz ),
Of the two results obtained by equation (6), by excluding the coordinates that clearly deviate from the target support frame, the center coordinates D 1j (D 1jx , D 1jy , D 1jz ) of the second laser receiver can be determined. The coordinates of the laser irradiator in the reference support coordinate system are defined as D 0c (D 0cx , D 0cy , D 0cz ), and when aligning the central strong light source with the central light receiving area of the second laser receiver, the first The rotation angles of the motor and the second motor need to be A 1 and A 2 respectively, and A 1 and A 2 include step S7 as shown in equation (7).

上記の方案に基づいて、最大許容誤差をΔ1と定義し、Δ1値を予め設定しておき、
(1)L1水準誤差結果については、検出結果が十分に正確であり、誤差検査を行う必要がないと判定し、
(2)L2水準誤差結果に対しては、検出結果が比較的に正確であり、X1台の液圧支保おきに累積誤差検査を行い、X1=[Δ1/δ2]となると判定し、
Based on the above scheme, the maximum allowable error is defined as Δ1, the Δ1 value is set in advance,
(1) Regarding the L1 level error result, it is determined that the detection result is sufficiently accurate and there is no need to perform an error check,
(2) Regarding the L2 level error result, the detection result is relatively accurate, and the cumulative error test is performed for every X1 hydraulic supports, and it is determined that X1 = [Δ1/δ2].

(3)L3水準誤差結果については、検出結果が比較的粗く、X2台の液圧支保おきに累積誤差検査を行い、X2=[Δ1/δ3]となると判定し、
(4)L4水準誤差結果については、検出が故障したと判定し、プロセッサは、操作者が手動で修復するように指導するために故障信号を送信する。
(3) Regarding the L3 level error result, the detection result is relatively rough, and cumulative error inspection was performed for every X2 hydraulic supports, and it was determined that X2 = [Δ1/δ3].
(4) For the L4 level error result, it is determined that the detection has failed, and the processor sends a failure signal to guide the operator to repair manually.

本発明の有益な効果は以下のとおりである。隣接する液圧支保架台における監視点の座標を解析することによって、各支保架台の位置を順次取得し、各方向での整列度合を直感的に観察することができ、ひな型及び機械の構成が簡単であり、記述結果の信頼性が高く、液圧支保の取り付け数や空間による限制を受けない。レーザ照射装置、レーザ受光装置及び累積誤差検査装置を利用して、状態記述結果に対して精度チェックを2回行うことによって、液圧支保に対する位置記述の正確性を高め、切羽面液圧支保群の位置の直線度を確保することができる。 The beneficial effects of the present invention are as follows. By analyzing the coordinates of monitoring points on adjacent hydraulic support mounts, the position of each support mount can be sequentially acquired and the degree of alignment in each direction can be intuitively observed, making it easy to configure templates and machines. Therefore, the reliability of the descriptive results is high, and there are no limitations due to the number of hydraulic supports installed or space. By using a laser irradiation device, a laser light receiving device, and a cumulative error inspection device to check the accuracy of the condition description results twice, the accuracy of position description for hydraulic support is increased, and the hydraulic support group on the face surface is improved. The straightness of the position can be ensured.

本発明に係る液圧支保の側面図である。FIG. 3 is a side view of the hydraulic support according to the present invention. 本発明の撮像装置の構成を示す模式図である。1 is a schematic diagram showing the configuration of an imaging device according to the present invention. 本発明の撮像装置のマークポイントを示す模式図である。FIG. 3 is a schematic diagram showing mark points of the imaging device of the present invention. 本発明の撮像装置の撮像範囲の側面図である。FIG. 2 is a side view of the imaging range of the imaging device of the present invention. 本発明の撮像装置の撮像範囲の上面図である。FIG. 3 is a top view of the imaging range of the imaging device of the present invention. 本発明の液圧支保架台群の状態記述平面図である。FIG. 2 is a plan view illustrating the state of the hydraulic support gantry group of the present invention. 本発明の液圧支保架台群の状態記述斜視図である。FIG. 3 is a perspective view illustrating the state of the hydraulic support gantry group of the present invention. 本発明の液圧支保架台群の状態記述マッピング図である。FIG. 4 is a state description mapping diagram of a group of hydraulic support frames according to the present invention. 本発明に係る液圧支保架台の上面図である。FIG. 3 is a top view of the hydraulic support pedestal according to the present invention. 本発明のレーザ照射装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a laser irradiation device of the present invention. 本発明のレーザ照射器の光源分布を示す模式図である。FIG. 3 is a schematic diagram showing the light source distribution of the laser irradiator of the present invention. 本発明のレーザ受光装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a laser light receiving device of the present invention. 本発明のレーザ受光装置の各取り付け状態図である。FIG. 3 is a diagram of each installation state of the laser light receiving device of the present invention. 本発明の第1レーザ受光器の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a first laser receiver of the present invention. 本発明のレーザ照射装置のモータの回転角度を示す模式図である。It is a schematic diagram showing the rotation angle of the motor of the laser irradiation device of the present invention. 本発明のレーザチェック閾値δ1の結果を示す模式図である。It is a schematic diagram which shows the result of laser check threshold value (delta)1 of this invention. 本発明のレーザチェック閾値δ2の結果を示す模式図である。It is a schematic diagram which shows the result of laser check threshold value (delta)2 of this invention. 本発明のレーザチェック閾値δ3の結果を示す模式図である。FIG. 3 is a schematic diagram showing the results of the laser check threshold value δ3 of the present invention. 本発明の状態記述のフローチャートである。1 is a flowchart of state description of the present invention.

以下、図面及び実施例を参照して本発明についてさらに説明する。 The present invention will be further described below with reference to the drawings and examples.

本発明では、別に明確な規定や限定がない限り、「取り付ける」、「連結」、「接続」、「固定」などの用語は広義に理解すべきであり、例えば、固定接続、取り外し可能な接続、又は一体化であってもよく、直接連結、中間部品を介した間接的な連結、2つの構成要素の内部連通又は2つの構成要素の相互作用関係であってもよい。当業者にとっては、具体的な状況に応じて上記の用語の本発明での具体的な意味を理解することができる。 In the present invention, terms such as "attachment", "coupling", "connection", "fixation", etc. should be understood in a broad sense, unless there is a clear provision or limitation otherwise, such as fixed connection, removable connection, etc. , or integration, direct connection, indirect connection via an intermediate part, internal communication of two components, or interaction of two components. Those skilled in the art can understand the specific meanings of the above terms in the present invention depending on the specific situation.

