JP2024033072A - Anisotropic conductive film, connected structure, and method for manufacturing the connected structure - Google Patents

Anisotropic conductive film, connected structure, and method for manufacturing the connected structure Download PDF

Info

Publication number
JP2024033072A
JP2024033072A JP2022136455A JP2022136455A JP2024033072A JP 2024033072 A JP2024033072 A JP 2024033072A JP 2022136455 A JP2022136455 A JP 2022136455A JP 2022136455 A JP2022136455 A JP 2022136455A JP 2024033072 A JP2024033072 A JP 2024033072A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
meth
mass
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022136455A
Other languages
Japanese (ja)
Inventor
裕城 笹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2022136455A priority Critical patent/JP2024033072A/en
Priority to PCT/JP2023/025676 priority patent/WO2024048088A1/en
Publication of JP2024033072A publication Critical patent/JP2024033072A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】高圧実装する場合に、導通抵抗値の上昇を抑制し、異方性導電フィルムと端子との間に空隙を生じることなく、接続信頼性を長期間保持し得る異方性導電フィルム、接続構造体および接続構造体の製造方法を提供する。【解決手段】本発明の異方性導電フィルムは、(A)エポキシ樹脂と、(B)融点が60℃以上のエポキシ樹脂硬化剤と、(C)(メタ)アクリレートモノマーと、(D)ラジカル重合開始剤と、を含み、ガラス転移温度が85℃以上、最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である。【選択図】なし[Problem] An anisotropic conductive film that can suppress an increase in conduction resistance and maintain connection reliability for a long period of time without creating a gap between the anisotropic conductive film and a terminal when high-voltage mounting is performed. A connected structure and a method for manufacturing the connected structure are provided. [Solution] The anisotropic conductive film of the present invention comprises (A) an epoxy resin, (B) an epoxy resin curing agent with a melting point of 60°C or higher, (C) a (meth)acrylate monomer, and (D) a radical. a polymerization initiator, and has a glass transition temperature of 85° C. or higher and a minimum melt viscosity of 20,000 Pa·s or more and 90,000 Pa·s or less. [Selection diagram] None

Description

本発明は、異方性導電フィルム、接続構造体および接続構造体の製造方法に関する。 The present invention relates to an anisotropic conductive film, a connected structure, and a method for manufacturing a connected structure.

電子部品と回路基板等を接着する手段として異方性導電フィルム(ACF:Anisotropic Conductive Film)が広く使用されている。この異方性導電フィルムとして、接着性、および接続信頼性の観点からエポキシ樹脂を含む異方性導電フィルムが使用されている。 2. Description of the Related Art Anisotropic conductive films (ACF) are widely used as a means for bonding electronic components, circuit boards, and the like. As this anisotropic conductive film, an anisotropic conductive film containing an epoxy resin is used from the viewpoint of adhesiveness and connection reliability.

また、リジッド基板の端子部等への熱的ストレスの低減のために、異方性導電フィルムでの熱圧着温度を下げることが求められている。さらに、生産性向上の観点から、圧着時間の短縮も望まれている。このような要望に対し、エポキシ樹脂に替えて、低温、短時間で硬化可能なラジカル重合性(メタ)アクリル化合物を使用した異方性導電フィルムも提案されている。 Furthermore, in order to reduce thermal stress on the terminal portions of rigid substrates, it is required to lower the thermocompression bonding temperature of anisotropic conductive films. Furthermore, from the viewpoint of improving productivity, it is desired to shorten the crimping time. In response to such demands, an anisotropic conductive film using a radically polymerizable (meth)acrylic compound that can be cured at low temperatures and in a short time in place of epoxy resin has also been proposed.

さらに、ラジカル重合性(メタ)アクリル化合物を使用した異方性導電フィルムは、接着性に改善の余地があるため、エポキシ樹脂とラジカル重合性(メタ)アクリル化合物を併用する異方性導電フィルムも提案されている(例えば、特許文献1~4参照)。 Furthermore, since anisotropic conductive films using radically polymerizable (meth)acrylic compounds have room for improvement in adhesion, anisotropic conductive films that use a combination of epoxy resin and radically polymerizable (meth)acrylic compounds are also available. It has been proposed (for example, see Patent Documents 1 to 4).

近年、異方性導電フィルムで接着した接続構造体の導通抵抗値を安定化するために、従来3~4MPa程度で圧着されていたものを、6MPa程度の高圧で実装を行うことが望まれている。しかしながら、従来使用されている異方性導電フィルムで高圧実装を行うと、フィルムの接続部への押し込み量が多くなり、実装後押し込まれたフィルムが弾性により回復する応力も大きいため、回路基板の端子横の周辺に空隙(剥離)が発生したり、環境試験後に、接着強度が低下したり、空隙が広がり導通抵抗値が上昇するといった問題があった。 In recent years, in order to stabilize the conduction resistance value of connected structures bonded with anisotropic conductive films, it has become desirable to mount them at a high pressure of about 6 MPa, which was conventionally crimped at about 3 to 4 MPa. There is. However, when high-voltage mounting is performed using the conventionally used anisotropic conductive film, the amount of film pushed into the connection part is large, and the stress that the pushed film recovers due to elasticity after mounting is large, so the circuit board There were problems such as voids (peeling) occurring around the sides of the terminals, adhesive strength decreasing after environmental testing, and voids widening to increase conduction resistance.

特開2006-127776号公報Japanese Patent Application Publication No. 2006-127776 特開2007-224228号公報JP2007-224228A 特開2021-93357号公報Japanese Patent Application Publication No. 2021-93357 特開2021-88645号公報JP2021-88645A

本発明は、上記に鑑みてなされたものであって、高圧実装を行う場合でも、導通抵抗値の上昇を抑制し、異方性導電フィルムと端子との間に空隙を生じることなく、接続信頼性を長期間保持し得る異方性導電フィルム、接続構造体および接続構造体の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and even when high-voltage mounting is performed, the increase in conduction resistance is suppressed, and the connection is reliable without creating a gap between the anisotropic conductive film and the terminal. An object of the present invention is to provide an anisotropic conductive film, a connected structure, and a method for manufacturing the connected structure that can maintain properties for a long period of time.

本発明者らは、上記課題につき鋭意検討した結果、下記構成を有する異方性導電フィルム、接続構造体および接続構造体の製造方法によって上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies on the above-mentioned problems, the present inventors discovered that the above-mentioned problems can be solved by an anisotropic conductive film, a connected structure, and a method for manufacturing a connected structure having the following configurations, and have completed the present invention. Ta.

すなわち、本発明は以下の内容を含む。
[1] (A)エポキシ樹脂と、
(B)融点が60℃以上のエポキシ樹脂硬化剤と、
(C)(メタ)アクリレートモノマーと、
(D)ラジカル重合開始剤と、
を含み、
ガラス転移温度が85℃以上、
最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である異方性導電フィルム。
[2] (E)ガラス転移温度が100℃以上の成膜樹脂を含み、
異方性導電フィルム中の(E)ガラス転移温度が100℃以上の成膜樹脂の配合割合が、20~60質量%である請求項1に記載の異方性導電フィルム。
[3] (C’)(メタ)アクリレートオリゴマーを含み、
(C)(メタ)アクリレートモノマーと(C’)(メタ)アクリレートオリゴマーの質量配合比が、10:90~70:30である請求項1に記載の異方性導電フィルム。
[4] (F)フィラーを含み、
異方性導電フィルム中の(F)フィラーの配合割合が、1~15質量%である請求項1に記載の異方性導電フィルム。
[5] (E)ガラス転移温度が100℃以上の成膜樹脂は、フェノキシ樹脂である請求項2に記載の異方性導電フィルム。
[6] (G)導電性粒子を含む、請求項1に記載の異方性導電フィルム。
[7] 第1の電子部品と第2の電子部品とが請求項1に記載の異方性導電フィルムにより接続されている接続構造体。
[8] 第1の電子部品と第2の電子部品とを、請求項1に記載の異方性導電フィルムを介在させて、圧着する工程を含む、接続構造体の製造方法。
That is, the present invention includes the following contents.
[1] (A) Epoxy resin;
(B) an epoxy resin curing agent with a melting point of 60°C or higher;
(C) (meth)acrylate monomer;
(D) a radical polymerization initiator;
including;
Glass transition temperature is 85℃ or higher,
An anisotropic conductive film having a minimum melt viscosity of 20,000 Pa·s or more and 90,000 Pa·s or less.
[2] (E) Contains a film-forming resin with a glass transition temperature of 100°C or higher,
The anisotropic conductive film according to claim 1, wherein the blending ratio of the film-forming resin (E) having a glass transition temperature of 100° C. or higher in the anisotropic conductive film is 20 to 60% by mass.
[3] Contains (C') (meth)acrylate oligomer,
The anisotropic conductive film according to claim 1, wherein the mass mixing ratio of (C) (meth)acrylate monomer and (C') (meth)acrylate oligomer is 10:90 to 70:30.
[4] (F) Contains filler,
The anisotropic conductive film according to claim 1, wherein the blending ratio of the filler (F) in the anisotropic conductive film is 1 to 15% by mass.
[5] The anisotropic conductive film according to claim 2, wherein (E) the film-forming resin having a glass transition temperature of 100° C. or higher is a phenoxy resin.
[6] (G) The anisotropic conductive film according to claim 1, comprising conductive particles.
[7] A connected structure in which a first electronic component and a second electronic component are connected by the anisotropic conductive film according to claim 1.
[8] A method for manufacturing a connected structure, comprising the step of crimping a first electronic component and a second electronic component with the anisotropic conductive film according to claim 1 interposed therebetween.

