JP2024039480A - 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤 - Google Patents

有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤 Download PDF

Info

Publication number
JP2024039480A
JP2024039480A JP2022144071A JP2022144071A JP2024039480A JP 2024039480 A JP2024039480 A JP 2024039480A JP 2022144071 A JP2022144071 A JP 2022144071A JP 2022144071 A JP2022144071 A JP 2022144071A JP 2024039480 A JP2024039480 A JP 2024039480A
Authority
JP
Japan
Prior art keywords
organic wastewater
treatment
organic
biological treatment
bioactive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022144071A
Other languages
English (en)
Inventor
卓也 北澤
拓矢 有田
弘明 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2022144071A priority Critical patent/JP2024039480A/ja
Publication of JP2024039480A publication Critical patent/JP2024039480A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】生物処理を安定して効率良く行うとともに、有機性排水中の難分解性有機物及び色度成分を効率良く除去することが可能な有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤を提供する。【解決手段】難分解性有機物及び色度成分を含む有機性排水に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加し、生物活性剤が添加された有機性排水に流動担体を投入し、流動担体に微生物を付着させて生物処理することにより有機性排水中の難分解性有機物及び色度成分を除去する有機性排水の処理方法である。【選択図】図1

Description

本発明は、有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤に関する。
有機性排水は業種を問わず工場や事業所などから排出されている。特に、清涼飲料水製造工場などからお茶系製品またはコーヒー系製品の製造時に排出される排水は、難分解性有機物や色度成分などを多く含むことが知られている。
一般的な有機性排水の一般的な処理方法としては、前処理(一次処理)、生物処理(二次処理)、及び高度処理(三次処理)の利用が知られている。前処理は、排水中の夾雑物を除去する工程であり、物理化学的処理方法(スクリーン、加圧浮上処理、凝集沈殿処理、自然な固液分離など)がある。前処理後の排水は、生物処理がされ、生物処理で除去出来なかった栄養塩類等の成分が多く残留する場合には、更に高度処理が行われる。処理水は系外へ排出されるが、各工程で生じたし渣、余剰汚泥などは別途処理が必要となる。
特に、高分子の難分解性有機物及び色度成分を含む有機性排水の場合、これら成分の生物処理での除去が難しく、高度処理による処理が行われる。しかしながら、生物処理後の処理水中に難分解性有機物及び色度成分が多く残留するため、処理工程及び処理設備の増大、薬品コストの増加に繋がるといった課題がある。
例えば、特開2021-20138号公報(特許文献1)は、カルシウムイオンまたは鉄イオンから選ばれる少なくとも1種を含み、液状である、生物処理槽内のバチルス属細菌によるデンプン分解を促進させるための排水の生物処理促進剤が記載されている。具体的には、少なくともデンプンを含む排水の処理時に、生物処理槽内の特定のバチルス属細菌のデンプン分解を促進し、剤自体の堆積による汚泥発生量の増加や配管閉塞を防ぐことが記載されている。
特開2018-153713号公報(特許文献2)は、生物難分解性または遅分解性の有機物成分を含有するCODCrが500mg/L以上の水系の生物処理に使用される生物処理性能を向上させるための鉄塩を主成分とする生物活性化剤、及び生物活性化剤の添加方法、生物処理方法が記載されている。具体的には、鉄塩の添加量が0.25~5.0mg-Fe2+/Lの範囲であり、処理対象の生物難分解性有機物成分としてグリコールエーテル類、非イオン性界面活性剤、重合物、生物由来の高分子化合物が記載されている。
特開2009-119406号公報(特許文献3)は、微生物を固定した担体が添加された流動床式生物反応槽によって難分解性有機物を含む排水を生物処理し、被生物処理水を凝集分離処理することによって、難分解性有機物を凝集して前記排水から分離除去することを特徴とする排水処理方法とその装置が記載されている。具体的には、難分解性有機物を含む排水の排水処理について、排水のBOD/CODMn比が0.3程度と比較的低いこと、運転時のCODMn容積負荷条件、流動担体の種類が記載されており、流動床式生物反応槽から排出された被生物処理水中の難分解性有機物は後段の凝集分離槽にて、凝集剤を添加することで除去することが記載されている。
特開2021-20138号公報 特開2018-153713号公報 特開2009-119406号公報
しかしながら、特許文献1~3のいずれも、生物処理を安定して効率良く行いながら難分解性有機物及び色度成分の除去をより効率良く行う点においては、まだ改善の余地がある。
例えば、特許文献1では、処理対象はデンプンであり生物処理促進剤による特定のバチルス属細菌の活性化によるデンプン分解率の向上を検討しているのみであり、生物処理の安定化及び効率化と、難分解性有機物及び色度成分の除去処理との両立については、詳しく検討がなされていない。
特許文献2では、処理対象をグリコールエーテル類、非イオン性界面活性剤、重合物、生物由来の高分子化合物としているが、実施例ではPEG-600(平均分子量:600)を使用しており、分子量が低い難分解性有機物の低減効果は検討しているが、難分解性有機物及び色度成分への効果は不明である。特許文献3も、BOD/CODMn比が0.3程度と比較的低い難分解性有機物の含有排水を処理対象としており、難分解性有機物及び色度成分への効果は不明である。
上記課題を鑑み、本発明は、生物処理を安定して効率良く行うとともに、有機性排水中の難分解性有機物及び色度成分を効率良く除去することが可能な有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤を提供する。
上記課題を解決するために、本発明者らが鋭意検討した結果、難分解性有機物及び色度成分を含む有機性排水に対し、鉄イオンとカルシウムイオンとを含む生物活性剤を添加し、流動担体に微生物を付着させて生物処理することが有効であるとの知見を得た。
以上の知見を基礎として完成した本発明は一側面において、難分解性有機物及び色度成分を含む有機性排水に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加し、生物活性剤が添加された有機性排水に流動担体を投入し、流動担体に微生物を付着させて生物処理することにより有機性排水中の難分解性有機物及び色度成分を除去することを有する有機性排水の処理方法である。
本発明に係る有機性排水の処理方法は一実施態様において、分画分子量500以上の難分解性有機物及び色度成分を含む有機性排水を処理することを含む。
本発明に係る有機性排水の処理方法は別の一実施態様において、生物処理で得られる生物処理水を固液分離処理することを更に含む。
本発明に係る有機性排水の処理方法は更に別の一実施態様において、生物処理後、固液分離処理する前に、凝集処理を行う。
本発明に係る有機性排水の処理方法は更に別の一実施態様において、固液分離処理で得られる余剰汚泥を、有機性排水を生物処理する処理槽へ返送する。
本発明に係る有機性排水の処理方法は更に別の一実施態様において、流動担体として微生物を外表面上に付着または保持させる結合固定化担体を使用し、該担体を処理槽内に1~50容積%投入して生物処理する。
本発明に係る有機性排水の処理方法は更に別の一実施態様において、流動担体に対する汚泥の付着量の増減の割合を15質量%以内として生物処理を行う。