なお、本発明の説明において、「中心」、「長さ」、「上」、「下」、「前」、「後」、「左」、「右」、「垂直」、「水平」、「頂」、「底」、「内」などの用語により示される方位又は位置関係は図面に示される方位又は位置関係に基づくものであり、本発明を説明しやすくし、説明を簡潔にするために過ぎず、係る装置又は構成要素が必ずしも特定の方位を有したり、特定の方位で構成、操作されたりすることを指示又は示唆するものではなく、よって、本発明を制限するものとして理解すべきではない。さらに、「第1」、「第2」という用語は説明するために過ぎず、相対重要性を指示又は示唆したり、係る技術的特徴の数を暗黙的に示すものとして理解すべきではない。よって、「第1」、「第2」により限定される特徴は、1つ又は複数の当該特徴を明示的又は暗黙的に含んでもよい。本発明の説明においては、特に断らない限り、「複数」とは2つ以上を意味する。 In the description of the present invention, "center", "length", "top", "bottom", "front", "rear", "left", "right", "vertical", "horizontal", " The orientation or positional relationship indicated by terms such as ``top'', ``bottom'', ``inner'', etc. is based on the orientation or positional relationship shown in the drawings, and is intended to facilitate the explanation of the present invention and to simplify the explanation. However, it is not intended to instruct or imply that such devices or components necessarily have a particular orientation or be constructed or operated in a particular orientation, and should therefore be understood as limiting the invention. isn't it. Moreover, the terms "first" and "second" are for descriptive purposes only and should not be understood as indicating or implying relative importance or implying a number of such technical features. Therefore, the features defined by "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.

本発明では、特に明確な規定や限定がない限り、第1特徴が第2特徴の「上」又は「下」にあるとは、第1特徴と第2特徴が直接接触していてもよいし、第1特徴と第2特徴が直接接触せずにこれらの別の特徴を介して接触していてもよい。さらに、第1特徴が第2特徴の「上」、「上方」及び「上面」にあるとは、第1特徴が第2特徴の真上や斜め上にあるか、単に第1特徴の水平方向の高さが第2特徴よりも高いことを意味する。第1特徴が第2特徴の「下」、「下方」及び「下面」にあるとは、第1特徴が第2特徴の真下や斜め下にあるか、単に第1特徴の水平方向の高さが第2特徴よりも低いことを意味する。 In the present invention, unless there is a particularly clear provision or limitation, the first feature being "above" or "below" the second feature does not mean that the first feature and the second feature may be in direct contact with each other. , the first feature and the second feature may not be in direct contact but may be in contact via another feature. Furthermore, the first feature being "above", "above", and "top surface" of the second feature means that the first feature is directly above or diagonally above the second feature, or simply in the horizontal direction of the first feature. is higher than the second feature. The first feature being "below", "beneath", or "on the underside" of the second feature means that the first feature is directly below or diagonally below the second feature, or simply by the horizontal height of the first feature. is lower than the second feature.

図1~図3及び図9に示すように、切羽面液圧支保架台群状態検知記述方法では、液圧支保架台11に撮像装置が設けられ、前記撮像装置は隣接する液圧支保に向くカメラ24を含み、撮像装置の取り付け位置は、立柱12に遮断されず、また液圧支保の昇降動作の妨げにならないようにすべきである。撮像装置は、順次接続された位置決めベース21、位置決めロッド22及び取り付けベース23を含み、位置決めベース21は、架台11の両側に設けられ、撮像方向に応じて相応の側に取り付けられ(右方を撮像する場合、架台11の右側に取り付けられ、左方を撮像する場合、架台11の左側に取り付けられる)、カメラ24は取り付けベース23に取り付けられ、複数組みの単眼カメラを組み合わせたものであってもよく、双眼カメラや三眼カメラを使用してもよい。カメラ24の裏面にマークポイント25が設けられ、具体的には、マークポイント25は、取り付け座23における、カメラ24から離れた側に設けられる。図4及び図5に示すように、カメラ24のY方向における撮像範囲は、対象支保の推移ステップLpをカバーすると共に、Y方向における動き閾値±Δyを含み、カメラ24のX方向における撮像範囲は、X方向における動き閾値-Δx1及び+Δx2をカバーし、Z方向における撮像範囲は、Z方向における動き閾値±Δzをカバーし、これによって、対象支保が移動する前後、又は架台が相対的に偏向した場合にも、対象支保がカメラ24で撮像されることを確保する。 As shown in FIGS. 1 to 3 and 9, in the face hydraulic support mount group state detection and description method, an imaging device is provided on the hydraulic support mount 11, and the imaging device is a camera facing an adjacent hydraulic support mount. 24, the mounting position of the imaging device should not be blocked by the upright column 12 and should not interfere with the lifting and lowering movement of the hydraulic support. The imaging device includes a positioning base 21, a positioning rod 22, and an attachment base 23 that are connected in sequence.The positioning base 21 is provided on both sides of the pedestal 11, and is attached to the corresponding side depending on the imaging direction (the right side is The camera 24 is attached to the mounting base 23 and is a combination of multiple sets of monocular cameras. You can also use a binocular camera or a trinocular camera. A mark point 25 is provided on the back surface of the camera 24, and specifically, the mark point 25 is provided on the side of the mounting seat 23 that is remote from the camera 24. As shown in FIGS. 4 and 5, the imaging range of the camera 24 in the Y direction covers the transition step Lp of the target support and also includes the movement threshold ±Δy in the Y direction, and the imaging range of the camera 24 in the X direction , covers the motion thresholds −Δx1 and +Δx2 in the X direction, and the imaging range in the Z direction covers the motion threshold ±Δz in the Z direction, thereby determining whether the target support moves before and after, or when the mount is relatively deflected. In this case, it is ensured that the target support is imaged by the camera 24.

切羽面液圧支保架台群状態検知記述方法は、図19に示すように、以下のステップS1~S7を含む。 The face hydraulic support gantry group state detection and description method includes the following steps S1 to S7, as shown in FIG.

S1において、端部の液圧支保を全体基準とし、先行の隣接する液圧支保に対して後続液圧支保を対象支保とし、後続の隣接する液圧支保に対して先行液圧支保を基準支保とし、X方向を基準支保の幅方向と、Y方向を基準支保の長さ方向と、Z方向を基準支保の作業高さ方向とそれぞれ定義する。 In S1, the hydraulic support at the end is used as the overall reference, the subsequent hydraulic support is used as the target support for the preceding adjacent hydraulic support, and the preceding hydraulic support is used as the reference support for the subsequent adjacent hydraulic support. The X direction is defined as the width direction of the reference support, the Y direction is defined as the length direction of the reference support, and the Z direction is defined as the working height direction of the reference support.

S2において、液圧支保架台(11)における、先行の隣接する液圧支保のカメラ(24)を向く側において、D1とD2とD3との3つの監視点を設置するステップであって、前記D1とD2とD3とは共線ではなく、二等辺三角形を形成することができず、D1とD2とを結ぶ線が架台(11)のエッジラインに平行である。 S2 is a step of installing three monitoring points D1, D2, and D3 on the side of the hydraulic support frame (11) facing the camera (24) of the preceding and adjacent hydraulic support, the step of installing three monitoring points D1, D2, and D3; , D2 and D3 are not collinear and cannot form an isosceles triangle, and the line connecting D1 and D2 is parallel to the edge line of the pedestal (11).