本発明によれば、高圧実装を行う場合でも、導通抵抗値に優れ、押し込みによる空隙を生じることなく、長期間にわたり高い接続信頼性を有する異方性導電フィルムを得ることができる。 According to the present invention, even when performing high-voltage mounting, it is possible to obtain an anisotropic conductive film that has excellent conduction resistance and has high connection reliability over a long period of time without creating gaps due to pressing.

図1は、異方性導電フィルムを使用して接続構造体を製造した際の概略断面図である。FIG. 1 is a schematic cross-sectional view when a connected structure is manufactured using an anisotropic conductive film.

以下、本発明の実施形態を詳細に説明する。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。 Embodiments of the present invention will be described in detail below. The present invention is not limited to the following description, and each component can be modified as appropriate without departing from the gist of the present invention.

[異方性導電フィルム]
本発明の異方性導電フィルムは、(A)エポキシ樹脂と、(B)融点が60℃以上のエポキシ樹脂硬化剤と、(C)(メタ)アクリレートモノマーと、(D)ラジカル重合開始剤と、を含み、ガラス転移温度が85℃以上、最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である。
[Anisotropic conductive film]
The anisotropic conductive film of the present invention comprises (A) an epoxy resin, (B) an epoxy resin curing agent having a melting point of 60°C or higher, (C) a (meth)acrylate monomer, and (D) a radical polymerization initiator. , and has a glass transition temperature of 85° C. or higher and a minimum melt viscosity of 20,000 Pa·s or more and 90,000 Pa·s or less.

(A)エポキシ樹脂
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂や、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂等を使用することができる。異方性導電フィルムに良好な低温速硬化性を付与する場合には、エポキシ樹脂として、1分子中にグリジシル基を2個以上有する脂環型エポキシ樹脂を使用することが好ましい。使用するエポキシ樹脂は、液状であっても、固体状であってもよく、2種以上を併用してもよい。エポキシ樹脂として、ジグリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3’、4’-エポキシシクロヘキセンカルボキシレート、ジエポキシビシクロヘキシルが好ましく例示される。中でも、硬化物の光透性を確保でき、速硬化性にも優れるという観点から、ジグリシジルヘキサヒドロビスフェノールA、特にジエポキシビシクロシクロヘキシルが好ましい。
(A) Epoxy resin Examples of epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, phenol novolac epoxy resin, naphthalene epoxy resin, biphenyl epoxy resin, trisphenol epoxy resin, naphthol epoxy resin, etc. can be used. When imparting good low-temperature and rapid curing properties to the anisotropic conductive film, it is preferable to use an alicyclic epoxy resin having two or more glycydicyl groups in one molecule as the epoxy resin. The epoxy resin used may be liquid or solid, and two or more types may be used in combination. Preferred examples of the epoxy resin include diglycidylhexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3',4'-epoxycyclohexenecarboxylate, and diepoxybicyclohexyl. Among these, diglycidylhexahydrobisphenol A, particularly diepoxybicyclocyclohexyl, is preferred from the viewpoint of ensuring the optical transparency of the cured product and having excellent rapid curing properties.

異方性導電フィルム中のエポキシ樹脂の含有量は、樹脂成分の合計量中、2質量%以上が好ましく、4質量%以上がさらに好ましく、6質量%以上が特に好ましい。また、異方性導電フィルム中のエポキシ樹脂の含有量は、樹脂成分および硬化剤成分の合計量中、35質量%以下が好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましい。エポキシ樹脂の含有量を上記の範囲とすることにより、高い接着強度と、低温、短時間での圧着が可能となる。 The content of the epoxy resin in the anisotropic conductive film is preferably 2% by mass or more, more preferably 4% by mass or more, and particularly preferably 6% by mass or more, based on the total amount of resin components. Moreover, the content of the epoxy resin in the anisotropic conductive film is preferably 35% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less, based on the total amount of the resin component and the curing agent component. By setting the content of the epoxy resin within the above range, high adhesive strength and pressure bonding can be achieved at low temperatures and in a short time.

(B)融点が60℃以上のエポキシ樹脂硬化剤
本発明の異方性導電フィルムは、融点が60℃以上のエポキシ樹脂硬化剤を含む。エポキシ樹脂硬化剤として融点が60℃以上のものを使用することにより、異方性導電性フィルムの保存安定性が向上する。融点が60℃以上のエポキシ樹脂硬化剤は、常温では反応せず、実装時の圧着温度において短時間で反応が進行、完了する潜在性硬化剤であることが好ましい。
(B) Epoxy resin curing agent with a melting point of 60°C or higher The anisotropic conductive film of the present invention contains an epoxy resin curing agent with a melting point of 60°C or higher. By using an epoxy resin curing agent with a melting point of 60° C. or higher, the storage stability of the anisotropic conductive film is improved. The epoxy resin curing agent having a melting point of 60° C. or higher is preferably a latent curing agent that does not react at room temperature, and the reaction proceeds and completes in a short time at the pressure bonding temperature during mounting.

融点が60℃以上のエポキシ樹脂硬化剤としては、融点が60℃以上、かつエポキシ樹脂の硬化剤として機能すれば特に限定されるものではないが、アミン系、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ジシアンジアミド塩、およびこれらの変性物を例示することができる。融点が60℃以上のエポキシ樹脂硬化剤としては、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルホン等が好ましい。融点が60℃以上のエポキシ樹脂硬化剤は、2種以上を組み合わせて使用してもよいが、融点が60℃未満のエポキシ樹脂硬化剤との併用は、異方性導電フィルムの保存安定性の観点から好ましくない。 Epoxy resin curing agents with a melting point of 60°C or higher are not particularly limited as long as they have a melting point of 60°C or higher and function as a curing agent for epoxy resins, but include amine-based, imidazole-based, hydrazide-based, and trifluoride-based curing agents. Examples include boron-amine complexes, sulfonium salts, amine imides, dicyandiamide salts, and modified products thereof. As the epoxy resin curing agent having a melting point of 60° C. or higher, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, etc. are preferable. Epoxy resin curing agents with a melting point of 60°C or higher may be used in combination of two or more types, but the combination with an epoxy resin curing agent with a melting point of less than 60°C may affect the storage stability of the anisotropic conductive film. Not desirable from that point of view.

異方性導電フィルム中の融点が60℃以上のエポキシ樹脂硬化剤の含有量は、0.5質量%以上が好ましく、0.8質量%以上がさらに好ましく、1質量%以上が特に好ましい。異方性導電フィルム中の融点が60℃以上のエポキシ樹脂硬化剤の含有量は、5質量%以下が好ましく、4質量%以下がさらに好ましく、3.5質量%以下が特に好ましい。融点が60℃以上のエポキシ樹脂硬化剤の含有量を上記の範囲とすることにより、低温、短時間でも高い接着性を発現し得る。 The content of the epoxy resin curing agent having a melting point of 60° C. or higher in the anisotropic conductive film is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, and particularly preferably 1% by mass or more. The content of the epoxy resin curing agent having a melting point of 60° C. or higher in the anisotropic conductive film is preferably 5% by mass or less, more preferably 4% by mass or less, and particularly preferably 3.5% by mass or less. By setting the content of the epoxy resin curing agent having a melting point of 60°C or higher within the above range, high adhesiveness can be exhibited even at low temperatures and for a short time.

(C)(メタ)アクリレートモノマー
本発明の異方性導電性フィルムは、(メタ)アクリレートモノマーを含む。本明細書において、(メタ)アクリレートモノマーは、アクリレートモノマーとメタクリレートモノマーとを含む用語として使用する。異方性導電性フィルムが(メタ)アクリレートモノマーを含むことにより、低温、短時間の圧着が可能となる。(メタ)アクリレートモノマーは、官能基を2つ有するものが好ましい。また、本発明の異方性導電性フィルムは、接着強度を調整する観点から、(メタ)アクリレートモノマーに加え、(メタ)アクリレートオリゴマーを含むことが好ましい。
(C) (meth)acrylate monomer The anisotropic conductive film of the present invention contains a (meth)acrylate monomer. In this specification, the term (meth)acrylate monomer is used to include acrylate monomers and methacrylate monomers. By containing the (meth)acrylate monomer in the anisotropic conductive film, pressure bonding can be performed at low temperatures and in a short time. The (meth)acrylate monomer preferably has two functional groups. Moreover, from the viewpoint of adjusting adhesive strength, the anisotropic conductive film of the present invention preferably contains a (meth)acrylate oligomer in addition to a (meth)acrylate monomer.