本発明は別の一側面において、難分解性有機物及び色度成分を含む有機性排水を導入して貯留する調整手段と、調整手段に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加して生物活性剤処理液を得る生物活性剤添加手段と、生物活性剤処理液を導入し、流動担体と生物活性剤処理液とを接触させて流動担体に微生物を付着させて生物処理することにより、難分解性有機物及び色度成分を除去して生物処理水を得る生物処理手段と、生物処理水を凝集処理し、凝集処理水を得る凝集処理手段と、凝集処理水を固液分離し、処理水を得る固液分離手段とを備える有機性排水の処理装置である。
本発明に係る有機性排水の処理装置は一実施態様において、調整手段内に流動担体が収容されている。
本発明に係る有機性排水の処理装置は別の一実施態様において、生物活性剤添加手段が、生物活性剤を生物処理手段へ更に添加する。
本発明に係る有機性排水の処理装置は更に別の一実施態様において、生物処理手段が、流動担体として微生物を外表面上に付着または保持させる結合固定化担体を使用し、該担体を処理槽内に5~50容積%収容して生物処理を行う。
本発明は更に別の一側面において、微生物を付着させた流動担体を処理槽内で流動させて有機性排水を生物処理する際に、流動担体への微生物の過剰な付着を抑制しつつ一定量を保持しながら生物処理の活性を向上させ、これにより有機性排水に含まれる難分解性有機物及び色度成分を除去するための有機性排水の難分解性有機物及び色度成分除去用薬剤であって、鉄イオン及びカルシウムイオンをそれぞれ1~20質量%含有し、原水に対して1~300g/m3で添加される有機性排水の難分解性有機物及び色度成分除去用薬剤である。
本発明によれば、生物処理を安定して効率良く行うとともに、有機性排水中の難分解性有機物及び色度成分を効率良く除去することが可能な有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤が提供できる。
本発明の実施の形態に係る有機性排水の処理方法を表す概略図である。 本発明の実施の形態に係る典型的な有機性排水の処理装置及び処理方法を表す概略図である。 第1の変形例に係る有機性排水の処理装置及び処理方法を表す概略図である。 第2の変形例に係る有機性排水の処理装置及び処理方法を表す概略図である。
以下、本開示で記載される各用語の意味を以下に説明した後に、図面を参照しながら本発明の実施の形態を説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。
<有機性排水>
本実施形態に利用可能な有機性排水としては特に限定されず、生物処理が必要な種々の排水が利用できる。例えば、各種産業排水処理、下水処理、し尿処理、などにおいて発生する有機性排水が利用できる。清涼飲料水製造工場、食品加工工場、食品製造工場、肥料製造工場、機械工場、自動車工場、屠畜場、食肉処理施設、食肉加工工場など各種工場で発生する排水、生下水、生し尿、排水汚泥脱水後の脱水分離液も、本実施形態に係る有機性排水として利用できる。また、ショッピングセンタ、レストラン、スーパーマーケット、ホテル、病院などの各種施設で発生する排水などを本実施形態に係る有機性排水として利用してもよい。このような有機性排水は、溶解性有機物及び浮遊物質(SS)を含み、無機物を更に含んでいても良い。
<溶解性有機物>
溶解性有機物は、孔径1μmのろ紙によってろ過されたろ液中の有機物の総称を指す。溶解性有機物は、具体的には、溶解性CODCr、溶解性CODMn、溶解性BOD、溶解性TOC、溶解性還元糖、溶解性でんぷんなどを含み、SS由来の有機物以外で液中に溶解したものを指す。
<浮遊物質:SS>
SS(Suspended Solids)は、排水中に浮遊する固形状の懸濁物質のことであり、孔径1μmのろ紙でろ過した際にろ紙上に残留する物質を意味する。SSは無機性及び有機性の物質を含む。無機性のSSは、土壌由来の成分や粘土成分などを含む。有機性のSSは、動植物及び微生物の細胞由来や工場由来の成分を含む。本実施形態の有機性排水に含まれるSSは特に限定されないが、清涼飲料水製造工場の製造工程で生じた成分、活性汚泥、流動担体から剥離した汚泥、凝集処理工程で生じた汚泥フロック由来のSS等が該当する。
<難分解性有機物>
難分解性有機物は、生物学的な異化、資化などを含む反応によって分解が難しいまたは分解に要する時間が長い有機物を指し、典型的には、分子量が数百以上の有機物を指す。具体的には、高分子有機化合物に分類され、例えば、デキストリンなどのオリゴ糖(一般的に分子量300~3000程度の分画範囲)、でんぷんなどの多糖類(オリゴ糖以上の分画分子量)、グルカン・β-グルカンなどのセルロース、ヘミセルロース、ムコ多糖、タンパク質、アミノ酸、フミン質及びその複合体(分子量102~107)、メラノイジン(分子量1000~2000)及びその複合体などの前記のいずれかの1種類以上の物質を含む化合物または複合体を難分解性有機物として挙げることが出来る。フミン質及びその複合体やメラノイジン及びその複合体は色度成分でもある。難分解性有機物は、難分解性有機物(成分)、難分解性COD、遅延性有機物(成分)、遅延性BODなどとも呼ばれる。
<色度及び色度成分>
本実施形態において「色度」は水の着色の程度を示す指標であり、水中のコロイド状物質や溶解性物質に起因する。「色度成分」はこの色度を呈する成分を示す。色度成分としては、例えば、鉄、マンガンなどの金属イオン、フミン質及びその複合体やメラノイジン及びその複合体などの有機物が挙げられる。メラノイジンは糖とアミノ酸の反応(メイラード反応)によって生成する成分であり、典型的には「こげ」の茶色の色を呈す。
<分画分子量>
本実施形態に係る生物処理に好適な有機性排水としては、分画分子量500以上、一実施態様では500~20,000、更には20,000以上の難分解性有機物及び色度成分を含む有機性排水である。分画分子量の上限値に特に制限はないが、典型的には10,000,000以下であり、更には1,000,000以下であり、より更には500,000以下である。分画分子量は、LC-OCD(Liquid Chromatography-Organic Carbon Detector)分析装置(サイズ排除カラムを備えた液体クロマトグラフ有機炭素計)を用いて測定した際のモル質量ごとに画分された分子量を指す。
具体的には、分析においては、有機性排水の難分解性有機物及び色度成分を構成する有機炭素を以下の画分に分けて評価する。
・Biopolymers(バイオポリマー;BP):分子量が概ね20,000以上の画分。
・Humic Subst.(フミン質;HS):分子量が概ね500~20,000の画分。
・Building Blocks(ビルディングブロック/基礎的要素;BB):分子量が概ね300~500の画分。
・LMW Acids(低分子有機酸;LA):分子量が概ね350以下の有機酸の画分。
・LMW Neutrals(低分子中性物質;LN):分子量が概ね350以下の有機酸以外の有機物の画分。
本実施形態では、特に、分画分子量が概ね500~20,000の画分であるフミン質、更には分子量が概ね20,000以上の画分であるバイオポリマーの除去に際してより効果的に除去できる。
このような有機性排水中のCODCrは10~5,000mg/L、更には100~4,000mg/L、より更には300~3,000mg/Lである。BODは10~5,000mg/L、更には50~4,000mg/L、より更には100~3,000mg/Lである。色度は10~2,000度、更には50~1,500度、より更には100~1,000度である。
<生物活性剤>
本実施形態に係る生物活性剤は、鉄イオン及びカルシウムイオンを含み、典型的には液状の薬剤である。鉄イオンはFe2+又はFe3+を指し、カルシウムイオンはCa2+を指す。生物活性剤として鉄イオンに加えて生物処理の補酵素としてのカルシウムイオンを更に含有させることにより、生物処理における流動担体への過剰な汚泥(生物膜)付着を抑制しつつも一定量を強固に付着させることができる。その結果、難分解性有機物及び色度成分の分解に関わる生物の分解活性及び生理活性を向上できる。
鉄イオンを含む化合物としては、水溶性の鉄化合物であれば特に限定されないが、例えば、ポリ塩化鉄、ポリ硫酸第二鉄、塩化第二鉄、塩化第一鉄、硫酸鉄などを好ましく挙げることができる。カルシウムイオンを含む化合物としては、水溶性のカルシウム化合物であれば特に限定されないが、例えば、塩化カルシウム、水酸化カルシウム、酸化カルシウム、硝酸カルシウムなどの水溶性のカルシウム化合物を好ましく挙げることができる。
カルシウム化合物と鉄化合物は、それぞれ、2種以上の化合物を組み合わせてもよいし、単独の化合物を用いてもよい。カルシウム化合物と鉄化合物は、水和物であってもよい。これらの化合物としては、市販の粉体化合物を使用してもよいし、例えば塩化第二鉄の水溶液などの市販の液体化合物を用いてもよい。
生物活性剤は、典型的には液状であり、薬剤中の鉄イオン及びカルシウムイオンの濃度がそれぞれ薬剤の1~20質量%となることが好ましく、1~10質量%となることがより好ましく、2~8質量%となることがより好ましい。生物活性剤中のカルシウムイオン及び鉄イオンの濃度は用いた化合物の質量と液剤全体の質量とから算出しても良いし、フレーム原子吸光法やICP発光分光分析法(両法ともJIS K0102:2019)により測定してもよい。