S3において、基準支保のカメラ24によって対象支保のマークポイント25を撮像した後、対象支保架台11がスライドなどの要因により基準支保架台11に近つきすぎた(距離は-Δx1未満)場合に、カメラ24が対象支保架台11の監視点を撮像できず、マークポイントが消失してしまうことを回避するために、マークポイント25の座標を解析する。プロセッサによって、対象支保におけるマークポイント25の、基準支保に対する座標を解析し、対象支保と基準支保架台とのリアルタイムな距離を取得し、この距離と支保間の所定の中心距離との差を比較することにより、対象支保架台11の位置について自己調整が必要であるか否か、又は手動で調整するように作業者に通知するか否かを判断する。カメラ24によって後続の隣接する液圧支保の監視点を撮像し、撮像した画像をプロセッサに伝送する。 In S3, after the mark point 25 of the target support is imaged by the camera 24 of the reference support, if the target support mount 11 comes too close to the reference support mount 11 due to factors such as sliding (the distance is less than -Δx1), the camera The coordinates of the mark point 25 are analyzed in order to avoid the case where the mark point 24 is unable to image the monitoring point of the target support frame 11 and the mark point disappears. The processor analyzes the coordinates of the mark point 25 on the target support with respect to the reference support, obtains the real-time distance between the target support and the reference support frame, and compares the difference between this distance and a predetermined center distance between the supports. By doing so, it is determined whether or not self-adjustment is required for the position of the target support frame 11, or whether or not the operator is notified to manually adjust the position. The camera 24 images monitoring points of subsequent adjacent hydraulic supports and transmits the captured images to the processor.

S4において、プロセッサによって各監視点の座標を解析し、対象液圧支保架台空間状態を得、解析することは、ステップS4-1~ステップS4-5を含む。
S4-1において、D01(D01x, D01y, D01z)、D02(D02x, D02y, D02z)、D03(D03x, D03y, D03z)が、基準支保におけるD1とD2とD3との3つの点の基準支保座標系Xでの座標であり、D11(D11x, D11y, D11z)、D12(D12x, D12y, D12z)、D13(D13x, D13y, D13z)が、対象支保におけるD1とD2とD3との3つの点のXでの座標であると想定して、ベクトルD0102、D0203の基準支保座標系Xでの法線ベクトルnを構築する場合、n0=0102×D0203となり、ベクトルD1112、D1213の基準支保座標系Xでの法線ベクトルnを構築する場合、n1=1112×D1213となる。
S4-2において、D01を通りnをベクトル方向としてD4の点を構築する場合、基準支保座標系XでのベクトルはD04=n+D01となり、D11を通りnをベクトル方向としてD4’の点を構築する場合、基準支保座標系XでのベクトルはD14=n+D11となる。
In S4, analyzing the coordinates of each monitoring point by the processor to obtain and analyze the target hydraulic support frame space state includes steps S4-1 to S4-5.
In S4-1, D 01 (D 01x , D 01y , D 01z ), D 02 (D 02x , D 02y , D 02z ), and D 03 (D 03x , D 03y , D 03z ) are the same as D1 in the standard support. These are the coordinates of the three points D2 and D3 in the standard support coordinate system X 0 , and are D 11 (D 11x , D 11y , D 11z ), D 12 (D 12x , D 12y , D 12z ), and D 13 ( Assuming that D 13x , D 13y , D 13z ) are the coordinates at X 0 of three points D1, D2, and D3 on the target support, the reference support of vectors D 01 D 02 , D 02 D 03 When constructing the normal vector n 0 in the coordinate system X 0 , n 0 = D 01 D 02 ×D 02 D 03 , and the modulus of the vectors D 11 D 12 and D 12 D 13 in the reference support coordinate system X 0 . When constructing a line vector n 1 , n 1 = D 11 D 12 ×D 12 D 13 .
In S4-2, when constructing the point D4 by passing through D 01 and using n 0 as the vector direction , the vector in the standard supporting coordinate system When constructing a point with D4' as the direction, the vector in the reference support coordinate system X 0 is D 14 =n 1 +D 11 .

S4-3において、基準支保におけるD1、D2、D3、D4の点が回転(回転マトリックスRとし、回転軸をユーザの選択に応じてカスタマイズすると、Rは3×3マトリックスとなり、9つの未知量を含む。)してから並進(並進マトリックスSとし、Sは3×1マトリックスとなり、3つの未知量を含む。)し、対象支保における対応する点に変換可能であると定義し、基準支保におけるD1、D2、D3、D4の点と対象支保におけるD1、D2、D3、D4’の点との座標に基づいて、式(1)に示すマトリックスPとPを構築する。 In S4-3, the points D1, D2, D3, and D4 on the reference support are rotated (rotation matrix R 1 , and if the rotation axis is customized according to the user's selection, R 1 becomes a 3 × 3 matrix, and nine unknowns are formed. ), then translate (translation matrix S 1 , S 1 becomes a 3 × 1 matrix, including three unknown quantities), and define that it can be converted to a corresponding point on the target support, Matrix P 0 and P 1 shown in equation (1) are constructed based on the coordinates of points D1, D2, D3, and D4 on the reference support and points D1, D2, D3, and D4' on the target support.

S4-4において、式(2)のようにし、ここで、式(3)に示すようにTは4次マトリックスである。 In S4-4, equation (2) is performed, where T is a quartic matrix as shown in equation (3).

式(2)中、Pは既知の基準支保において予め設定されたマークポイント座標であり、Pはカメラによって取得された対象支保におけるマークポイント座標であり、式(2)により構築された12個の方程は12個の未知量を含み、Tは補間アルゴリズムを利用して求解して得ることができる。すると、対象支保における任意の点の座標D0mは、変換マトリックスTによって、その基準支保での座標D1mを、式(4)に示すように得る。 In equation (2), P 0 is the preset mark point coordinate on the known reference support, P 1 is the mark point coordinate on the target support acquired by the camera, and 12 The equations include 12 unknown quantities, and T can be obtained by solving them using an interpolation algorithm. Then, the coordinate D 0m of an arbitrary point on the target support is determined by the transformation matrix T, and the coordinate D 1m on the reference support is obtained as shown in equation (4).

S4-5において、後続の各対象支保の架台状態を順次検知し、n番目支保におけるD0pの点とすると、その1番目支保におけるマッピング座標D (n-1)pは、式(5)に示すようになる。 In S4-5, the frame state of each subsequent target support is sequentially detected, and if the n-th support is the point D 0p , the mapping coordinate D (n-1)p of the first support is given by equation (5). It comes to show.

S5において、図6~8に示すように、端部の液圧支保を記述基準とし、端部の液圧支保架台(11)の重心Dg1を中心とし、切羽面要件Ly及びLzを辺長(LyとLzの具体値は操作のニーズ及び測定精度の要件に応じてユーザによって決定される)とし、YOZ平面において記述平面を作成し、後続の各対象支保の座標を式(5)に従って記述平面にマッピングさせ、液圧支保架台空間の記述空間を形成し、このとき、全ての支保群の重心位置の好ましい位置(破線円心)と実際の位置(実線円心)とを直観的に観察することができ、各液圧支保のY方向及びZ方向の整列度合を評価する。 In S5, as shown in FIGS. 6 to 8, the hydraulic pressure support at the end is used as the description standard, the center of gravity Dg1 of the hydraulic pressure support pedestal (11) at the end is the center, and the face surface requirements Ly and Lz are expressed as the side length ( The specific values of Ly and Lz are determined by the user according to the operational needs and measurement accuracy requirements), create a description plane in the YOZ plane, and set the coordinates of each subsequent target support in the description plane according to equation (5). to form a descriptive space of the hydraulic support frame space, and at this time, intuitively observe the preferred position (dashed line circle center) and actual position (solid line circle center) of the center of gravity of all support groups. The degree of alignment of each hydraulic support in the Y direction and Z direction can be evaluated.