(メタ)アクリレートモノマーおよび(メタ)アクリレートオリゴマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、リン酸エステル型(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、イソボルニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、o-フタル酸ジグリシジルエーテル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート及びウレタン(メタ)アクリレートが例示される。 Examples of (meth)acrylate monomers and (meth)acrylate oligomers include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, isooctyl ( meth)acrylate, lauryl(meth)acrylate, stearyl(meth)acrylate, cyclohexyl(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, phosphate ester type(meth)acrylate, bisphenoxyethanol full Orange (meth)acrylate, 2-(meth)acryloyloxyethylsuccinic acid, isobornyl (meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, Tetrahydrofurfuryl (meth)acrylate, o-phthalic acid diglycidyl ether (meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, 2-hydroxy-1,3-di(meth)acrylate Acryloxypropane, 2,2-bis[4-((meth)acryloxymethoxy)phenyl]propane, 2,2-bis[4-((meth)acryloxypolyethoxy)phenyl]propane, dicyclopentenyl(meth) ) acrylate, tricyclodecanyl (meth)acrylate, tris((meth)acryloyloxyethyl)isocyanurate, and urethane (meth)acrylate.

異方性導電フィルム中の(メタ)アクリレートモノマーおよび(メタ)アクリレートオリゴマーの合計の含有量は、5質量%以上が好ましく、10質量%以上がさらに好ましく、15質量%以上が特に好ましい。異方性導電フィルム中の(メタ)アクリレートモノマーおよび(メタ)アクリレートオリゴマーの合計の含有量は、60質量%以下が好ましく、50質量%以下がさらに好ましく、40質量%以下が特に好ましい。(メタ)アクリレートモノマーおよび(メタ)アクリレートオリゴマーの合計の含有量を上記の範囲とすることにより、低温、短時間でも高い接着性を発現し得る。 The total content of the (meth)acrylate monomer and (meth)acrylate oligomer in the anisotropic conductive film is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. The total content of the (meth)acrylate monomer and (meth)acrylate oligomer in the anisotropic conductive film is preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 40% by mass or less. By setting the total content of the (meth)acrylate monomer and (meth)acrylate oligomer within the above range, high adhesiveness can be exhibited even at low temperatures and for a short time.

(メタ)アクリレートモノマーと(メタ)アクリレートオリゴマーを併用する場合、配合比(質量)は10:90~70:30であることが好ましい。 When (meth)acrylate monomer and (meth)acrylate oligomer are used together, the blending ratio (mass) is preferably 10:90 to 70:30.

(D)ラジカル重合開始剤
本発明の異方性導電フィルムは、ラジカル重合開始剤を含む。ラジカル重合開始剤としては、実装時の熱圧着温度にて遊離ラジカルを発生し、(メタ)アクリレートモノマーおよび(メタ)アクリレートオリゴマーの重合反応を進行させ得る限り特に限定されず、適宜選択することができる。
(D) Radical polymerization initiator The anisotropic conductive film of the present invention contains a radical polymerization initiator. The radical polymerization initiator is not particularly limited as long as it can generate free radicals at the thermocompression bonding temperature during packaging and advance the polymerization reaction of (meth)acrylate monomers and (meth)acrylate oligomers, and can be selected as appropriate. can.

ラジカル重合開始剤としては、例えば、過酸化化合物、アゾ系化合物が挙げられる。過酸化化合物としては、有機過酸化物が好適であり、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドが挙げられる。これらは1種単独で又は2種以上を組み合わせて用いてよい。 Examples of the radical polymerization initiator include peroxide compounds and azo compounds. As the peroxide compound, organic peroxides are suitable, and examples thereof include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, and benzoyl peroxide. These may be used alone or in combination of two or more.

異方性導電フィルム中のラジカル重合開始剤の含有量は、1質量%以上が好ましく、3質量%以上がさらに好ましく、5質量%以上が特に好ましい。異方性導電フィルム中のラジカル重合開始剤の含有量は、20質量%以下が好ましく、18質量%以下がさらに好ましく、15質量%以下が特に好ましい。ラジカル重合開始剤の含有量を上記の範囲とすることにより、低温、短時間でも高い接着性を発現し得る。 The content of the radical polymerization initiator in the anisotropic conductive film is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more. The content of the radical polymerization initiator in the anisotropic conductive film is preferably 20% by mass or less, more preferably 18% by mass or less, and particularly preferably 15% by mass or less. By setting the content of the radical polymerization initiator within the above range, high adhesiveness can be exhibited even at low temperatures and for a short time.

(E)成膜樹脂
本発明の異方性導電フィルムは、成膜樹脂を含む。成膜樹脂としては、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂が挙げられる。これらは1種単独で又は2種以上を組み合わせて用いてよい。成膜樹脂としては、ガラス転移温度が100℃以上のものが好ましく、ガラス転移温度が100℃以上のフェノキシ樹脂が特に好ましい。ガラス転移温度が100℃以上の成膜樹脂を含むことにより、異方性導電フィルムのガラス転移温度を85℃以上に調製することが容易となり、信頼性試験において、接着強度の低下や導通抵抗値の上昇を抑制することが可能となる。
(E) Film-forming resin The anisotropic conductive film of the present invention contains a film-forming resin. Examples of film-forming resins include phenoxy resins, unsaturated polyester resins, saturated polyester resins, urethane resins, butadiene resins, polyimide resins, polyamide resins, and polyolefin resins. These may be used alone or in combination of two or more. As the film-forming resin, those having a glass transition temperature of 100°C or higher are preferred, and phenoxy resins having a glass transition temperature of 100°C or higher are particularly preferred. By including a film-forming resin with a glass transition temperature of 100°C or higher, it becomes easy to adjust the glass transition temperature of the anisotropic conductive film to 85°C or higher. It becomes possible to suppress the rise in

成膜性の観点から、成膜樹脂のポリスチレン換算の重量平均分子量(Mw)は、10000以上が好ましく、15000以上がさらに好ましく、20000以上が特に好ましい。重量平均分子量(Mw)の上限は、80000以下が好ましく、70000以下がさらに好ましく、60000以下が特に好ましい。成膜樹脂のポリスチレン換算のMnは、ゲルパーミエーションクロマトグラフィー(GPC)法で測定し、標準ポリスチレンの検量線を用いて算出することができる。 From the viewpoint of film-forming properties, the weight average molecular weight (Mw) of the film-forming resin in terms of polystyrene is preferably 10,000 or more, more preferably 15,000 or more, and particularly preferably 20,000 or more. The upper limit of the weight average molecular weight (Mw) is preferably 80,000 or less, more preferably 70,000 or less, and particularly preferably 60,000 or less. The polystyrene equivalent Mn of the film-forming resin can be measured by gel permeation chromatography (GPC) and calculated using a standard polystyrene calibration curve.

異方性導電フィルム中の成膜樹脂の含有量は、20質量%以上が好ましく、25質量%以上がさらに好ましく、30質量%以上が特に好ましい。異方性導電フィルム中の成膜樹脂の含有量は、60質量%以下が好ましく、55質量%以下がさらに好ましく、50質量%以下が特に好ましい。 The content of the film-forming resin in the anisotropic conductive film is preferably 20% by mass or more, more preferably 25% by mass or more, and particularly preferably 30% by mass or more. The content of the film-forming resin in the anisotropic conductive film is preferably 60% by mass or less, more preferably 55% by mass or less, and particularly preferably 50% by mass or less.

(F)フィラー
本発明の異方性導電フィルムは、フィラーを含むことが好ましい。フィラーを含有することにより、最低溶融粘度の調整が容易となり、高圧実装の際の空隙発生を防止することができる。
(F) Filler The anisotropic conductive film of the present invention preferably contains a filler. By containing the filler, it becomes easy to adjust the minimum melt viscosity, and it is possible to prevent the generation of voids during high-pressure mounting.

フィラーとしては、例えば、シリカ、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシウムなどの無機酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの無機水酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウムなどの無機炭酸塩、硫酸カルシウム、硫酸バリウムなどの無機硫酸塩、ケイ酸カルシウムなどの無機ケイ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの無機窒化物が挙げられる。フィラーとしては、シリカが好ましい。フィラーの大きさは、10nm~2μmが好ましい。 Examples of fillers include inorganic oxides such as silica, titanium oxide, aluminum oxide, calcium oxide, and magnesium oxide, inorganic hydroxides such as calcium hydroxide, magnesium hydroxide, and aluminum hydroxide, calcium carbonate, magnesium carbonate, and carbonate. Examples include inorganic carbonates such as zinc and barium carbonate, inorganic sulfates such as calcium sulfate and barium sulfate, inorganic silicates such as calcium silicate, and inorganic nitrides such as aluminum nitride, boron nitride, and silicon nitride. Silica is preferred as the filler. The size of the filler is preferably 10 nm to 2 μm.

異方性導電フィルム中のフィラーの配合量は、0.5質量%以上が好ましく、1質量%以上がさらに好ましく、2質量%以上が特に好ましい。異方性導電フィルム中のフィラーの含有量は、30質量%以下が好ましく、20質量%以下がさらに好ましく、15質量%以下が特に好ましい。 The content of the filler in the anisotropic conductive film is preferably 0.5% by mass or more, more preferably 1% by mass or more, and particularly preferably 2% by mass or more. The content of filler in the anisotropic conductive film is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 15% by mass or less.