生物活性剤の鉄イオンとカルシウムイオンとの混合比(質量比)は、カルシウムイオン:鉄イオンが1:10~10:1となるように調製されていることが好ましく、1:5~5:1となるように調製されていることがより好ましく、1:3~3:1となるように調製されていることが更に好ましい。鉄イオンとカルシウムイオンの混合比を適切化することで、有機性排水中の難分解性有機物の分解促進に加えて色度成分の除去率も顕著に向上する。また、凝集反応による汚泥沈降性の向上や処理水SS、処理水濁度の低減効果もある。
鉄イオン及びカルシウムイオン以外の成分は特に制限しないが、微生物の生育及び生物処理活性を高めるための成分を更に加えてもよい。このような成分としては、窒素源、リン源、金属源、難分解性有機物、色度の分解に寄与する化合物、及び微生物等を同時に含んでいてもよい。鉄イオン及びカルシウムイオン以外の成分は薬剤の50質量%以下とすることが好ましく、20質量%以下とすることがさらに好ましく、10質量%以下とすることがさらに好ましく、5質量%以下とすることがより更に好ましい。
生物活性剤の製造に際しては、カルシウム化合物と鉄化合物とを混合する場合の混合方法や混合順序に制限は無い。例えば塩化カルシウムと塩化第一鉄の粉体化合物を原料とするのであれば、純水に塩化カルシウムを入れてミキサーで混合し、さらに塩化第一鉄を入れてミキサーで混合するといった通常の方法で混合することができる。また、例えば塩化第二鉄の37%水溶液のような液体品を原料とするのであれば、液体品を純水で適当な濃度に希釈して、適宜カルシウム化合物を添加するなどすればよい。カルシウム化合物と鉄化合物とを溶解させる際の温度に制限は無く、室温で溶解させてもよいし、あるいは投げ込み式ヒーターやジャケット式ヒーターなどを溶解槽に設置して適宜加温しながら溶解させてもよい。このようにして得られる生物活性剤の添加量は、原水量1m3/dに対し1g以上300g以下が好ましく、5g以上200g以下がより好ましく、10g以上100g以下が最も好ましい。
<流動担体>
本実施形態では、流動担体を用いた好気的処理を行うことが好ましい。流動担体を用いた好気的処理を行うことにより、有機性排水中の難分解性有機物及び色度成分をより効率的に低減できる。流動担体としては、微生物をゲルの微細な格子構造内に取り込み、包括する包括固定化法により固定化した包括固定化担体を用いることも可能であるが、主として担体の外表面上に微生物を付着または保持させる結合固定化法によって微生物を固定化した結合固定化担体を用いることが好ましい。
担体の材料に特に制限はなく、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリプロピレン等からなる担体等の一般的な材料が利用可能である。担体の形状としては球形、四角形、円筒形、多孔系の何れも使用可能であり、微生物を外表面に付着させる前の担体の有効径は1~20mm程度であることが好ましい。担体の比表面積は、200~30,000m2/m3、より好ましくは200~20,000m2/m3、更に好ましくは200~10,000m2/m3とし、比重を1.01~1.1、更には1.01~1.05とすることが好ましい。
難分解性有機物と色度成分とを含む有機性排水を効率的に処理するためには、担体の充填量を1~50容積%とすることが好ましく、より好ましくは5~40容積%、更に好ましくは10~35容積%とする。更に、外表面に微細な孔を有する担体、又は外表面に微細な凹凸を有する担体を処理槽内へ収容し、生物活性剤を添加して馴致を行うことで、担体の外表面への微生物の付着及び固定をより強固にできる。
一方、流動担体に付着する付着汚泥の好気条件による生物処理反応は、流動担体に付着する付着汚泥の表面膜厚数μm程度でのみ進行するため、単純に汚泥付着量を増加させても処理性能は向上しない。逆に、汚泥付着量が増加しすぎると、流動担体の重量の増加による処理槽内での流動効率の低下や、流動担体を流動させるための動力が増すことにより処理効率が有意に向上しない場合がある。
本実施形態によれば、結合固定化担体を利用し、生物処理の活性を向上させる上述の生物活性剤を添加することで、有機性排水の処理性能は保持しつつも、流動担体の流動効率及び流動させるための動力は変えずに処理効率の向上を図ることが可能となる。
(有機性排水の処理方法)
本発明の実施の形態に係る有機性排水の処理方法は、図1に示すように、難分解性有機物及び色度成分を含む有機性排水に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加し、生物活性剤が添加された有機性排水に流動担体を投入し、流動担体に微生物を付着させて生物処理することにより、有機性排水中の難分解性有機物及び色度成分を除去する工程を有する。
<生物処理>
本実施形態に係る生物活性剤は、生物処理の適用現場に添加して使用することができる。生物処理の方法としては、例えば、循環式硝化脱窒法、ステップ式硝化脱窒法、直接脱水(前脱水)型脱窒素処理方式などの硝化脱窒法の他、標準活性汚泥法、オキシデーションディッチ法、深槽曝気法、ステップエアレーション法などの好気性活性汚泥法、流動担体などを用いる好気性生物膜法、固定床型浸漬ろ床法、流動床型浸漬ろ床法、回転円板法などの生物膜法などを挙げることができる。また、嫌気処理槽、メタン発酵槽、生物脱臭槽、コンポスト発酵槽など有機性排水の処理が求められる現場に適宜使用可能である。
生物活性剤は、流動担体を収容した生物処理手段2の処理槽内に直接供給してもよいし、その上流側の生物処理手段2へ有機性排水を導入するための配管に供給してもよい。生物活性剤が添加された有機性排水は、生物活性剤の効果によって、流動担体への過剰な生物膜の付着を抑制され、流動担体には一定量の生物膜が強固に保持される。これにより、生物処理活性が向上し、難分解性有機物及び色度成分の低減が促進されながら安定的に生物処理が進行する。
より好適には、図2に示すように、本発明の実施の形態に係る有機性排水の処理方法は、調整手段1に難分解性有機物及び色度成分を含む有機性排水を導入して貯留する貯留工程と、調整手段1に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加して生物活性剤処理液を得る前処理工程と、生物処理手段2に生物活性剤処理液を導入し、処理槽の内部に収容された流動担体と生物活性剤処理液とを接触させて流動担体に微生物を付着させて生物処理することにより、難分解性有機物及び色度成分を除去して生物処理水を得る生物処理工程と、生物処理で得られる生物処理水を凝集処理し、凝集処理水を得る凝集処理工程と、凝集処理水を固液分離し、処理水及び余剰汚泥を得る固液分離処理工程と、固液分離処理工程で得られる余剰汚泥を調整手段1及び/又は生物処理手段2へ返送する返送工程とを有する。
有機性排水は貯留槽等の処理槽を備える調整手段1へ導入される。そして生物活性剤添加手段3によって鉄イオン及びカルシウムイオンを含む生物活性剤が調整手段1に添加される。有機性排水及び生物活性剤の混合水である生物活性剤処理液は、生物処理手段2へ導入され、生物処理手段2において生物処理が行われる。生物処理手段2の処理槽内には流動担体が投入されており、ここでは流動担体へ微生物を付着させながら好気条件下で生物処理が行われる。生物活性剤の効果によって流動担体への過剰な汚泥の付着量が抑制されるとともに一定量の生物膜が流動担体表面に強固に保持されるため、生物処理活性が向上し、難分解性有機物及び色度成分の低減が促進され、処理が進行する。
調整工程及び前処理工程においては、処理槽内に流動担体を投入することによって好気条件での生物処理における活性汚泥等の微生物の滞留時間を高め、その存在量を維持し、処理対象成分との接触効率が向上させることが好ましい。これにより、反応槽容積を最適化でき、より処理水能を安定化させることが可能である。本実施形態では、生物活性剤の効果によって汚泥付着量を一定に保持することが可能となり、過剰な汚泥の付着を防止できるとともに、処理槽内に一定の汚泥量を保持することができ、処理性能が安定化し、また、流動担体の流動効率及び流動させるための動力も大きく変更せずに処理が可能である。
生物活性剤は、調整手段1及び生物処理手段2の双方へ添加されることで、有機性排水中に含まれる難分解性有機物及び色度成分が、難分解性有機物及び色度成分を処理する微生物に摂取されやすくなる。なお、生物活性剤の添加量は、調整手段1及び生物処理手段2またはその前段に添加される合計の添加量が、予め定められた所定の範囲となるように調製されることが好ましい。
生物処理の安定化と難分解性有機物及び色度成分の除去処理との両立を図るためには、例えば、調整手段1と生物処理手段2との双方へ生物活性剤を添加する場合では、調整手段1と生物処理手段2へ添加する生物活性剤の割合を10:1~1:10とすることが好ましい。