基準支保と対象支保との相対的な空間関係を取得した後、撮像結果及び処理結果として得られるマークポイント座標の正確性を確保するために、図19に示すように、リングアレイ型レーザ変位チェックシステムを用いて対象支保の姿勢検出精度を検査する。レーザ変位チェックシステムと撮像装置を配置する際には、作業中に両方が互いに干渉しないことを確保しなければならない。 After obtaining the relative spatial relationship between the reference support and the target support, in order to ensure the accuracy of the mark point coordinates obtained as the imaging results and processing results, a ring array type laser displacement check is performed, as shown in Figure 19. The system will be used to test the accuracy of detecting the attitude of the target support. When arranging the laser displacement checking system and the imaging device, it must be ensured that both do not interfere with each other during the operation.

図9~図12に示すように、レーザ変位チェックシステムは、架台11にレーザ照射装置とレーザ受光装置とが設けられており、前記レーザ照射装置は、対象支保に向かって設けられたレーザ照射器34を含み、前記レーザ照射器34の円心位置において中心強光源341が設けられ、中心強光源341の外側において環状弱光源342が周方向に沿って均等に配置され、前記中心強光源341の半径がr1とし、環状弱光源342のエッジ包絡線の包絡半径がr2とし、レーザ受光装置は、基準支保に向かって設けられた第1レーザ受光器51を含み、前記第1レーザ受光器51の円心位置において中心受光領域511が設けられ、第1レーザ受光器51の残りの領域においてレーザ受光モジュール512が埋められ、前記中心受光領域511の半径がr3とし、第1レーザ受光器51の半径がr4とし、レーザ受光モジュール512は面積が小さいほど、分布密度が高く、検出結果が正確である。中心強光源341のレーザを受光する際に、照射された中心受光領域511及び/又はレーザ受光モジュール512はハイレベル信号を発生し、環状弱光源342のレーザを受光する際に、照射された中心受光領域511及び/又はレーザ受光モジュール512はローレベル信号を発生し、レーザが照射されていない際に、中心受光領域511及びレーザ受光モジュール512はレベル信号を発生しない。具体的には、前記レーザ照射装置は、支持ベース(31と、第1モータ32と、支持台33と、レーザ照射器34と、第2モータ35と、をさらに含み、前記支持ベース31が架台11に固定して連結され、第1モータ32が垂直方向に沿って支持ベース31に設けられ、支持台33が第1モータ32の上方に連結されると共に、第1モータ32の駆動によって水平方向に回動可能であり、レーザ照射器34が支持台33に回動可能に設けられると共に、第2モータ35が水平方向に沿って支持台33に取り付けられ、第2モータ35がレーザ照射器34を回動駆動する。レーザ照射装置と撮像装置とは架台11の同側に設けられ、レーザ受光装置と撮像装置とは架台11の対向側に設けられる。 As shown in FIGS. 9 to 12, in the laser displacement check system, a pedestal 11 is provided with a laser irradiation device and a laser light receiving device, and the laser irradiation device is a laser irradiation device provided toward the target support. 34, a central strong light source 341 is provided at the circular center position of the laser irradiator 34, and annular weak light sources 342 are arranged evenly along the circumferential direction outside the central strong light source 341. The radius is r1, and the envelope radius of the edge envelope of the annular weak light source 342 is r2. A center light receiving area 511 is provided at the center position of the circle, a laser light receiving module 512 is filled in the remaining area of the first laser receiver 51, the radius of the center light receiving area 511 is r3, and the radius of the first laser receiver 51 is is r4, and the smaller the area of the laser light receiving module 512, the higher the distribution density and the more accurate the detection result. When receiving the laser from the central strong light source 341, the irradiated center light receiving area 511 and/or laser light receiving module 512 generates a high level signal, and when receiving the laser from the annular weak light source 342, the irradiated center light receiving area 511 and/or the laser light receiving module 512 generates a high level signal. The light receiving area 511 and/or the laser light receiving module 512 generates a low level signal, and when the laser is not irradiated, the central light receiving area 511 and the laser light receiving module 512 do not generate a level signal. Specifically, the laser irradiation device further includes a support base (31, a first motor 32, a support stand 33, a laser irradiator 34, and a second motor 35), and the support base 31 is a pedestal. 11, a first motor 32 is installed on the support base 31 along the vertical direction, a support base 33 is connected above the first motor 32, and the support base 33 is connected to the support base 31 in the horizontal direction by the drive of the first motor 32. The laser irradiator 34 is rotatably provided on the support base 33, and the second motor 35 is attached to the support base 33 along the horizontal direction. The laser irradiation device and the imaging device are provided on the same side of the pedestal 11, and the laser light receiving device and the imaging device are provided on opposite sides of the pedestal 11.

対象支保空間状態を得た後、対象支保姿勢検出精度に対して、以下のステップを含む誤差水準分類を行う。 After obtaining the target support space state, the error level classification including the following steps is performed on the target support posture detection accuracy.

S6-1において、対象支保に対する位置検出誤差Δと、図14に示すように、L1水準閾値δ1(δ1=r1+r3)と、図15に示すように、L2水準閾値はδ2(δ2=r1+r4)と、図16に示すように、L3水準閾値δ3(δ3=r2+r4)とそれぞれ定義する。 In S6-1, the position detection error Δ for the target support, the L1 level threshold δ1 (δ1=r1+r3) as shown in FIG. 14, and the L2 level threshold δ2 (δ2=r1+r4) as shown in FIG. , as shown in FIG. 16, are respectively defined as L3 level threshold δ3 (δ3=r2+r4).

S6-2において、(1)連続的な複数の対象支保の間で、Δ≦δ1の場合、レーザ受光装置の中心受光領域511はレーザ照射装置の中心強光源341からのレーザを受光し、プロセッサにハイレベル信号を送信し、検出結果がL1水準であると判定する。 In S6-2, (1) between a plurality of continuous target supports, if Δ≦δ1, the central light receiving area 511 of the laser receiving device receives the laser from the central strong light source 341 of the laser irradiating device, and the processor It is determined that the detection result is at the L1 level.

(2)対象支保がδ1<Δ≦δ2の場合に、レーザ受光装置の中心受光領域511以外の環状受光モジュール512は中心強光源341からのレーザを受光し、プロセッサにハイレベル信号を送信し、検出結果がL2水準であると判定し、後続の結果に下記のL3水準結果及びL4水準結果が存在しない場合に、後後の結果をL2水準に合わせて処理する。 (2) When the target support is δ1<Δ≦δ2, the annular light receiving module 512 other than the central light receiving area 511 of the laser light receiving device receives the laser from the central strong light source 341, and transmits a high level signal to the processor, If it is determined that the detection result is at the L2 level and the following L3 level results and L4 level results do not exist in the subsequent results, the subsequent results are processed in accordance with the L2 level.

(3)対象支保がδ2<Δ≦δ3の場合に、レーザ受光装置の環状受光モジュール512は環状弱光源342からのレーザを受光し、プロセッサにローレベル信号を送信し、検出結果がL3水準であると判定する。 (3) When the target support is δ2<Δ≦δ3, the annular light receiving module 512 of the laser receiving device receives the laser from the annular weak light source 342, sends a low level signal to the processor, and the detection result is at the L3 level. It is determined that there is.