(G)導電性粒子
本発明の異方性導電フィルムは、導電性粒子を含む。導電性粒子としては、異方性導電フィルムにおいて用いられる公知の導電性粒子を用いてよい。導電性粒子としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の金属の粒子;これら金属の合金の粒子;金属酸化物、カーボン、グラファイト、ガラス、セラミック、樹脂等の粒子の表面に金属を被覆した被覆粒子等が挙げられる。樹脂粒子の表面に金属を被覆した金属被覆樹脂粒子を用いる場合、樹脂粒子の材料としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等が挙げられる。なお、導電性粒子は、接続後の導通性能に支障を来さなければ、端子間でのショートリスクの回避のために、導電性粒子の表面に更に絶縁薄膜を被覆したものや、絶縁粒子を表面に付着させたものなど絶縁処理を施したものであってもよい。これら導電性粒子は1種単独で又は2種以上を組み合わせて用いてよい。
(G) Conductive particles The anisotropic conductive film of the present invention contains conductive particles. As the conductive particles, known conductive particles used in anisotropic conductive films may be used. Examples of conductive particles include particles of metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold; particles of alloys of these metals; metal oxides, carbon, graphite, glass, Examples include coated particles in which the surfaces of particles of ceramic, resin, etc. are coated with metal. When using metal-coated resin particles in which the surface of the resin particles is coated with metal, examples of the material for the resin particles include epoxy resin, phenol resin, acrylic resin, acrylonitrile styrene (AS) resin, benzoguanamine resin, and divinylbenzene resin. , styrene resin, etc. In addition, conductive particles may be coated with an insulating thin film on the surface of the conductive particles or coated with insulating particles in order to avoid the risk of short circuits between terminals, as long as they do not interfere with the conductivity after connection. It may also be one that has been subjected to insulation treatment, such as one that is attached to the surface. These conductive particles may be used alone or in combination of two or more.

導電性粒子の平均粒子径は、1μm以上が好ましく、2μm以上がさらに好ましい。また、導電性粒子の平均粒子径は、10μm以下が好ましく、7μm以下であることがさらに好ましい。導電性粒子の平均粒子径は、例えば、走査型電子顕微鏡観察(SEM)により観察し、複数個(n≧10)の導電性粒子について粒子径を測定し、その平均値を算出すればよい。もしくは、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。 The average particle diameter of the conductive particles is preferably 1 μm or more, more preferably 2 μm or more. Further, the average particle diameter of the conductive particles is preferably 10 μm or less, more preferably 7 μm or less. The average particle diameter of the conductive particles may be determined by, for example, observing with a scanning electron microscope (SEM), measuring the particle diameters of a plurality of conductive particles (n≧10), and calculating the average value. Alternatively, it may be a measured value (N=1000 or more) measured using an image-type particle size distribution analyzer (for example, FPIA-3000 (Malvern)).

異方性導電フィルム中の導電性粒子の含有量は、特に限定されず目的に応じて適宜決定してよいが、好ましくは1質量%以上、より好ましくは2質量%以上である。導電性粒子の含有量の上限は、所定の異方導電性を得る観点から、好ましくは20質量%以下、より好ましく10質量%以下である。 The content of conductive particles in the anisotropic conductive film is not particularly limited and may be appropriately determined depending on the purpose, but is preferably 1% by mass or more, more preferably 2% by mass or more. The upper limit of the content of conductive particles is preferably 20% by mass or less, more preferably 10% by mass or less from the viewpoint of obtaining a predetermined anisotropic conductivity.

(H)その他の成分
本発明の異方性導電フィルムは、シランカップリング剤を含んでいてもよい。シランカップリング剤を含有することにより、無機材料との界面接着性を向上することができる。シランカップリング剤としては、ビニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、アミノ基、イソシアネート基、ウレイド基、イミダゾール基を有するものが例示される。シランカップリング剤は、1種単独で又は2種以上を組み合わせて用いてよい。
(H) Other components The anisotropic conductive film of the present invention may contain a silane coupling agent. By containing a silane coupling agent, interfacial adhesion with inorganic materials can be improved. Examples of the silane coupling agent include those having a vinyl group, an acrylic group, a methacryl group, an epoxy group, a mercapto group, an amino group, an isocyanate group, a ureido group, and an imidazole group. The silane coupling agents may be used alone or in combination of two or more.

本発明の異方性導電フィルムにおいて、シランカップリング剤の含有量は、0.1質量%以上5質量%以下の割合であることが好ましい。 In the anisotropic conductive film of the present invention, the content of the silane coupling agent is preferably 0.1% by mass or more and 5% by mass or less.

本発明の異方性導電フィルムは、必要に応じてさらに他の成分を含んでもよい。かかる成分としては、例えば、表面改質剤、難燃剤、着色剤等の、接着剤組成物の製造において使用される公知の添加剤が挙げられる。 The anisotropic conductive film of the present invention may further contain other components as necessary. Such components include, for example, known additives used in the manufacture of adhesive compositions, such as surface modifiers, flame retardants, colorants, and the like.

(I)異方性導電フィルムの物性
本発明の異方性導電フィルムは、ガラス転移温度が85℃以上である。異方性導電フィルムのガラス転移温度が85℃以上であることにより、信頼性試験において、接着強度の低下や導通抵抗値の上昇を抑制することが可能となる。異方性導電フィルムのガラス転移温度を85℃以上とするためには、ガラス転移温度が100℃以上の成膜樹脂を使用することが好ましい。
(I) Physical properties of anisotropic conductive film The anisotropic conductive film of the present invention has a glass transition temperature of 85°C or higher. When the glass transition temperature of the anisotropic conductive film is 85° C. or higher, it is possible to suppress a decrease in adhesive strength and an increase in conduction resistance value in a reliability test. In order to make the glass transition temperature of the anisotropic conductive film 85°C or higher, it is preferable to use a film-forming resin with a glass transition temperature of 100°C or higher.

本発明の異方性導電フィルムは、最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である。異方性導電フィルムの最低溶融粘度が20,000Pa・s以上90,000Pa・s以下であることにより、高圧実装の際の空隙発生を防止することができる。異方性導電フィルムの最低溶融粘度を20,000Pa・s以上90,000Pa・s以下とするためには、フィラーを配合することが好ましい。異方性導電フィルムの最低溶融粘度は、30,000Pa・s以上80,000Pa・s以下であることが特に好ましい。 The anisotropic conductive film of the present invention has a minimum melt viscosity of 20,000 Pa·s or more and 90,000 Pa·s or less. By setting the minimum melt viscosity of the anisotropic conductive film to 20,000 Pa·s or more and 90,000 Pa·s or less, it is possible to prevent the generation of voids during high-pressure mounting. In order to set the minimum melt viscosity of the anisotropic conductive film to 20,000 Pa·s or more and 90,000 Pa·s or less, it is preferable to mix a filler. The minimum melt viscosity of the anisotropic conductive film is particularly preferably 30,000 Pa·s or more and 80,000 Pa·s or less.

[異方性導電フィルムの構成]
本発明の異方性導電フィルムは、単層からなっても複数層からなってもよい。複数層からなる場合、異方性導電フィルムは、本発明にかかる異方性導電フィルム層と、絶縁層とからなる積層フィルム、本発明にかかる異方性導電フィルム層と、絶縁層と、第2の異方性導電フィルム層とからなる積層フィルム等が例示される。第2の異方性導電フィルム層は、本発明に係る異方性導電フィルムであってもよく、本発明と異なる異方性導電フィルムであってもよい。
[Configuration of anisotropic conductive film]
The anisotropic conductive film of the present invention may consist of a single layer or multiple layers. When the anisotropic conductive film is composed of multiple layers, the anisotropic conductive film may include a laminated film consisting of the anisotropic conductive film layer according to the present invention and an insulating layer, or a laminated film comprising the anisotropic conductive film layer according to the present invention, an insulating layer, and an insulating layer. A laminated film consisting of two anisotropic conductive film layers is exemplified. The second anisotropic conductive film layer may be an anisotropic conductive film according to the present invention, or may be an anisotropic conductive film different from the present invention.

異方性導電フィルムは、例えば、本発明の異方性導電フィルムの構成材料を、必要に応じて有機溶剤と混合し混合組成物とした後に、剥離基材上に塗布し、更に乾燥させて異方性導電フィルム層を形成させることにより製造することができる。混合組成物の塗布は、バーコーター等の塗布装置を用いて実施すればよい。ドクターブレード法など、公知の異方性導電フィルムの塗布方式を用いることができる。複数層からなる異方性導電フィルムを製造する場合、上記塗布、乾燥の工程を繰り返し複数回実施すればよい。もしくは個別に製造し、ラミネートなどで積層すればよい。 The anisotropic conductive film can be produced, for example, by mixing the constituent materials of the anisotropic conductive film of the present invention with an organic solvent as necessary to form a mixed composition, and then applying the composition onto a release substrate and drying it. It can be manufactured by forming an anisotropic conductive film layer. The mixed composition may be applied using a coating device such as a bar coater. A known anisotropic conductive film coating method such as a doctor blade method can be used. When manufacturing an anisotropic conductive film consisting of multiple layers, the above coating and drying steps may be repeated multiple times. Alternatively, they may be manufactured individually and laminated together using laminate or the like.