生物処理手段2における処理槽内のpHは6.0~8.5の範囲が好ましく、7.0~8.0の範囲がより好ましい。生物処理手段2では、曝気手段21を介して処理槽内に空気等の酸素含有気体を供給することが好ましい。この際、処理槽内の溶存酸素濃度(DO)は2~8mg/Lが好ましく、2~5mg/Lがより好ましい。水温の条件は、15~35℃が好ましく、20~30℃がより好ましい。処理槽のCODCr容積負荷は、0.1~20kg/m3/dの範囲が好ましく、0.3~10kg/m3/dの範囲がより好ましく、0.5~5kg/m3/dの範囲が最も好ましい。BOD容積負荷は、0.05~10kg/m3/dの範囲が好ましく、0.15~5kg/m3/dの範囲がより好ましく、0.25~2.5kg/m3/dの範囲が最も好ましい。
生物処理において有機性排水中の難分解性有機物及び色度成分を安定的かつ効率良く除去するためには、流動担体へ付着する汚泥量を一定範囲に調整することが好ましい。種々検討を行った結果、流動担体を使用する場合は、担体への汚泥の付着量(汚泥付着量)が5~60mg-SS/個とすることが好ましく、10~50mg-SS/個とすることがより好ましく、15~22mg-SS/個とすることが更に好ましい。或いは、担体への汚泥付着量が5~40mg-VSS/個付着させることが好ましく、10~20mg-VSS/個付着させることがより好ましく、15~18mg-VSS/個付着させることが更に好ましい。
流動担体への汚泥付着量の分析は、処理槽内の被処理水を採取後、孔径1mmのガラスろ紙を用いて流動担体3~5個分の付着汚泥を剥離し、純水に懸濁させる。懸濁液のMLSS(活性汚泥浮遊物資;Mixed Liquor Suspended Solids)を測定することにより、担体1個あたりのMLSS重量(mg-SS/個)を算出する。MLVSS基準の汚泥付着量であるMLVSS(活性汚泥有機性浮遊物資;Mixed Liquor Volatile Suspended Solids)の担体1個当たりのMLVSS重量(mg-VSS/個)の場合も同様に測定する。
生物処理において安定的に処理を進めていく上で、流動担体へ付着する汚泥量が経時的に多くなったり少なくなったりすると、有機性排水中の難分解性有機物及び色度成分を安定的かつ効率良く除去する効果が十分に得られない場合がある。そのため、本発明の実施の形態に係る有機性排水の処理方法では、生物活性剤を添加しながら、生物処理中における担体への汚泥付着量の増減の割合を15%以内、より好ましくは13%以内、更に好ましくは10%以内、更に好ましくは8%以内として、生物処理を行う。汚泥不略量の増減割合の下限値は特に制限されないが、典型的には1%以上、更には3%以上である。
汚泥付着量の増減の割合は、生物処理が安定し、定常状態となった条件における任意の時間間隔、例えば2週間間隔程度で3回程度(3回以上であれば回数は問わない)流動担体を含む被処理水を採取し、流動担体に付着する汚泥量を測定する。各測定値と各測定値の平均値とから平方誤差(分散)を算出し、分散の平方根から標準偏差を算出した後に、平均値に対する標準偏差の百分率を算出した値とする。この増減の割合は担体に対する汚泥付着量の安定性を示しており、この値が小さい場合、汚泥付着量が一定であることを示す。
本実施形態に係る生物処理においては、処理槽の単位容積あたりの流動担体のMLSS換算値が100~7,000mg-SS/Lとなるように、生物活性剤が添加された生物活性処理水を生物処理することが好ましく、500~5,000mg-SS/Lとなるように生物処理することがより好ましく、1,000~3,000mg-SS/Lとなるように生物処理することがより更に好ましい。また、生物処理を行う処理槽の単位容積あたりの流動担体のMLVSS換算値が100~6,000mg-VSS/Lとなるように、生物活性剤が添加された生物活性処理水を生物処理することが好ましく、300~5,000mg-VSS/Lとなるように生物処理することがより好ましく、1,000~2,000mg-VSS/Lとなるように生物処理することがより更に好ましく、更に別の態様では1,000~1,700mg-VSS/Lとすることができる。
MLSS換算値は、前記の担体1個当たりのMLSS重量(汚泥付着量)に曝気槽内の流動担体の全投入数を乗じ、その値を曝気槽容積で割ることで算出する。MLVSS換算値は同様の方法で、前記の担体1個当たりのMLVSS重量(汚泥付着量)を用いて算出する。MLVSSはMLSSから無機物分を引いた値であるため、活性汚泥もしくは付着汚泥中の生物量の指標となる。なお、生物処理工程では、好気的な有機物処理のために、窒素源やリン源などの栄養塩類が必要なため、BOD:全窒素:全リン=100:5:1程度となるように、適宜添加してもよい。
生物処理を経た生物処理水は凝集処理手段4へ流入し、生物処理水に対して凝集剤が添加されて混合される。生物処理水中のSS成分、SS由来成分、溶解性有機成分、栄養塩類などが凝集反応によって汚泥フロックとなる。凝集反応で得られる凝集処理水及び汚泥フロックは、固液分離手段5へ送られ、固形分と処理水が分離される。処理水は系外へ排出される。固形分及び一部の処理水は、汚泥返送手段6によって余剰汚泥として系外へ搬出されるが、その一定量を貯留工程又は前処理工程又はその前段に返送することも可能である。このように、貯留工程又は前処理工程又はその前段に汚泥フロック及び処理水の一部を返送することで、貯留工程又は前処理工程での生物処理反応を促進でき、また、生物処理工程の汚泥濃度の維持、凝集処理工程での凝集剤使用量の削減効果などが得られる。
(有機性排水の処理装置)
本発明の実施の形態に係る有機性排水の処理装置は、図2に示すように、難分解性有機物及び色度成分を含む有機性排水を導入して貯留する調整手段1と、調整手段1に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加して生物活性剤処理液を得る生物活性剤添加手段3と、生物活性剤処理液を導入し、流動担体と生物活性剤処理液とを接触させて流動担体に微生物を付着させて生物処理することにより、難分解性有機物及び色度成分を除去して生物処理水を得る生物処理手段2と、生物処理水を凝集処理し、凝集処理水を得る凝集処理手段4と、凝集処理水を固液分離し、処理水を得る固液分離手段5とを備える。
調整手段1は、有機性排水、汚泥返送手段6から返送された余剰汚泥(処理水及び汚泥フロック)、生物活性剤添加手段3から添加された生物活性剤を一時的に貯留し、後段の流量を調整する手段である。調整手段1の処理槽内を好気条件とすることで生物処理を一部進行させることが可能である。具体的には、調整手段1は、難分解性有機物及び色度を含む有機性排水、前記処理水及び汚泥フロック、生物活性剤添加工程から添加された生物活性剤が流入する調整槽(処理槽)で構成される。調整槽の数は特に限定されないが、流入排水の有機物負荷条件によって、その数及び容積が決定される。また、調整槽の前段に、し渣や大きなSS成分などの夾雑物の流入を防止するため、孔径数mm程度の粗目または細目スクリーン、自動除塵機などを設置することも可能である。さらに、調整槽内に空気曝気装置を設置することも可能であり、これにより生物処理反応を一部進行させ、生物処理工程前の有機物負荷を軽減することができる。
生物処理手段2は、調整手段1で貯留及び前処理を経た原水に対し、好気条件下で好気性生物によって生物処理を行い、原水中の難分解性有機物及び色度成分、他の易分解性有機物、栄養塩類などを低分子化、分解及び除去する手段である。生物処理手段2は、処理槽、曝気手段等で構成される。生物処理手段2に、処理槽内に膜分離ユニットを設置し、膜分離活性汚泥(MBR)処理方式として運用することも可能である。
生物活性剤添加手段3は、有機性排水に生物活性剤を添加するための手段である。生物活性剤添加手段3の詳細は特に限定されないが、薬剤が典型的には液状のため、例えば、薬品貯留槽、薬品溶解槽、薬品注入ポンプ及びそれらに付属する配管等で構成される。
凝集処理手段4は、生物処理手段2における生物処理工程を経た生物処理水に対し、凝集剤を添加・混合し、被処理水中の有機物及びSS成分を捕捉した汚泥フロックを生成させる手段である。凝集処理手段4は、図3に示すように、無機凝集剤等の凝集剤の混和処理を行う混和手段4a、高分子凝集剤等を添加して凝集処理を行う凝集手段4bなどを複数組み合わせて配置することも可能である。
凝集手段4bが備える処理槽内には機械式撹拌機が設置可能であり、その形状、数、回転数は、汚泥フロックが後段の固液分離工程において固液分離が容易になるように適宜決定される。また、各槽内の被処理水及び汚泥フロックの滞留時間も後段の工程が効率的に行える条件とすることが好ましい。
凝集剤の種類や添加量は特に限定されないが、無機系、有機系のどちらでもよく、1種もしくは2種以上を組み合わせて添加することが可能である。無機凝集剤の種類は特に限定されないが、硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、硫酸第二鉄、塩化第二鉄あるいはこれらの混合物が使用可能である。有機系の凝集剤は一般的に高分子凝集剤、有機凝結剤などと呼ばれる。有機系凝集剤の種類に特に制限はないが、カチオン系、アニオン系、両性、ノニオン系などの物性のものを使用することが可能である。