(4)対象支保がΔ>δ3の場合に、第1レーザ受光器51はレーザ照射器34からのレーザ信号を受光しておらず、検出結果がL4水準であると判定する。 (4) When the target support is Δ>δ3, the first laser receiver 51 does not receive the laser signal from the laser irradiator 34, and the detection result is determined to be at the L4 level.

上記のチェックが隣接する液圧支保について行われるので、切羽面液圧支保全体の直線度を確保するために、誤差水準分類を行った後、累積誤差検査をさらに行う。図17に示すように、架台11には、第3モータ41と、伸長軸42と、第2レーザ受光器43とを含む累積誤差検査装置が設けられており、前記第3モータ41が水平方向に沿って架台11に設けられると共に、伸長軸42を回動駆動し、第2レーザ受光器43が伸長軸42に固定して連結され、前記第2レーザ受光器43が、第1レーザ受光器51と同じ構成を有する。図18に示すように、第2レーザ受光器43が干渉を及ぼすことを防止するために、デフォルト状態では伸長軸が水平状態であり、累積誤差検査を行う際に、レーザ照射器34と第2レーザ受光器43とを連携して使用するために、第3モータ41によって伸長軸42を垂直(又は略垂直)状態となるまで回動駆動する。 Since the above checks are performed on adjacent hydraulic supports, a cumulative error check is further performed after error level classification in order to ensure the straightness of the entire face hydraulic support. As shown in FIG. 17, the pedestal 11 is provided with a cumulative error inspection device including a third motor 41, an extension shaft 42, and a second laser receiver 43. The second laser receiver 43 is fixedly connected to the extension shaft 42 by rotationally driving the extension shaft 42, and the second laser receiver 43 is connected to the first laser receiver. It has the same configuration as 51. As shown in FIG. 18, in order to prevent the second laser receiver 43 from causing interference, the extension axis is in a horizontal state in the default state. In order to use the laser receiver 43 in conjunction with the laser receiver 43, the third motor 41 rotates the extension shaft 42 until it is in a vertical (or substantially vertical) state.

累積誤差検査のステップは次のとおりである。 The steps of cumulative error checking are as follows.

S7において、第2レーザ受光器(43)の中心座標をD1j(D1jx, D1jy, D1jz)と定義する場合、 In S7, when the center coordinates of the second laser receiver (43) are defined as D 1j (D 1jx , D 1jy , D 1jz ),

式(6)によって得られた2つの結果のうち、対象支保架台(11)から明らかに外れた座標を排除することで、第2レーザ受光器(43)の中心座標D1j(D1jx, D1jy, D1jz)を得、レーザ照射器(34)の基準支保座標系での座標をD0c(D0cx, D0cy, D0cz)と定義し、中心強光源を第2レーザ受光器(43)の中心受光領域に合わせる際に、第1モータ(32)及び第2モータ(35)の回転の角度はそれぞれA及びAとなる必要があり、図13に示すように、A及びAは式(7)に示すようになる。 Of the two results obtained by equation (6), by excluding the coordinates that clearly deviate from the target support frame (11), the center coordinates D 1j (D 1jx , D 1jy , D 1jz ), the coordinates of the laser irradiator (34) in the reference supporting coordinate system are defined as D 0c (D 0cx , D 0cy , D 0cz ), and the central strong light source is the second laser receiver (43 ), the rotation angles of the first motor (32) and the second motor (35) need to be A1 and A2 , respectively, and as shown in FIG . A2 is as shown in equation (7).

最大許容誤差をΔ1と定義し、切羽面液圧支保の直線度に応じてΔ1値を予め設定しておき、
(1)L1水準誤差結果については、検出結果が十分に正確であり、誤差検査を行う必要がないと判定し、
(2)L2水準誤差結果に対しては、検出結果が比較的に正確であり、X1台の液圧支保おきに累積誤差検査を行い、チェック結果が累積誤差閾値以上である場合に、直線度が合格していないことを示しており、手動でゆがみ矯正を行って誤差をクリアする必要があり、X1=[Δ1/δ2]となり。
The maximum allowable error is defined as Δ1, and the Δ1 value is set in advance according to the straightness of the face hydraulic pressure support.
(1) Regarding the L1 level error result, it is determined that the detection result is sufficiently accurate and there is no need to perform an error check,
(2) Regarding the L2 level error result, if the detection result is relatively accurate and the cumulative error test is performed for every X1 hydraulic support, and the check result is greater than the cumulative error threshold, the linearity indicates that it has not passed the test, and it is necessary to manually correct the distortion to clear the error, so that X1 = [Δ1/δ2].

(3)L3水準誤差結果については、検出結果が比較的粗く、X2台の液圧支保おきに累積誤差検査を行い、チェック結果が累積誤差閾値以上である場合に、直線度が合格していないことを示しており、手動でゆがみ矯正を行って誤差をクリアする必要があり、X2=[Δ1/δ3]となり、先行支保にL2水準結果がすでに存在する場合、先行のL2水準結果をL3水準に一括して処理する。
(4)L4水準誤差結果については、検出が故障したと判定し、プロセッサは、操作者が手動で修復するように指導するために故障信号を送信する。
(3) Regarding the L3 level error result, the detection result is relatively rough, and if the cumulative error test is performed for every X2 hydraulic support and the check result is more than the cumulative error threshold, the linearity does not pass. This indicates that it is necessary to manually correct the distortion to clear the error, so that Process in batch.
(4) For the L4 level error result, it is determined that the detection has failed, and the processor sends a failure signal to guide the operator to repair manually.

以上は本発明を例示的に説明したが、本発明は上記の具体的な実施例に限定されず、本発明に基づいて行われる全ての変更や変形は本発明の特許範囲に属する。

Although the present invention has been described above by way of example, the present invention is not limited to the above-described specific embodiments, and all changes and modifications made based on the present invention fall within the patent scope of the present invention.

Claims (10)