剥離基材は、異方性導電フィルムを支持することができ、所期のタイミングにて異方性導電フィルムから剥離することができるフィルム状物である限り特に限定されない。剥離基材の材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリプロピレン(PP)等のポリオレフィン、ポリ-4-メチルペンテン-1(PMP)、ポリテトラフルオロエチレン(PTFE)等のプラスチック材料を用いてよい。剥離基材はまた、異方性導電フィルムと接合する側の表面に剥離層を有する基材であってよく、剥離層は、例えば、シリコーン樹脂やポリオレフィン樹脂等の剥離剤を含んでよい。 The release base material is not particularly limited as long as it is a film-like material that can support the anisotropic conductive film and can be peeled off from the anisotropic conductive film at a desired timing. Examples of materials for the release base material include polyesters such as polyethylene terephthalate (PET), polyolefins such as polypropylene (PP), and plastic materials such as poly-4-methylpentene-1 (PMP) and polytetrafluoroethylene (PTFE). may be used. The release base material may also be a base material having a release layer on the surface to be bonded to the anisotropic conductive film, and the release layer may include a release agent such as a silicone resin or a polyolefin resin.

剥離基材の厚さは、特に限定されないが、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下、さらにより好ましくは50μm以下である。剥離基材の厚さの下限は、特に限定されないが、異方性導電フィルムの製造時、スリット加工時の取り扱い性の観点から、好ましくは8μm以上である。 The thickness of the release base material is not particularly limited, but is preferably 100 μm or less, more preferably 80 μm or less, even more preferably 60 μm or less, and even more preferably 50 μm or less. The lower limit of the thickness of the release base material is not particularly limited, but is preferably 8 μm or more from the viewpoint of ease of handling during production and slitting of the anisotropic conductive film.

本発明の異方性導電フィルムの厚さは、特に限定されず目的に応じて適宜決定してよいが、好ましくは1μm以上、より好ましくは2μm以上、さらに好ましくは3μm以上である。異方性導電フィルムの厚さの上限は、特に限定されないが、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、さらにより好ましくは20μm以下、特に好ましくは10μm以下である。複数層で積層している場合は、絶縁層を除く合計の厚みとする。 The thickness of the anisotropic conductive film of the present invention is not particularly limited and may be appropriately determined depending on the purpose, but is preferably 1 μm or more, more preferably 2 μm or more, and still more preferably 3 μm or more. The upper limit of the thickness of the anisotropic conductive film is not particularly limited, but is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 30 μm or less, even more preferably 20 μm or less, particularly preferably 10 μm or less. If multiple layers are laminated, the total thickness excludes the insulating layer.

異方性導電フィルムは、所定の幅を有するようにスリット加工してよい。スリット加工の際、切削屑等により接着剤層が汚染されるのを防止すべく、その露出表面にカバーフィルムを設けてよい。この場合の厚みは、目的に応じて適宜選択すればよい。カバーフィルムは、異方性導電フィルムのスリット加工時に使用される公知のフィルムを用いてよい。カバーフィルムはスリットなどの製造工程の他、接続使用に用いる製品として、使用時の汚染防止のために剥離基材とは別に設けられていてもよい。この場合、カバーフィルムは剥離性があることが好ましく、厚みは剥離基材と同じか、より薄いことが好ましい。 The anisotropic conductive film may be slit to have a predetermined width. During slitting, a cover film may be provided on the exposed surface of the adhesive layer in order to prevent the adhesive layer from being contaminated by cutting debris or the like. The thickness in this case may be appropriately selected depending on the purpose. As the cover film, a known film used for slitting an anisotropic conductive film may be used. The cover film may be provided separately from the release base material in order to prevent contamination during use, in addition to the manufacturing process of slits, etc., and as a product used for connection. In this case, the cover film preferably has releasability and preferably has the same thickness as or thinner than the release base material.

本発明の異方性導電フィルムは、高圧力で実装を行う場合でも、導通抵抗値の上昇を抑制し、異方性導電フィルムと接続する電子部品の端子との間に空隙を生じることなく、接続信頼性を長期間保持することが可能となる。 The anisotropic conductive film of the present invention suppresses an increase in conduction resistance even when mounted under high pressure, and does not create a gap between the anisotropic conductive film and the terminal of the electronic component to be connected. It becomes possible to maintain connection reliability for a long period of time.

[接続構造体]
本発明の異方性導電フィルムを用いて、電子部品同士を接着した接続構造体を製造することができる。本発明は、第1の電子部品と第2の電子部品とが本発明の異方性導電フィルムにより接続されている接続構造体を包含する。
[Connection structure]
Using the anisotropic conductive film of the present invention, a connected structure in which electronic components are bonded together can be manufactured. The present invention includes a connected structure in which a first electronic component and a second electronic component are connected by the anisotropic conductive film of the present invention.

第1の電子部品としては、例えば、一般的なPWBでよく、リジッド基板、ガラス基板、セラミック基板、プラスチック基板、FPC等が挙げられ、また、第2の電子部品としては、FPC、ICチップ、ICチップ以外の半導体素子等が挙げられる。電子部品の制約は特になく、接続構造体の用途も特に制限はない。例えば、携帯情報端末に使用してもよく、車載用の電気的実装に用いてもよい。本発明においては、一例として、FOB、FOG、FOP、FOF、COG、COP等の多用な接続構造体を製造し得る。 The first electronic component may be, for example, a general PWB, such as a rigid substrate, a glass substrate, a ceramic substrate, a plastic substrate, an FPC, etc., and the second electronic component may be an FPC, an IC chip, Examples include semiconductor elements other than IC chips. There are no particular restrictions on the electronic components, and there are no particular restrictions on the uses of the connection structure. For example, it may be used for a portable information terminal or for electrical mounting on a vehicle. In the present invention, various connection structures such as FOB, FOG, FOP, FOF, COG, and COP can be manufactured, for example.

[接続構造体の製造方法]
本発明の接続構造体の製造方法は、本発明の異方性導電フィルムにより第1の電子部品と第2の電子部品とが接続されている接続構造体を製造し得る限り特に限定されない。以下、本発明の接続構造体を製造する方法について一例を示す。
[Method for manufacturing connected structure]
The method for manufacturing a connected structure of the present invention is not particularly limited as long as it can manufacture a connected structure in which a first electronic component and a second electronic component are connected by the anisotropic conductive film of the present invention. An example of the method for manufacturing the connected structure of the present invention will be shown below.

一実施形態において、本発明の接続構造体の製造方法は、第1の電子部品と第2の電子部品とを、本発明の異方性導電フィルムを介在させて、圧着する工程を含む。 In one embodiment, the method for manufacturing a bonded structure of the present invention includes the step of crimping a first electronic component and a second electronic component with the anisotropic conductive film of the present invention interposed therebetween.

はじめに第1の電子部品をステージに載置し、その上に本発明の異方性導電フィルムを設け、次いで第2の電子部品を載置する。ここで、ステージに載置した第1の電子部品上に本発明の異方性導電フィルムを設けた後、第1の電子部品の電極と第2の電子部品の電極が対向するように位置合わせし、第2の電子部品側から圧着ツールにて仮圧着を実施する。仮圧着時の温度、圧力及び時間は、具体的な設計に応じて適宜決定してよく、例えば60~80℃、0.5~2MPa、0.5~2秒間とし得る。後述する本圧着を実施するに先立ち、仮圧着を実施することにより、電子部品同士(それぞれの部品の導通部同士)をより精確に位置合わせして接続することができ好適である。仮圧着を行うことで、より高圧力で押圧する本圧着時の位置ずれの抑制が期待できる。 First, a first electronic component is placed on a stage, the anisotropic conductive film of the present invention is provided thereon, and then a second electronic component is placed thereon. Here, after providing the anisotropic conductive film of the present invention on the first electronic component placed on the stage, the electrodes of the first electronic component and the second electronic component are aligned so that they face each other. Then, temporary crimping is performed using a crimping tool from the second electronic component side. The temperature, pressure, and time during temporary pressure bonding may be determined as appropriate depending on the specific design, and may be, for example, 60 to 80° C., 0.5 to 2 MPa, and 0.5 to 2 seconds. It is preferable to carry out preliminary crimping before carrying out the main crimping described later, since it is possible to more accurately align and connect the electronic components (conducting portions of the respective components) to each other. By performing temporary crimping, it can be expected to suppress positional displacement during main crimping, which is performed by pressing with higher pressure.