処理槽内のpHを調整するため、凝集剤の添加前にpH調整剤を添加することが可能である。酸の種類は特に限定されないが、硫酸、塩酸、硝酸、リン酸、ホウ酸などの無機酸が挙げられる。アルカリ剤の種類は、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸マグネシウム、炭酸水素ナトリウム、水酸化アンモニウム、炭酸アンモニウムまたはこれらの水和物などを挙げられる。凝集剤やpH調整剤の添加の手段は特に限定されないが、薬剤が液状の場合、薬品貯留槽、薬品溶解槽、薬品注入ポンプ及びそれらに付随する配管などが挙げられる。薬剤が粉末状の場合、例えば、薬品フィーダ及び薬品貯留槽、薬品投入装置などが挙げられる。
固液分離手段5は、凝集処理手段4で凝集処理された凝集処理水を汚泥フロックと処理水に固液分離する工程である。分離された汚泥フロックは、系外へ排出されて汚泥脱水処理設備において脱水処理される。或いは、分離された汚泥フロック及び処理水の一部が、汚泥返送手段6を介して調整手段1またはその前段の配管や設備、生物処理手段2またはその前段の配管や設備に一部返送される。処理水は放流されるか、凝集沈殿処理等の高度処理が行われる。固液分離手段5の具体的な装置構成は特に限定されないが、重力式沈殿処理、凝集沈殿処理、加圧浮上処理、膜分離処理などが挙げられる。経済的な面から考慮すると重力式沈殿処理が好ましい。
汚泥返送手段6は、固液分離工程によって分離された汚泥フロックを系外或いは調整手段1又は生物処理手段2へ返送する手段であり、汚泥移送または汚泥返送ポンプとそれに付属する配管等で構成される。返送される汚泥フロック量は特に限定されないが、原水流入量に対して、0.5~40容積%の範囲が好ましく、1~30容積%の範囲がより好ましい。それ以外の汚泥フロックは系外へ排出される。
本発明の実施の形態に係る有機性排水の処理方法によれば、有機性排水に鉄イオン及びカルシウムイオンを含む生物活性剤が添加されることにより、流動担体への過剰な生物膜の付着を抑制され、流動担体には一定量の生物膜が強固に保持される。これにより、生物処理活性が向上し、難分解性有機物及び色度成分の低減が促進されながら安定的な生物処理が行える。
(第1の変形例)
図3に示すように、生物処理手段2の後段に固液分離手段5aが設けられ、固液分離手段5aの後段に混和手段4a及び凝集手段4bが設けられ、凝集手段4bの後段に更に固液分離手段5bが設けられるような処理装置も好適に利用できる。即ち、図3に示す第1の変形例では、生物処理で得られる生物処理水を固液分離処理する工程を更に含み、その後、混和手段4a及び凝集手段4bを介して凝集処理が行われる点が図2の処理装置と異なる。他は図2の処理装置の構成と同様とすることができる。
第1の変形例では、調整手段1及び生物処理手段2の双方で生物活性剤を添加して流動担体をそれぞれ収容して生物処理を行う。この際、調整手段1での有機物負荷条件を一般的な通常活性汚泥法の条件よりも高負荷条件とし、生物処理手段2での有機物負荷条件を調整手段1よりも低負荷条件とし、双方とも好気条件での生物処理を行う。具体的な有機物負荷としては、調整手段1のBOD容積負荷を1~5kg/m3/dとなるように反応槽容積及び流量を調整する。また、調整手段1及び生物処理手段2の全体のMLSSが500~8,000mg/Lの範囲、より更には1,000~6,000mg/Lの範囲となるように、調整手段1及び生物処理手段2での各負荷条件を調節することも処理の安定性の観点から好ましい。第1の変形例によれば、原水の有機物負荷変動に対応することが可能となる。
(第2の変形例)
本発明の第2の変形例に係る有機性排水の処理装置は、図4に示すように、生物活性剤添加手段3として、生物活性剤を貯留する生物活性剤貯留槽31を備えている。更に、本処理装置は、混和手段4aに添加する無機凝集剤を溶解させて貯留する無機凝集剤貯留槽71を備えた無機凝集剤添加手段7と、凝集手段4bに添加する高分子凝集剤を溶解させて貯留する高分子凝集剤溶解槽81を備えた高分子凝集剤添加手段8とを備えている点が、図3の処理装置と異なる。第2の変形例によれば、各貯留槽で薬剤を貯留することで、適切な濃度に調整された生物活性剤又は凝集剤を過不足なく調整手段1、混和手段4a、凝集手段4bの各処理槽へ供給することができるため、各処理を安定して行うことができる。
本発明の実施の形態に係る有機性排水の処理方法及び処理装置によれば、生物活性剤を利用した生物処理プロセスによる生物処理活性向上効果によって分画分子量500以上の難分解性有機物を含む溶解性有機物及び色度成分の処理性能を向上させることができる。更に、流動担体への過剰な汚泥付着量の抑制及び安定化が図れる。更には、凝集沈殿処理の効率化、即ち凝集剤使用量の削減、敷地面積及び処理設備のコンパクト化が図れる。本処理によって得られる処理水は、栄養塩類等の成分も比較的少ないため、その後に必要に応じて行われる高度処理の簡略化及び短縮化が図れる。
以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
<連続通水試験での溶解性有機物及び色度成分の処理性能向上評価試験>
表1に原水aの性状を示す。原水a(有機性排水)として、市販の麦茶希釈液を用いた。原水aの性状(平均値)はpH:7.1、SS:1mg/L以下、CODCr:795mg/L、CODMn:487mg/L、BOD:403mg/L、TOC:287mg/L、全窒素(T-N):23.7mg/L、全リン(T-P):5.7mg/L、還元糖:522mg/L、でんぷん:220mg/L、色度:245度であった。原水a中のBOD:N:Pの比率が100:5:1となるように、塩化アンモニウム水溶液及びリン酸水素カリウム水溶液を添加した。さらに、曝気槽(生物処理手段)での硝化反応の発生によるpH低下に備え、炭酸水素ナトリウム水溶液を適宜添加した。表2に試験条件を示す。
試験装置の構成は、原水槽(調整手段)、曝気槽(第1の生物処理手段)、処理水槽(第2の生物処理槽)とし、上記の順に連続して原水及び被処理水が連続通水するようにした。曝気槽の容積は2Lとし、曝気槽に流動担体を投入した。流動担体の担体充填率は、各35容積%とした。流動担体はポリエチレン製の担体を使用した。曝気槽は保温及び散気管による常時空気曝気を行い、水温及び曝気槽の好気条件を維持した。曝気槽の水温は19~23℃、pHは6~8、DOは8~9mg/Lとした。試験区は、馴致期間(馴致1、2)と試験期間(試験1、2)とし、それぞれ比較例と実施例の2系列とした。馴致期間では、CODCr及びBOD容積負荷を段階的に増加させ、流動担体への汚泥付着量を増加させた。試験1では、馴致1から有機物負荷条件を更に増加させ、生物活性剤添加量:100mg/Lとした場合、試験2では、有機物容積負荷はそのまま維持し、生物活性剤添加量:30mg/Lとした場合の溶解性有機物及び色度成分の処理性能を検討した。
水質項目のpH、SS、CODCr、CODMn、BOD、TOC、T-N、NH4-N、NO3-N、T-P、PO4-P、色度、MLSS、MLVSSの測定方法は、下水試験法(日本下水道協会発行、下水試験方法)に準拠した。還元糖の測定方法はフェノール-硫酸法(「還元糖の定量法」 学会出版センター 福井作蔵 著)に準拠し、でんぷんの測定方法は総澱粉量測定キット(Megazyme,日本バイオコン株式会社)の総澱粉量測定法(K-TSHK)に準拠した。処理水の分析は、採取後に孔径1mmのガラスろ紙を用いて汚泥付着量は、流動担体3~5個分の付着汚泥を剥離し、純水に懸濁させ、MLSSを測定し、担体1個あたりのMLSS重量(mg-SS/個)として算出した。また、MLVSS(mg-VSS/個)の場合も同様の方法を用いた。MLSS換算値は、前記の担体1個当たりのMLSS重量(汚泥付着量)に曝気槽内の流動担体の全投入数を乗じ、その値を曝気槽容積で割ることで算出した。MLVSS換算値は同様の方法で、上述の担体1個当たりのMLVSS重量(汚泥付着量)を用いて算出した。さらに、各汚泥付着量の平均値を算出し、その平均値と測定値から平方誤差(分散)を算出し、分散の平方根から標準偏差を算出した。本実施例では、平均値に対する標準偏差の百分率を算出し、汚泥付着量の増減の割合とした。
生物活性剤は、原水流入量に対して試験1で100mg/L、試験2で30mg/Lとし、1回/日の頻度で曝気槽内に添加した。生物活性剤の成分は、カルシウム成分としてCaCl2・2H2O、鉄成分としてFeCl3(37%溶液)、水を含み、各化合物の含有濃度が10質量%であった。表3に連続通水試験の処理水水質、表4に流動担体への汚泥付着量を示す。
(処理水水質)
試験1における比較例の処理水水質(平均値)は、S-CODCr:95mg/L、S-CODMn:49.1mg/L、S-TOC:33.5mg/L、S-還元糖:30.4mg/L、S-色度:193度であった。それに対し、実施例の処理水水質(平均値)はS-CODCr:65mg/L、S-CODMn:32.5mg/L、S-TOC:21.9mg/L、S-還元糖:16.1mg/L、S-色度:130度であり、生物活性剤添加量100mg/Lの条件において、実施例の方が溶解性有機物濃度及び色度成分が低減された。