切羽面液圧支保架台群状態検知記述方法であって、ここで、液圧支保架台(11)に撮像装置が設けられており、前記撮像装置は隣接する液圧支保に向くカメラ(24)を含み、
前記切羽面液圧支保架台群状態検知記述方法は、
端部の液圧支保を全体基準とし、先行の隣接する液圧支保に対して後続液圧支保を対象支保とし、後続の隣接する液圧支保に対して先行液圧支保を基準支保とし、X方向を基準支保の幅方向と、Y方向を基準支保の長さ方向と、Z方向を基準支保の作業高さ方向とそれぞれ定義するステップS1と、
液圧支保架台(11)における、先行の隣接する液圧支保のカメラ(24)を向く側において、D1とD2とD3との3つの監視点を設置するステップであって、前記D1とD2とD3とは共線ではなく、二等辺三角形を形成することができず、D1とD2とを結ぶ線が架台(11)のエッジラインに平行であるステップS2と、
カメラ(24)によって後続の隣接する液圧支保の監視点を撮像し、撮像した画像をプロセッサに伝送するステップS3と、
プロセッサによって各監視点の座標を解析し、対象液圧支保架台空間状態を得るステップS4と、を含む、切羽面液圧支保架台群状態検知記述方法。
A method for detecting and describing the state of a group of hydraulic support mounts on a face surface, in which an imaging device is provided on the hydraulic support mount (11), and the imaging device directs a camera (24) toward an adjacent hydraulic support mount. including,
The method for detecting and describing the condition of the face hydraulic support gantry group is as follows:
The hydraulic support at the end is the overall reference, the subsequent hydraulic support is the target support for the preceding adjacent hydraulic support, the preceding hydraulic support is the reference support for the subsequent adjacent hydraulic support, and Step S1 of defining the direction as the width direction of the standard support, the Y direction as the length direction of the standard support, and the Z direction as the working height direction of the standard support;
A step of installing three monitoring points D1, D2, and D3 on the side of the preceding and adjacent hydraulic support facing the camera (24) in the hydraulic support frame (11), Step S2 is not collinear with D3 and cannot form an isosceles triangle, and the line connecting D1 and D2 is parallel to the edge line of the pedestal (11);
Step S3 of imaging a monitoring point of a subsequent adjacent hydraulic support by a camera (24) and transmitting the captured image to a processor;
A method for detecting and describing a face hydraulic support gantry group state, comprising step S4 of analyzing the coordinates of each monitoring point by a processor to obtain a target hydraulic support gantry space state.
前記ステップS4において各監視点を解析することは、
01(D01x, D01y, D01z)、D02(D02x, D02y, D02z)、D03(D03x, D03y, D03z)が、基準支保におけるD1とD2とD3との3つの点の基準支保座標系Xでの座標であり、D11(D11x, D11y, D11z)、D12(D12x, D12y, D12z)、D13(D13x, D13y, D13z)が、対象支保におけるD1とD2とD3との3つの点のXでの座標であると想定して、ベクトルD0102、D0203の基準支保座標系Xでの法線ベクトルnを構築する場合、n0=0102×D0203となり、ベクトルD1112、D1213の基準支保座標系Xでの法線ベクトルnを構築する場合、n1=1112×D1213となるステップS4-1と、
01を通りnをベクトル方向としてD4の点を構築する場合、基準支保座標系XでのベクトルはD04=n+D01となり、D11を通りnをベクトル方向としてD4’の点を構築する場合、基準支保座標系XでのベクトルはD14=n+D11となるステップS4-2と、
基準支保におけるD1、D2、D3、D4の点が回転してから並進し、対象支保における対応する点に変換可能であると定義し、ここで、回転の場合に、回転マトリックスRとし、回転軸をユーザの選択に応じてカスタマイズすると、Rは3×3マトリックスとなり、9つの未知量を含み、並進の場合に、並進マトリックスSとし、Sは3×1マトリックスとなり、3つの未知量を含み、基準支保におけるD1、D2、D3、D4の点と対象支保におけるD1、D2、D3、D4’の点との座標に基づいて、式(1)に示すマトリックスPとPを構築するステップS4-3と、
式(2)のようにするステップであって、ここで、式(3)に示すようにTは4次マトリックスである場合に、対象支保における任意の点の座標D0mは、変換マトリックスTによって、その基準支保での座標D1mを、式(4)に示すように得るステップS4-4と、
後続の各対象支保の架台状態を順次検知し、n番目支保におけるD0pの点とすると、その1番目支保におけるマッピング座標D (n-1)pは、式(5)に示すようになるステップS4-5と、を含む、請求項1に記載の切羽面液圧支保架台群状態検知記述方法。
Analyzing each monitoring point in step S4 includes:
D 01 (D 01x , D 01y , D 01z ), D 02 (D 02x , D 02y , D 02z ), and D 03 (D 03x , D 03y , D 03z ) are the same as D1, D2, and D3 in the standard support. The coordinates of the three points in the standard supporting coordinate system , D 13z ) are the coordinates at X 0 of the three points D1, D2 , and D3 on the target support, and the vectors D 01 D 02 , D 02 D 03 in the reference support coordinate system When constructing the normal vector n 0 of When constructing, step S4-1 where n 1 = D 11 D 12 ×D 12 D 13 ;
When constructing the point D4 through D 01 with n 0 as the vector direction, the vector in the standard supporting coordinate system When constructing a point, the vector in the reference supporting coordinate system X 0 is D 14 =n 1 +D 11 , step S4-2;
Define that the points D1, D2, D3, and D4 on the reference support can be rotated and then translated and converted to the corresponding points on the target support, where in the case of rotation, the rotation matrix R is 1 , and the rotation If the axes are customized according to the user's selection, R 1 becomes a 3x3 matrix , containing 9 unknowns, and in case of translation, the translation matrix S 1 becomes a 3x1 matrix, containing 3 unknowns. Based on the coordinates of points D1, D2, D3, and D4 on the reference support and points D1, D2, D3, and D4' on the target support, the matrices P 0 and P 1 shown in equation (1) are calculated. step S4-3 of constructing;
The step is to do as shown in equation (2), where T is a quartic matrix as shown in equation (3), and the coordinates D 0m of any point on the target support are determined by the transformation matrix T. , a step S4-4 in which the coordinate D 1m at the reference support is obtained as shown in equation (4);
If the frame state of each subsequent target support is sequentially detected and the n-th support is set as a point D 0p , the mapping coordinate D (n-1)p of the first support becomes as shown in equation (5). The method for detecting and describing the condition of a face hydraulic support gantry group according to claim 1, comprising: S4-5.
端部の液圧支保を記述基準とし、端部の液圧支保架台(11)の重心Dg1を中心とし、切羽面要件Ly及びLzを辺長とし、YOZ平面において記述平面を作成し、後続の各対象支保の座標を式(5)に従って記述平面にマッピングさせ、液圧支保架台空間の記述空間を形成し、各液圧支保のY方向及びZ方向の整列度合を観察するステップS5をさらに含む、請求項2に記載の切羽面液圧支保架台群状態検知記述方法。 Using the hydraulic support at the end as a description standard, centering on the center of gravity Dg1 of the hydraulic support pedestal (11) at the end, and using the face requirements Ly and Lz as the side lengths, create a descriptive plane in the YOZ plane, and create a description plane in the YOZ plane. Step S5 further includes mapping the coordinates of each target support on a description plane according to equation (5) to form a description space of the hydraulic support gantry space, and observing the degree of alignment of each hydraulic support in the Y direction and Z direction. 3. The method for detecting and describing the condition of a face hydraulic support gantry group according to claim 2. カメラ(24)のY方向における撮像範囲は、対象支保推移ステップLpをカバーすると共に、Y方向における動き閾値±Δyを含み、カメラ(24)のX方向における撮像範囲は、X方向における動き閾値-Δx1と+Δx2とを含み、カメラ(24)のZ方向における撮像範囲は、Z方向における動き閾値±Δzを含む、請求項1に記載の切羽面液圧支保架台群状態検知記述方法。 The imaging range of the camera (24) in the Y direction covers the target support transition step Lp and includes the motion threshold ±Δy in the Y direction, and the imaging range of the camera (24) in the X direction is the motion threshold − in the X direction. 2. The method for detecting and describing the condition of a face hydraulic support gantry group according to claim 1, wherein the imaging range of the camera (24) in the Z direction includes Δx1 and +Δx2 and includes a movement threshold ±Δz in the Z direction. カメラ(24)の裏面にマークポイント(25)が設けられており、基準支保のカメラ(24)によって対象支保におけるマークポイント(25)を撮像した後、マークポイント(25)の座標を解析したうえ、監視点の座標を解析する、請求項1に記載の切羽面液圧支保架台群状態検知記述方法。 A mark point (25) is provided on the back side of the camera (24), and after capturing an image of the mark point (25) on the target support with the camera (24) of the reference support, the coordinates of the mark point (25) are analyzed. 