仮圧着の後、第2の電子部品側から圧着ツールにて本圧着を実施する。本圧着時の温度、圧力及び時間は、異方性導電フィルムを用いて電子部品を接着する際に用いられる公知の任意の条件としてよく、具体的な設計に応じて適宜決定してよい。例えば、低温(例えば、160℃以下)、短時間(例えば、10秒間以下)、かつ高圧力(例えば、6MPa)の圧着であっても、第1の電子部品と第2の電子部品を良好に接着することが可能である。 After the preliminary crimping, the main crimping is performed from the second electronic component side using a crimping tool. The temperature, pressure, and time during the main pressure bonding may be any known conditions used when bonding electronic components using an anisotropic conductive film, and may be determined as appropriate depending on the specific design. For example, even if the pressure bonding is performed at a low temperature (e.g., 160°C or less), for a short time (e.g., 10 seconds or less), and at a high pressure (e.g., 6 MPa), the first electronic component and the second electronic component can be bonded well. It is possible to glue.

なお、仮圧着、本圧着の別を問わず、第2の電子部品と圧着ツールの間に緩衝材(例えば緩衝シート)を設けてよい。緩衝材は、その使用の有無も含めて、電子部品の組み合わせに応じて適宜調整、決定すればよい。 Note that a cushioning material (for example, a buffer sheet) may be provided between the second electronic component and the crimping tool, regardless of whether the crimping is temporary crimping or actual crimping. The cushioning material, including whether or not to use it, may be adjusted and determined as appropriate depending on the combination of electronic components.

本発明の異方性導電フィルムは、圧着の際、第1の電子部品の電極と第2の電子部品の電極との間に存在する導電性粒子の捕捉効率が高いため、異方性導電フィルム中への導電性粒子の配合量を低減した場合でも、電気抵抗を低く抑えることが可能となる。 The anisotropic conductive film of the present invention has a high trapping efficiency of conductive particles present between the electrodes of the first electronic component and the electrodes of the second electronic component during pressure bonding. Even when the amount of conductive particles incorporated therein is reduced, it is possible to keep the electrical resistance low.

以下、本発明について、実施例を示して具体的に説明する。ただし、本発明は、以下に示す実施例に限定されるものではない。以下の説明において、量を表す「部」及び「%」は、別途明示のない限り、「質量部」及び「質量%」をそれぞれ意味する。 Hereinafter, the present invention will be specifically explained by showing examples. However, the present invention is not limited to the examples shown below. In the following description, "parts" and "%" representing amounts mean "parts by mass" and "% by mass", respectively, unless otherwise specified.

[使用材料]
-エポキシ樹脂-
エポキシ樹脂(EP828、ジャパンエポキシレジン(株)製)
-融点が60℃以上のエポキシ樹脂硬化剤-
ジアミノジフェニルメタン(ジアミノジフェニルメタン(DDM)、東京化成工業(株)製)
-融点が60℃未満のエポキシ樹脂硬化剤-
2-エチル-4-メチル-イミダゾール(2E4MZ、四国化成(株)製)
-(メタ)アクリレートモノマー-
ポリエチレングリコールジアクリレート(A-200、新中村化学工業(株)製)
-(メタ)アクリレートオリゴマー-
ウレタンアクリレート(U-2PPA、新中村化学工業(株)製)
-ラジカル重合開始剤-
ジラウロイルパーオキサイド(パーロイル(登録商標)L、日本油脂(株)製)
-成膜樹脂-
フェノキシ樹脂(FX-293、日鉄ケミカル&マテリアル(株)製、Tg:158℃)
フェノキシ樹脂(FX-316、日鉄ケミカル&マテリアル(株)製、Tg:68℃)
-フィラー-
シリカ(アエロジル(登録商標)R202、日本アエロジル(株)製)
-導電性粒子-
ニッケル粒子(ミクロパールAu、積水化学工業(株)製、平均粒径3μm)
[Materials used]
-Epoxy resin-
Epoxy resin (EP828, manufactured by Japan Epoxy Resin Co., Ltd.)
-Epoxy resin curing agent with a melting point of 60℃ or higher-
Diaminodiphenylmethane (DDM) manufactured by Tokyo Chemical Industry Co., Ltd.
- Epoxy resin curing agent with a melting point of less than 60°C -
2-ethyl-4-methyl-imidazole (2E4MZ, manufactured by Shikoku Kasei Co., Ltd.)
-(meth)acrylate monomer-
Polyethylene glycol diacrylate (A-200, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
-(meth)acrylate oligomer-
Urethane acrylate (U-2PPA, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
-Radical polymerization initiator-
Dilauroyl peroxide (Perloyl (registered trademark) L, manufactured by NOF Corporation)
-Film-forming resin-
Phenoxy resin (FX-293, manufactured by Nippon Steel Chemical & Materials Co., Ltd., Tg: 158°C)
Phenoxy resin (FX-316, manufactured by Nippon Steel Chemical & Materials Co., Ltd., Tg: 68°C)
-Filler-
Silica (Aerosil (registered trademark) R202, manufactured by Nippon Aerosil Co., Ltd.)
-Conductive particles-
Nickel particles (Micropearl Au, manufactured by Sekisui Chemical Co., Ltd., average particle size 3 μm)

[実施例1]
-接着性組成物の調製-
(メタ)アクリレートオリゴマー30質量部、(メタ)アクリレートモノマー50質量部、エポキシ樹脂20部、融点が60℃以上のエポキシ樹脂硬化剤3質量部、ラジカル重合開始剤12質量部、フェノキシ樹脂(FX-293)100質量部、フィラー20質量部及び導電性粒子5質量部を、溶媒150部に加え、均一に混合して、接着剤組成物を得た。
[Example 1]
-Preparation of adhesive composition-
30 parts by mass of (meth)acrylate oligomer, 50 parts by mass of (meth)acrylate monomer, 20 parts of epoxy resin, 3 parts by mass of epoxy resin curing agent with a melting point of 60°C or higher, 12 parts by mass of radical polymerization initiator, phenoxy resin (FX- 293) 100 parts by mass, 20 parts by mass of filler, and 5 parts by mass of conductive particles were added to 150 parts of solvent and mixed uniformly to obtain an adhesive composition.

-異方性導電フィルムの作製-
剥離基材として、PETフィルム(厚さ50μm)を用意した。この剥離基材上に、乾燥後の接着剤層の厚さが35μmとなるように、接着剤組成物を均一に塗布した。その後、60℃で5分間乾燥させて、剥離基材上に接着剤層を形成して異方性導電フィルムを得た。
-Preparation of anisotropic conductive film-
A PET film (thickness: 50 μm) was prepared as a release base material. The adhesive composition was uniformly applied onto this release base material so that the thickness of the adhesive layer after drying was 35 μm. Thereafter, it was dried at 60° C. for 5 minutes to form an adhesive layer on the release base material to obtain an anisotropic conductive film.

-接続構造体の作製-
ガラス基板、FPCおよび上記の異方性導電フィルムを用いて接続構造体を作製した。異方性導電フィルムを所定幅にスリットして、ガラス基板に貼り付け、貼り付けた異方性導電フィルム上にFPCを仮固定した後、緩衝材としてテトラフルオロエチレン(平均厚み50μm)が被覆されたヒートツールを用いて、温度160℃、圧力6MPa、5秒で圧着を行い、接続構造体を完成させた。
- Fabrication of connected structure -
A connected structure was produced using a glass substrate, FPC, and the above-mentioned anisotropic conductive film. After the anisotropic conductive film was slit to a predetermined width and pasted on a glass substrate, and the FPC was temporarily fixed on the pasted anisotropic conductive film, it was covered with tetrafluoroethylene (average thickness 50 μm) as a cushioning material. Pressure bonding was performed using a heated heat tool at a temperature of 160° C. and a pressure of 6 MPa for 5 seconds to complete a connected structure.

-導通抵抗の評価-
FPCとガラス基板との接続状態について、デジタルマルチメータを使用して、初期及び環境試験後における導通抵抗(Ω)を測定した。環境試験は、温度85℃、湿度85%、時間500hrの条件とした。
導通抵抗値は、5Ω未満を「〇」、5Ω以上10Ω未満を「△」、10Ω以上を「×」と評価した。実用上は「△」以上であれば良く、「〇」であれば好ましい。
-Evaluation of continuity resistance-
Regarding the connection state between the FPC and the glass substrate, the conduction resistance (Ω) at the initial stage and after the environmental test was measured using a digital multimeter. The environmental test was conducted under the conditions of temperature 85° C., humidity 85%, and time 500 hours.
Regarding the conduction resistance value, less than 5Ω was evaluated as “○”, 5Ω or more and less than 10Ω was evaluated as “△”, and 10Ω or more was evaluated as “x”. Practically speaking, it is sufficient if it is "△" or more, and preferably "○".