試験2における比較例の処理水水質(平均値)は、S-CODCr:138mg/L、S-CODMn:79.5mg/L、S-TOC:53.2mg/L、S-還元糖:53.7mg/L、S-色度:246度であった。それに対し、実施例の処理水水質(平均値)はS-CODCr:89mg/L、S-CODMn:48mg/L、S-TOC:33.3mg/L、S-還元糖:27.7mg/L、S-色度:192度であり、生物活性剤添加量30mg/Lの条件においても、実施例の方が溶解性有機物濃度及び色度成分が低減された。さらに試験1、2のS-BOD及びS-でんぷんは定量下限値以下まで低減出来ていた。
(汚泥付着量)
比較例の汚泥付着量は、試験1で17.1~33.0mg-SS/個(平均値22.6mg-SS/個)であり、試験2で18.3~27.0mg-SS/個(平均値23.2mg-SS/個)であった。さらに、比較例の汚泥付着量の増減の割合(対SS)は、試験1で33%、試験2で16%であった。それに対し、実施例の汚泥付着量は、試験1で18.3~22.0mg-SS/個(平均値20.1mg-SS/個)であり、試験2で15.5~17.8mg-SS/個(平均値16.5mg-SS/個)であった。さらに、実施例の汚泥付着量の増減の割合(対SS)は、試験1で7.5%、試験2で5.9%であった。
本試験によれば、本実施形態に係る処理方法を適用することにより、担体への汚泥付着量の変化が少なく、且つ処理中における汚泥付着量の増減も小さく安定し、汚泥付着量も少ないことが分かった。また、流動担体のみを容器に入れて機械撹拌した場合、比較例では汚泥の剥離が多く発生したのに対し、実施例ではほとんど剥離しなかった。即ち、本発明によれば、担体への汚泥付着量が少ない状態でも安定した処理が行え、少量の汚泥量でより多くの溶解性有機物及び色度成分を低減できることが分かった。一般的には、汚泥付着量が少ない場合に処理性能が低下するが、本発明では逆の結果となっている。また、汚泥付着量の増減の割合の評価結果から、本生物活性剤の供給により担体に一定量の汚泥を継続して安定的に付着及び保持させる効果がみられることがわかる。即ち、本発明の実施の形態に係る生物活性剤を加え、担体表面に所定量の微生物を付着固定させて処理することにより、流動担体への汚泥の付着強度を強くでき、生物処理の処理性能を向上できることが分かる。
<生物処理後の凝集処理試験>
ここでは、生物処理工程を経た被処理水及びSS成分を凝集処理工程で処理することを想定した試験を行った。凝集処理試験後の凝集処理水の処理水水質目標値は、S-CODMn:25mg/L未満、S-色度:100度未満とした。
表6に原水性状を示す。凝集処理試験に使用した原水は、上述の連続通水試験の試験2期間中の1日分の処理水とした。原水bの原水性状は、pH:7.4、SS:145mg/L、S-CODMn:73.6mg/L、S-色度:260度であった。原水cの原水性状は、pH:7.4、SS:145mg/L、S-CODMn:45.0mg/L、S-色度:220度であり、上述の連続通水試験結果と同様に、実施例の方が溶解性有機物及び色度成分を低減できた。
ここでは以下の手順で処理を行った。
1)原水bの温度を20℃に調整し、適量をビーカーに分取した。
2)ポリ塩化アルミニウム溶液(PAC容積)を200~500mg/Lの所定濃度になるよう添加し、水酸化ナトリウム水溶液または硫酸を用いてpHを中性に調整した。
3)アニオン系高分子凝集剤を1.0mg/Lになるよう添加し、急速撹拌(150rpm、1分)した。
4)緩速撹拌(50rpm、5分)に切り替えフロックを成長させ、フロックの状態を目視で確認した。
5)2分間静置し、水面の浮遊物を除去した後に上澄水を採取した。上澄水は、ガラス繊維フィルター(孔径1μm)でろ過し、ろ液を水質分析(S-CODMn、S-色度)に供した。
(試験結果)
表7に凝集処理試験後の処理水水質を示す。
比較例では、PAC添加量300mg/L時の処理水水質が、S-CODMn:34.7mg/L、S-色度:100度であった。実施例では、PAC添加量300mg/L時の処理水水質が、S-CODMn:21.9mg/L、S-色度:70度であり、実施例のみ目標値を達成した。比較例では、PAC添加量500mg/Lでも目標値を達成出来なかったため、実施例の方が生物処理工程及び凝集処理工程を含めた処理工程において、処理水水質を低減でき、凝集剤の使用量を削減出来ることが分かる。また、比較例では処理水水質をさらに改善するため後段に処理工程が必要となるが、実施例では不要であることが確認できた。
<生物活性剤による凝集効果について>
生物活性剤による物理化学的な凝集反応によって溶解性有機物及び色度成分が除去されるかを確認するために実施した。試験は、生物活性剤添加後の24時間の回分式試験とし、経時的な処理水水質を確認した。
表8に原水dの性状を示す。原水dは上述の連続通水試験の試験系列からの処理水とし、比較例で試験2運転期間中の1日採取分を使用した。原水性状は、pH:7、S-CODCr:116mg/L、S-TOC:46.5mg/L、S-色度:260mg/Lであった。
ここでは以下の手順で処理を行った。
1)原水を1Lメスシリンダーに採取し、室温にて十分に空気曝気を行った。
2)DOが8.0以上であることを確認し、生物活性剤100mg/Lを添加し、曝気を開始した。試験時間は24時間とした。
3)所定時間に数mLずつサンプリングを行い、遠心分離(3,000rpm、5分)後ガラス繊維フィルター(孔径1.0μm)でろ過し、S-CODCr、S-TOC、S-色度の水質分析を行った。試験開始後24時間までの処理水水質の変化量を評価した。
(試験結果)
表9に凝集処理試験後の処理水水質を示す。試験開始後24時間の比較例の処理水水質は、S-CODCr:117mg/L、S-TOC:44.0mg/L、S-色度:260度であり、試験前後の変化量はほとんどなかった。試験開始後24時間の実施例の処理水水質は、S-CODCr:118mg/L、S-TOC:44.2mg/L、S-色度:270度であり、試験開始後10分から6時間の間ではわずかな濃度の低下がみられたが、最終的な変化がみられなかった。また、試験途中の各濃度の変化量はわずかであり、上述の連続通水試験時の試験結果のような濃度の違いではなかった。
以上の結果から、生物活性剤による物理化学的な凝集効果による溶解性有機物及び色度成分の低減は僅かであり、生物活性剤による溶解性有機物及び色度成分の低減効果は生物処理反応の活性向上による生物学的な効果であると推察された。
<原水に含まれる難分解性有機物及び色度成分の分画分子量について>
本試験では、生物活性剤によって低減される溶解性有機物及び色度成分の詳細な情報を得るため、上述の連続通水試験における原水a及び処理水の分画分子量測定を実施した。処理水は上述の連続通水試験の試験1の期間中に採取した。
試験方法の手順は以下の通りとした。
1)試料は0.45μmPTFEメンブレンフィルターを用いてろ過し、超純水で希釈し調製した。
2)調製した試料はLC-OCD分析装置(LC-OCD Model 8、DOC-Labor社)を用いて測定し、有機物の分画分子量測定を行った。
(試験結果)
表10に試験結果を示す。表10中、DOCは溶存有機炭素量、HOCは疎水性有機炭素量、CDOCは有色溶存有機炭素量を示す。原水a中の有機物の分画分子量は、BP(20,000以上):71mg/L、HS(500~20,000程度):151mg/L、BB(300~500程度):33mg/L、Neutral(350程度以下の有機酸以外の成分):20mg/L、Acid(350程度以下の有機酸成分):8.1mg/Lであった。比較例の処理水中の有機物の分画分子量は、BP(20,000以上):12mg/L、HS(500~20,000Da程度):2.6mg/L 、BB(300~500程度):3.3mg/L、Neutral(350程度以下の有機酸以外の成分):2.9mg/L、Acid(350程度以下の有機酸成分):1.7mg/Lであった。実施例の処理水中の有機物の分画分子量の存在割合は、BP(20,000以上):5mg/L、HS(500~20,000程度):1.8mg/L 、BB(300~500程度):2.5mg/L、Neutral(350程度以下の有機酸以外の成分):2.3mg/L、Acid(350程度以下の有機酸成分):1.2mg/Lであった。BB、Neutral、Acidなどの低分子成分とともに、BP、HSなどの分子量500以上の成分が低減されたことが確認できた。
このように、本発明によれば、生物活性剤の添加によって低分子の有機物ともに分画分子量500以上の有機物を処理する微生物の生物活性を向上でき、これにより、生物処理を安定して効率良く行うとともに、有機性排水中の難分解性有機物及び色度成分を効率良く除去することが可能となることが分かる。
1…調整手段
2…生物処理手段
3…生物活性剤添加手段
4…凝集処理手段
4a…混和手段
4b…凝集手段
5、5a、5b…固液分離手段
6…汚泥返送手段
7…無機凝集剤添加手段
8…高分子凝集剤添加手段
21…曝気手段
31…生物活性剤貯留槽
71…無機凝集剤貯留槽
81…高分子凝集剤溶解槽