2. The method for detecting and describing the condition of a group of face hydraulic pressure support frames according to claim 1, wherein coordinates of monitoring points are analyzed. 架台(11)には、レーザ照射装置とレーザ受光装置とが設けられており、前記レーザ照射装置は、対象支保に向かって設けられたレーザ照射器(34)を含み、前記レーザ照射器(34)の円心位置において中心強光源(341)が設けられ、中心強光源(341)の外側において環状弱光源(342)が周方向に沿って均等に配置され、前記中心強光源(341)の半径がr1とし、環状弱光源(342)のエッジ包絡線の包絡半径がr2とし、レーザ受光装置は、基準支保に向かって設けられた第1レーザ受光器(51)を含み、前記第1レーザ受光器(51)の円心位置において中心受光領域(511)が設けられ、第1レーザ受光器(51)の残りの領域においてレーザ受光モジュール(512)が埋められ、前記中心受光領域(511)の半径がr3とし、第1レーザ受光器(51)の半径がr4とし、中心強光源(341)のレーザを受光する際に、照射された中心受光領域(511)及び/又はレーザ受光モジュール(512)はハイレベル信号を発生し、環状弱光源(342)のレーザを受光する際に、照射された中心受光領域(511)及び/又はレーザ受光モジュール(512)はローレベル信号を発生し、レーザが照射されていない際に、中心受光領域(511)及びレーザ受光モジュール(512)はレベル信号を発生しない、請求項1に記載の切羽面液圧支保架台群状態検知記述方法。 The pedestal (11) is provided with a laser irradiation device and a laser light receiving device, and the laser irradiation device includes a laser irradiation device (34) provided toward the target support. ) A central strong light source (341) is provided at the center of the circle, and annular weak light sources (342) are arranged evenly along the circumferential direction outside the central strong light source (341). The radius is r1, the envelope radius of the edge envelope of the annular weak light source (342) is r2, and the laser receiver includes a first laser receiver (51) provided toward the reference support, and the first laser A central light receiving area (511) is provided at the circular center position of the light receiver (51), a laser light receiving module (512) is filled in the remaining area of the first laser receiver (51), and the central light receiving area (511) is filled with a laser light receiving module (512). The radius of the first laser receiver (51) is r3, and the radius of the first laser receiver (51) is r4. 512) generates a high level signal, and when receiving the laser of the annular weak light source (342), the irradiated central light receiving area (511) and/or the laser light receiving module (512) generates a low level signal, 2. The method for detecting and describing the state of a face hydraulic support gantry group according to claim 1, wherein the central light receiving area (511) and the laser light receiving module (512) do not generate a level signal when the laser is not irradiated. 対象支保空間状態を得た後、対象支保姿勢検出精度に対して誤差水準分類を行い、ここで、誤差水準分類を行うことは、
対象支保に対する位置検出誤差Δと、L1水準閾値δ1(δ1=r1+r3)と、L2水準閾値δ2(δ2=r1+r4)と、L3水準閾値δ3(δ3=r2+r4)とをそれぞれ定義するステップS6-1と、
(1)連続的な複数の対象支保の間で、Δ≦δ1の場合に、検出結果がL1水準であると判定し、
(2)対象支保がδ1<Δ≦δ2の場合に、検出結果がL2水準であると判定し、
(3)対象支保がδ2<Δ≦δ3の場合に、検出結果がL3水準であると判定し、
(4)対象支保がΔ>δ3の場合に、検出結果がL4水準であると判定する、ステップS6-2と、を含む、請求項6に記載の切羽面液圧支保架台群状態検知記述方法。
After obtaining the target support space state, error level classification is performed on the target support posture detection accuracy, and here, performing the error level classification is as follows.
Step S6-1 of defining the position detection error Δ for the target support, the L1 level threshold δ1 (δ1=r1+r3), the L2 level threshold δ2 (δ2=r1+r4), and the L3 level threshold δ3 (δ3=r2+r4), respectively; ,
(1) If Δ≦δ1 between a plurality of continuous target supports, the detection result is determined to be at the L1 level,
(2) If the target support is δ1<Δ≦δ2, the detection result is determined to be at the L2 level,
(3) If the target support is δ2<Δ≦δ3, the detection result is determined to be at the L3 level,
(4) When the target support is Δ>δ3, the detection result is determined to be at L4 level, step S6-2. The face hydraulic support gantry group state detection and description method according to claim 6. .
前記レーザ照射装置は、支持ベース(31)と、第1モータ(32)と、支持台(33)と、レーザ照射器(34)と、第2モータ(35)と、をさらに含み、前記支持ベース(31)が架台(11)に固定して連結され、第1モータ(32)が垂直方向に沿って支持ベース(31)に設けられ、支持台(33)が第1モータ(32)の上方に連結されると共に、第1モータ(32)の駆動によって水平方向に回動可能であり、レーザ照射器(34)が支持台(33)に回動可能に設けられると共に、第2モータ(35)が水平方向に沿って支持台(33)に取り付けられ、第2モータ(35)がレーザ照射器(34)を回動駆動し、
架台(11)には、第3モータ(41)と、伸長軸(42)と、第2レーザ受光器(43)とを含む累積誤差検査装置をさらに設けられており、前記第3モータ(41)が水平方向に沿って架台(11)に設けられると共に、伸長軸(42)を回動駆動し、第2レーザ受光器(43)が伸長軸(42)に固定して連結され、前記第2レーザ受光器(43)が、第1レーザ受光器(51)と同じ構成を有する、請求項7に記載の切羽面液圧支保架台群状態検知記述方法。
The laser irradiation device further includes a support base (31), a first motor (32), a support stand (33), a laser irradiator (34), and a second motor (35), The base (31) is fixedly connected to the pedestal (11), the first motor (32) is installed on the support base (31) along the vertical direction, and the support base (33) is connected to the support base (31) in the vertical direction. The laser irradiator (34) is rotatably connected to the support base (33), and is rotatable in the horizontal direction by the drive of the first motor (32). 35) is attached to the support base (33) along the horizontal direction, the second motor (35) rotationally drives the laser irradiator (34),
The pedestal (11) is further provided with a cumulative error inspection device including a third motor (41), an extension shaft (42), and a second laser receiver (43). ) is provided on the pedestal (11) along the horizontal direction, and rotates the extension shaft (42), and a second laser receiver (43) is fixedly connected to the extension shaft (42). 8. The method for detecting and describing the state of a face hydraulic support gantry group according to claim 7, wherein the second laser receiver (43) has the same configuration as the first laser receiver (51).
誤差水準分類を行った後、累積誤差検査を行い、ここで、累積誤差検査を行うことは、
第2レーザ受光器(43)の中心座標をD1j(D1jx, D1jy, D1jz)と定義する場合、式(6)によって得られた2つの結果のうち、対象支保架台(11)から明らかに外れた座標を排除することで、第2レーザ受光器(43)の中心座標D1j(D1jx, D1jy, D1jz)を得、レーザ照射器(34)の基準支保座標系での座標をD0c(D0cx, D0cy, D0cz)と定義し、第2レーザ受光器(43)の中心強光源を中心受光領域(511)に合わせる際に、第1モータ(32)及び第2モータ(35)の回転の角度がそれぞれA及びAとなる必要があり、A及びAは式(7)に示すようになるステップS7を含む、請求項8に記載の切羽面液圧支保架台群状態検知記述方法。
After performing the error level classification, a cumulative error test is performed, where the cumulative error test is
When the center coordinates of the second laser receiver (43) are defined as D 1j (D 1jx , D 1jy , D 1jz ), of the two results obtained by equation (6), from the target support frame (11) By eliminating clearly deviated coordinates, the center coordinates D 1j (D 1jx , D 1jy , D 1jz ) of the second laser receiver (43) are obtained, and the center coordinates D 1j (D 1jx , D 1jy , D 1jz ) of the laser irradiator (34) are obtained. The coordinates are defined as D 0c (D 0cx , D 0cy , D 0cz ), and when aligning the central strong light source of the second laser receiver (43) with the central light receiving area (511), the first motor (32) and the The face surface according to claim 8, including step S7 in which the angles of rotation of the two motors (35) are required to be A1 and A2 , respectively, and A1 and A2 are as shown in equation (7). Hydraulic support frame group status detection and description method.
最大許容誤差をΔ1と定義し、Δ1値を予め設定しておき、
(1)L1水準誤差結果については、検出結果が十分に正確であり、誤差検査を行う必要がないと判定し、
(2)L2水準誤差結果に対しては、検出結果が比較的に正確であり、X1台の液圧支保おきに累積誤差検査を行い、X1=[Δ1/δ2]となると判定し、
(3)L3水準誤差結果については、検出結果が比較的粗く、X2台の液圧支保おきに累積誤差検査を行い、X2=[Δ1/δ3]となると判定し、
(4)L4水準誤差結果については、検出が故障したと判定し、プロセッサは、操作者が手動で修復するように指導するために故障信号を送信する、請求項9に記載の切羽面液圧支保架台群状態検知記述方法。