-接着強度の評価-
接続構造体について、90度剥離試験により接着強度を測定した。詳細には、FPCおよび硬化物を長さ1.0cmになるよう切り込み、その長さ1.0cmのFPCをつかみ具で掴み、室温(25℃)下、50mm/分の速度で垂直方向にFPCがガラス基板から剥離するまで引き剥がした時の荷重(N/cm)を測定した。なお、測定には、テンシロン試験機(株式会社オリエンテック製:STA-1150)を使用した。また、環境試験後(温度85℃、湿度85%、時間500hr)の接続構造体についても、同様に接着強度について評価した。
接着強度は、10N/cm以上を「〇」、5N/cm以上10N/cm未満を「△」、5N/cm未満を「×」と評価した。実用上は「△」以上であれば良く、「〇」であれば好ましい。
-Evaluation of adhesive strength-
The adhesive strength of the connected structure was measured by a 90 degree peel test. Specifically, the FPC and the cured product were cut to a length of 1.0 cm, the 1.0 cm long FPC was grabbed with a grip, and the FPC was cut vertically at a speed of 50 mm/min at room temperature (25°C). The load (N/cm) when peeled off from the glass substrate was measured. Note that a Tensilon tester (manufactured by Orientec Co., Ltd.: STA-1150) was used for the measurement. Furthermore, the adhesive strength of the connected structure after the environmental test (temperature: 85° C., humidity: 85%, time: 500 hours) was similarly evaluated.
The adhesive strength was evaluated as "○" if it was 10 N/cm or more, "△" if it was 5 N/cm or more and less than 10 N/cm, and "x" if it was less than 5 N/cm. Practically speaking, it is sufficient if it is "△" or more, and preferably "○".

-剥離評価-
接続構造体について異方性導電フィルムとFPCの端子との剥離の有無について電子顕微鏡で目視評価した。また、環境試験後(温度85℃、湿度85%、時間500hr)の接続構造体についても、同様に剥離について評価した。
図1は、異方性導電フィルムを使用した接続構造体の概略断面図である。図1に示すように、接続構造体は、FPC10とガラス基板20とを異方性導電フィルム30で接続したものであり、図示しないガラス基板20の端子とFPC10の端子11とが導電性粒子31により電気的に接続されている。図1(a)は、端子11と異方性導電フィルム30とが空隙なく密着した状態で「〇」、図1(b)は、端子11の横に空隙40が発生した状態で「△」、図1(c)は、端子11の横および下まで空隙40が発生した状態で「×」と評価した。実用上は「△」以上であれば良く、「〇」であれば好ましい。
-Peeling evaluation-
The connected structure was visually evaluated using an electron microscope for the presence or absence of peeling between the anisotropic conductive film and the terminal of the FPC. Furthermore, the connected structure after the environmental test (temperature: 85° C., humidity: 85%, time: 500 hours) was similarly evaluated for peeling.
FIG. 1 is a schematic cross-sectional view of a connected structure using an anisotropic conductive film. As shown in FIG. 1, the connected structure is one in which an FPC 10 and a glass substrate 20 are connected by an anisotropic conductive film 30, and the terminals of the glass substrate 20 (not shown) and the terminals 11 of the FPC 10 are connected to conductive particles 31. electrically connected. 1(a) shows a state in which the terminal 11 and the anisotropic conductive film 30 are in close contact with each other without any gaps, and FIG. , FIG. 1(c) was evaluated as "x" in a state where the void 40 was generated to the side and below the terminal 11. Practically speaking, it is sufficient if it is "△" or more, and preferably "○".

-ガラス転移点の評価-
異方性導電フィルムのガラス転移点を、(株)エー・アンド・デイ製の動的粘弾性測定機レオバブロンにより測定した。ガラス転移点は、異方性導電フィルムを200℃のオーブンに3時間投入し、完全硬化したものについて測定した。
測定温度:-10℃~200℃、昇温速度:3℃/分、周波数:11Hzで測定した。ガラス転移点が85℃以上のものを「〇」、85℃未満を「×」と評価した。
-Evaluation of glass transition point-
The glass transition point of the anisotropic conductive film was measured using a dynamic viscoelasticity measuring device Rheobabloon manufactured by A&D Co., Ltd. The glass transition point was measured after the anisotropic conductive film was placed in an oven at 200° C. for 3 hours and completely cured.
Measurement temperature: -10°C to 200°C, heating rate: 3°C/min, frequency: 11Hz. Those with a glass transition point of 85°C or higher were evaluated as "○", and those with a glass transition point of less than 85°C were evaluated as "x".

-最低溶融粘度-
異方性導電フィルムを300μmの厚さに重ね合わせたシートを作製し、溶融粘度計(Thermo Fisher Scientific社製)を用いて最低溶融粘度を測定した。
昇温速度:10℃/分、周波数1Hz、加圧力1N、測定温度範囲30~180℃で測定した。
最低溶融粘度が30,000Pa・s以上80,000Pa・s以下を「〇」、20,000Pa・s以上30,000Pa・s未満、80,000Pa・sより大きく90,000Pa・s以下を「△」、20,000Pa・s未満、90,000Pa・sより大きいものを「×」と評価した。実用上は「△」以上であれば良く、「〇」であれば好ましい。
-Minimum melt viscosity-
A sheet was prepared by stacking anisotropic conductive films to a thickness of 300 μm, and the minimum melt viscosity was measured using a melt viscometer (manufactured by Thermo Fisher Scientific).
Measurement was performed at a heating rate of 10°C/min, a frequency of 1Hz, a pressing force of 1N, and a measurement temperature range of 30 to 180°C.
If the minimum melt viscosity is 30,000 Pa・s or more and 80,000 Pa・s or less, “○”, 20,000 Pa・s or more and less than 30,000 Pa・s, and more than 80,000 Pa・s and 90,000 Pa・s or less “△” ”, less than 20,000 Pa·s, and larger than 90,000 Pa·s were evaluated as “×”. Practically speaking, it is sufficient if it is "△" or more, and preferably "○".

-フィルムライフ-
55℃で24Hr放置後のフィルムを使用し、接続構造体を作製し、接着強度を評価した。10N/cm以上を「〇」、5N/cm以上10N/cm未満を「△」、5N/cm未満を「×」とした。
-Film life-
After being left at 55° C. for 24 hours, a bonded structure was prepared using the film, and the adhesive strength was evaluated. 10 N/cm or more was rated "○", 5 N/cm or more but less than 10 N/cm was rated "Δ", and less than 5 N/cm was rated "x".

異方性導電フィルムの処方および評価結果を表1に示す。 Table 1 shows the formulation and evaluation results of the anisotropic conductive film.

Figure 2024033072000001
Figure 2024033072000001

[実施例2]~[実施例5]
エポキシ樹脂、アクリレートモノマー、アクリレートオリゴマー、フェノキシ樹脂、およびフィラーの配合量を表1に示す処方に替えて異方性導電フィルムを作製し、実施例1と同様の条件で接続構造体を作製し、評価を行った。結果を表1に示す。
[Example 2] to [Example 5]
An anisotropic conductive film was produced by changing the blending amounts of epoxy resin, acrylate monomer, acrylate oligomer, phenoxy resin, and filler to those shown in Table 1, and a connected structure was produced under the same conditions as in Example 1, We conducted an evaluation. The results are shown in Table 1.

[比較例1~6]
エポキシ樹脂、(メタ)アクリレートモノマー、(メタ)アクリレートオリゴマー、フィラーの配合量、フェノキシ樹脂の種類および配合量、およびエポキシ樹脂硬化剤の種類を表1に示す処方に替えて異方性導電フィルムを作製し、実施例1と同様の条件で接続構造体を作製し、評価を行った。結果を表1に示す。
[Comparative Examples 1 to 6]
The anisotropic conductive film was prepared by changing the formulations of epoxy resin, (meth)acrylate monomer, (meth)acrylate oligomer, filler, type and amount of phenoxy resin, and type of epoxy resin curing agent to those shown in Table 1. A connected structure was prepared under the same conditions as in Example 1, and evaluated. The results are shown in Table 1.

エポキシ樹脂と、融点が60℃以上のエポキシ樹脂硬化剤と、(メタ)アクリレートモノマーと、ラジカル重合開始剤と、を含み、ガラス転移温度が85℃以上、最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である実施例1~5の異方性導電フィルムを使用した接続構造体は、初期及び環境試験後も剥離がないか、実用上問題ないレベルであり、接着強度および導通抵抗値も初期及び環境試験後でも実用可能なレベルであることが確認された。 Contains an epoxy resin, an epoxy resin curing agent with a melting point of 60°C or higher, a (meth)acrylate monomer, and a radical polymerization initiator, and has a glass transition temperature of 85°C or higher and a minimum melt viscosity of 20,000 Pa·s or higher. The connected structures using the anisotropic conductive films of Examples 1 to 5, which have a strength of 90,000 Pa·s or less, did not peel off even after the initial and environmental tests, or had no practical problems, and had excellent adhesive strength and conductivity. It was confirmed that the resistance value was at a practical level even after the initial and environmental tests.