Claims (12)

  1. 難分解性有機物及び色度成分を含む有機性排水に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加し、
    前記生物活性剤が添加された前記有機性排水に流動担体を投入し、前記流動担体に微生物を付着させて生物処理することにより前記有機性排水中の前記難分解性有機物及び前記色度成分を除去すること
    を有することを特徴とする有機性排水の処理方法。
  2. 分画分子量500以上の難分解性有機物及び色度成分を含む前記有機性排水を処理することを含む請求項1に記載の有機性排水の処理方法。
  3. 前記生物処理で得られる生物処理水を固液分離処理することを更に含む請求項1又は2に記載の有機性排水の処理方法。
  4. 前記生物処理後、前記固液分離処理する前に、凝集処理を行うことを特徴とする請求項3に記載の有機性排水の処理方法。
  5. 前記固液分離処理で得られる余剰汚泥を、前記有機性排水を生物処理する処理槽へ返送することを特徴とする請求項3に記載の有機性排水の処理方法。
  6. 前記流動担体として前記微生物を外表面上に付着または保持させる結合固定化担体を使用し、該担体を処理槽内に1~50容積%投入して前記生物処理することを特徴とする請求項1又は2に記載の有機性排水の処理方法。
  7. 前記流動担体に対する汚泥の付着量の増減の割合を15%以内として前記生物処理を行うことを特徴とする請求項6に記載の有機性排水の処理方法。
  8. 難分解性有機物及び色度成分を含む有機性排水を導入して貯留する調整手段と、
    前記調整手段に、鉄イオン及びカルシウムイオンを含む生物活性剤を添加して生物活性剤処理液を得る生物活性剤添加手段と、
    前記生物活性剤処理液を導入し、流動担体と前記生物活性剤処理液とを接触させて前記流動担体に微生物を付着させて生物処理することにより、前記難分解性有機物及び前記色度成分を除去して生物処理水を得る生物処理手段と、
    前記生物処理水を凝集処理し、凝集処理水を得る凝集処理手段と、
    前記凝集処理水を固液分離し、処理水を得る固液分離手段と
    を備えることを特徴とする有機性排水の処理装置。
  9. 前記調整手段内に流動担体が収容されていることを特徴とする請求項8に記載の有機性排水の処理装置。
  10. 前記生物活性剤添加手段が、前記生物活性剤を前記生物処理手段へ更に添加することを特徴とする請求項8又は9に記載の有機性排水の処理装置。
  11. 前記生物処理手段が、前記流動担体として前記微生物を外表面上に付着または保持させる結合固定化担体を使用し、該担体を処理槽内に5~50容積%収容して生物処理を行うことを特徴とする請求項8又は9に記載の有機性排水の処理装置。
  12. 微生物を付着させた流動担体を処理槽内で流動させて有機性排水を生物処理する際に、前記流動担体への前記微生物の過剰な付着を抑制しつつ一定量を保持しながら生物処理の活性を向上させ、これにより前記有機性排水に含まれる難分解性有機物及び色度成分を除去するための有機性排水の難分解性有機物及び色度成分除去用薬剤であって、
    鉄イオン及びカルシウムイオンをそれぞれ1~20質量%含有し、原水に対して1~300g/m3で添加されることを特徴とする有機性排水の難分解性有機物及び色度成分除去用薬剤。
JP2022144071A 2022-09-09 2022-09-09 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤 Pending JP2024039480A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022144071A JP2024039480A (ja) 2022-09-09 2022-09-09 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022144071A JP2024039480A (ja) 2022-09-09 2022-09-09 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤

Publications (1)

Publication Number Publication Date
JP2024039480A true JP2024039480A (ja) 2024-03-22

Family

ID=90326247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022144071A Pending JP2024039480A (ja) 2022-09-09 2022-09-09 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤

Country Status (1)

Country Link
JP (1) JP2024039480A (ja)

Similar Documents

Publication Publication Date Title
Cassidy et al. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge
Corsino et al. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater
Tu et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge
Ng et al. Membrane bioreactor operation at short solids retention times: performance and biomass characteristics
Sajjad et al. Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant
Iorhemen et al. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT
Liu et al. Role of adding dried sludge micropowder in aerobic granular sludge reactor with extended filamentous bacteria
Val del Río et al. Stability of aerobic granular biomass treating the effluent from a seafood industry
Vijayalayan et al. Simultaneous nitrification denitrification in a batch granulation membrane airlift bioreactor
JP2013506550A (ja) 生物学的水処理性を向上させるための方法
Yang et al. Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor
JP4925208B2 (ja) 好気性グラニュールの形成方法、水処理方法及び水処理装置
Cydzik-Kwiatkowska et al. Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes
JP2003245689A (ja) 排水の処理方法及び処理装置
AU2002333028A1 (en) Treatment of waste activated sludge
Bernat et al. Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor
JPH0751686A (ja) 汚水処理法
JP5846944B2 (ja) 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法
JP5900098B2 (ja) 窒素およびリンの除去装置ならびに除去方法
JP5224502B2 (ja) 被処理物質の生分解処理方法
Bezirgiannidis et al. Membrane bioreactor performance during processing of a low carbon to nitrogen ratio municipal wastewater
JP2024039480A (ja) 有機性排水の処理方法、有機性排水の処理装置及び有機性排水の難分解性有機物及び色度成分除去用薬剤
KR100403864B1 (ko) 유기물의 부식화에 의한 폐수의 처리방법
JP2003305493A (ja) 活性汚泥処理装置の立ち上げ方法
JP2001205273A (ja) 汚液処理方法及び処理剤