Define the maximum allowable error as Δ1, set the Δ1 value in advance,
(1) Regarding the L1 level error result, it is determined that the detection result is sufficiently accurate and there is no need to perform an error check,
(2) Regarding the L2 level error result, the detection result is relatively accurate, and the cumulative error test is performed for every X1 hydraulic supports, and it is determined that X1 = [Δ1/δ2].
(3) Regarding the L3 level error result, the detection result is relatively rough, and cumulative error inspection was performed for every X2 hydraulic supports, and it was determined that X2 = [Δ1/δ3].
(4) For the L4 level error result, it is determined that the detection has failed, and the processor sends a failure signal to instruct the operator to manually repair the face hydraulic pressure according to claim 9. A method for detecting and describing the status of a group of support frames.



JP2023062009A 2022-09-13 2023-04-06 Face hydraulic support gantry group status detection description method Active JP7429379B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211107584.3 2022-09-13
CN202211107584.3A CN115371560B (en) 2022-09-13 2022-09-13 Working face hydraulic support base group state sensing description method

Publications (2)

Publication Number Publication Date
JP7429379B1 JP7429379B1 (en) 2024-02-08
JP2024041026A true JP2024041026A (en) 2024-03-26

Family

ID=84070857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023062009A Active JP7429379B1 (en) 2022-09-13 2023-04-06 Face hydraulic support gantry group status detection description method

Country Status (3)

Country Link
JP (1) JP7429379B1 (en)
CN (1) CN115371560B (en)
AU (1) AU2023202719A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808137B (en) * 2022-12-19 2024-06-21 山东科技大学 Hydraulic support group straightness detection method for marker point assisted binocular vision
CN116188570A (en) * 2022-12-19 2023-05-30 山东科技大学 Binocular vision-based hydraulic support pose detection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276344B2 (en) 1999-04-12 2002-04-22 三菱重工業株式会社 Segment positioning apparatus and method and tunnel excavator
CN107765236B (en) * 2017-09-30 2023-04-14 西安科技大学 Fully-mechanized coal mining face hydraulic support absolute position and attitude detection device and method
CN109519204A (en) * 2018-11-29 2019-03-26 江苏华海钢结构有限公司 A kind of adaptive straightening method for coal mine hydraulic supporting
CN109751070A (en) * 2018-12-29 2019-05-14 中国矿业大学 Hydraulic support and its detection method based on IMU real-time monitoring supporting pose
JP2021172502A (en) * 2020-04-28 2021-11-01 コベルコ建機株式会社 Carriage guide device of crane
CN112344861B (en) 2020-11-05 2022-06-14 辽宁大学 Novel method for testing roadway surrounding rock support deformation
CN112686889B (en) * 2021-01-28 2022-03-25 郑州煤矿机械集团股份有限公司 Hydraulic support pushing progress detection method and system based on monocular vision automatic label
CN114170400B (en) * 2021-11-24 2024-04-09 太原理工大学 Hydraulic support group space straightness measurement and adjustment method based on three-dimensional point cloud

Also Published As

Publication number Publication date
CN115371560B (en) 2023-08-29
AU2023202719A1 (en) 2024-03-28
JP7429379B1 (en) 2024-02-08
CN115371560A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7429379B1 (en) Face hydraulic support gantry group status detection description method
CN111268530B (en) Method and apparatus for measuring, positioning and installing elevator shaft
KR100887361B1 (en) Gis system
CN109580658B (en) Inspection method and inspection apparatus
CN107993958B (en) Orthogonality compensation method and compensation system in semiconductor defect detection/photoetching
CN110230981B (en) Dimension detection system and dimension detection method for large-size piece
CN112230345A (en) Optical fiber auto-coupling alignment apparatus and method
JP5763974B2 (en) Progress measurement device, progress measurement system, and progress measurement method
CN110953993A (en) Detection device and method for sag and distance limit of power transmission line
CN114628299B (en) Wafer alignment confirmation method and Taizhou ring cutting method
CN101319880B (en) Method and device for detecting core thickness of drilling bit
CN115753024A (en) Automatic centering method for lens MTF test
CN111272156A (en) Automatic measurement equipment, method and system for determining attitude of vertical shaft heading machine
US11978645B2 (en) Laser processing apparatus
JP2009192292A (en) Track inspecting apparatus and track inspecting method
CN112557768A (en) On-chip antenna test system and test method
KR102592603B1 (en) Monitoring method for vision inspection apparatus
KR20150002512A (en) An apparatus and method of using an imaging device for adjustment of at least one handling device for handling semiconductor components
CN114320305A (en) Optical vision shaft excavation guiding system and guiding method
CN113531018B (en) Mine hoist brake disc fault monitoring system and method based on laser grids
KR20000044563A (en) Center aligning device for wafer and method therefor
CN112507871B (en) Inspection robot and detection method thereof
CN117169118A (en) Non-contact type in-hole surface appearance detection device and method
CN109884501B (en) Detection machine, broken line short circuit detection machine and correction method
CN112557769A (en) On-chip antenna test system and test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7429379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150