一方、エポキシ樹脂を含まない比較例1では、環境試験後に剥離が発生し、接着強度が低下した。また、(メタ)アクリレートモノマーを含まない比較例2では、初期から剥離が発生し、接着強度および導通抵抗値も実用可能なレベルではなかった。また、ガラス転移点が85℃未満の比較例3では、環境試験後に導通抵抗が上昇し、剥離も大きくなった。なお、特許文献4(特開2021-88645号公報)等で成膜樹脂として使用する、フェノキシ樹脂(YP-50、YD-019、日鉄ケミカル&マテリアルズ(株)製)も、ガラス転移温度が、84℃、85℃と低く、これを使用した異方性導電フィルムのガラス転移温度も85℃以上とはなりえず、比較例3と同様の結果となる。 On the other hand, in Comparative Example 1 which did not contain an epoxy resin, peeling occurred after the environmental test and the adhesive strength decreased. Furthermore, in Comparative Example 2, which did not contain a (meth)acrylate monomer, peeling occurred from the beginning, and the adhesive strength and conduction resistance values were not at a practical level. Furthermore, in Comparative Example 3, in which the glass transition point was lower than 85° C., the conduction resistance increased and peeling increased after the environmental test. Note that phenoxy resins (YP-50, YD-019, manufactured by Nippon Steel Chemical & Materials Co., Ltd.) used as film-forming resins in Patent Document 4 (Japanese Unexamined Patent Publication No. 2021-88645) etc. also have a glass transition temperature. However, the glass transition temperature of the anisotropic conductive film using this film cannot be higher than 85°C, which is the same result as Comparative Example 3.

さらに、最低溶融粘度が20,000Pa・s未満の比較例4では、最低溶融粘度が低いため、実装時にフィルムの押し込み量が多くなり、剥離が発生し、導通抵抗も上昇する。また、最低溶融粘度が90,000Pa・sより大きい比較例5では、最低溶融粘度が大きすぎるため、実装の際導電性粒子がつぶれず、導通抵抗値が高くなる。さらにまた、融点が60℃未満のエポキシ樹脂硬化剤を使用した比較例6では、エポキシ樹脂硬化剤の安定性が低いため、フィルムライフが低下することが確認された。 Furthermore, in Comparative Example 4 in which the minimum melt viscosity is less than 20,000 Pa·s, since the minimum melt viscosity is low, the amount of indentation of the film increases during mounting, causing peeling and increasing conduction resistance. Furthermore, in Comparative Example 5 in which the minimum melt viscosity is higher than 90,000 Pa·s, the minimum melt viscosity is too large, so that the conductive particles are not crushed during mounting, resulting in a high conduction resistance value. Furthermore, in Comparative Example 6 in which an epoxy resin curing agent with a melting point of less than 60° C. was used, it was confirmed that the film life was reduced due to the low stability of the epoxy resin curing agent.

また、表2に実施例1の処方で、実装圧力を3Mpa、8Mpaに変更して実装構造体を作製し、評価した結果を示す。表2によれば、本発明に係る異方性導電フィルムは、3Mpa~8Mpaの圧力で実装した場合に使用可能であることが確認された。 Furthermore, Table 2 shows the results of evaluation of mounting structures prepared using the recipe of Example 1 and changing the mounting pressure to 3 Mpa and 8 Mpa. According to Table 2, it was confirmed that the anisotropic conductive film according to the present invention can be used when mounted at a pressure of 3 Mpa to 8 Mpa.

Figure 2024033072000002
Figure 2024033072000002

Claims (8)

(A)エポキシ樹脂と、
(B)融点が60℃以上のエポキシ樹脂硬化剤と、
(C)(メタ)アクリレートモノマーと、
(D)ラジカル重合開始剤と、
を含み、
ガラス転移温度が85℃以上、
最低溶融粘度が20,000Pa・s以上90,000Pa・s以下である異方性導電フィルム。
(A) an epoxy resin;
(B) an epoxy resin curing agent with a melting point of 60°C or higher;
(C) (meth)acrylate monomer;
(D) a radical polymerization initiator;
including;
Glass transition temperature is 85℃ or higher,
An anisotropic conductive film having a minimum melt viscosity of 20,000 Pa·s or more and 90,000 Pa·s or less.
(E)ガラス転移温度が100℃以上の成膜樹脂を含み、
異方性導電フィルム中の(E)ガラス転移温度が100℃以上の成膜樹脂の配合割合が、20~60質量%である請求項1に記載の異方性導電フィルム。
(E) Contains a film-forming resin with a glass transition temperature of 100°C or higher,
The anisotropic conductive film according to claim 1, wherein the blending ratio of the film-forming resin (E) having a glass transition temperature of 100° C. or higher in the anisotropic conductive film is 20 to 60% by mass.
(C’)(メタ)アクリレートオリゴマーを含み、
(C)(メタ)アクリレートモノマーと(C’)(メタ)アクリレートオリゴマーの質量配合比が、10:90~70:30である請求項1に記載の異方性導電フィルム。
(C') Contains (meth)acrylate oligomer,
The anisotropic conductive film according to claim 1, wherein the mass mixing ratio of (C) (meth)acrylate monomer and (C') (meth)acrylate oligomer is 10:90 to 70:30.
(F)フィラーを含み、
異方性導電フィルム中の(F)フィラーの配合割合が、1~15質量%である請求項1に記載の異方性導電フィルム。
(F) Contains a filler;
The anisotropic conductive film according to claim 1, wherein the blending ratio of the filler (F) in the anisotropic conductive film is 1 to 15% by mass.
(E)ガラス転移温度が100℃以上の成膜樹脂は、フェノキシ樹脂である請求項2に記載の異方性導電フィルム。 (E) The anisotropic conductive film according to claim 2, wherein the film-forming resin having a glass transition temperature of 100° C. or higher is a phenoxy resin. (G)導電性粒子を含む、請求項1に記載の異方性導電フィルム。 (G) The anisotropic conductive film according to claim 1, comprising conductive particles. 第1の電子部品と第2の電子部品とが請求項1に記載の異方性導電フィルムにより接続されている接続構造体。 A connected structure in which a first electronic component and a second electronic component are connected by the anisotropic conductive film according to claim 1. 第1の電子部品と第2の電子部品とを、請求項1に記載の異方性導電フィルムを介在させて、圧着する工程を含む、接続構造体の製造方法。 A method for manufacturing a connected structure, comprising the step of crimping a first electronic component and a second electronic component with the anisotropic conductive film according to claim 1 interposed therebetween.
JP2022136455A 2022-08-30 2022-08-30 Anisotropic conductive film, connected structure, and method for manufacturing the connected structure Pending JP2024033072A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022136455A JP2024033072A (en) 2022-08-30 2022-08-30 Anisotropic conductive film, connected structure, and method for manufacturing the connected structure
PCT/JP2023/025676 WO2024048088A1 (en) 2022-08-30 2023-07-12 Anisotropic conductive film, connection structure, and method for producing connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022136455A JP2024033072A (en) 2022-08-30 2022-08-30 Anisotropic conductive film, connected structure, and method for manufacturing the connected structure

Publications (1)

Publication Number Publication Date
JP2024033072A true JP2024033072A (en) 2024-03-13

Family

ID=90099446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022136455A Pending JP2024033072A (en) 2022-08-30 2022-08-30 Anisotropic conductive film, connected structure, and method for manufacturing the connected structure

Country Status (2)

Country Link
JP (1) JP2024033072A (en)
WO (1) WO2024048088A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520265B2 (en) * 2010-08-31 2014-06-11 積水化学工業株式会社 Anisotropic conductive material, B-stage-like cured product, and manufacturing method of connection structure
JP6878859B2 (en) * 2016-12-02 2021-06-02 味の素株式会社 Resin composition
JP7446095B2 (en) * 2019-12-03 2024-03-08 デクセリアルズ株式会社 Manufacturing method of film wrapping body and connection body
JP2021134262A (en) * 2020-02-26 2021-09-13 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, circuit connection structure and manufacturing method thereof

Also Published As

Publication number Publication date
WO2024048088A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US7776438B2 (en) Adhesive film for circuit connection, and circuit connection structure
US8524032B2 (en) Connecting film, and joined structure and method for producing the same
JP4905352B2 (en) Adhesive sheet, circuit member connection structure using the same, and semiconductor device
JPWO2007058159A1 (en) Adhesive composition, circuit connection material, connection structure, and circuit member connection method
KR101944125B1 (en) Circuit connection material, connection method using same, and connection structure
JP5972564B2 (en) Connection method, connection structure, anisotropic conductive film, and manufacturing method thereof
JP2011100605A (en) Circuit connecting material and connection structure of circuit member using the same
KR101872562B1 (en) Circuitry connecting material and connecting method and connecting structure using same
JP5816456B2 (en) Anisotropic conductive connection material, film laminate, connection method and connection structure
WO2024048088A1 (en) Anisotropic conductive film, connection structure, and method for producing connection structure
JP2008112713A (en) Anisotropic conductive film and crimping method
JP2008133411A (en) Adhesive film for electrical connection
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
WO2021112023A1 (en) Film wound body and method for manufacturing connecting body
JP2005206717A (en) Substrate-provided adhesive, manufacturing method of substrate-provided adhesive, and circuit connecting structure using the adhesive
TW202413567A (en) Anisotropic conductive film , connection structure, and method for manufacturing same
JP6142612B2 (en) Anisotropic conductive film
JP2023094423A (en) Adhesive composition, anisotropic conductive film, connection structure and producing method of connection structure
JPH11154687A (en) Circuit board
JP6307294B2 (en) Circuit connection material and method of manufacturing electronic component
JP2022063652A (en) Film-like adhesive, joined body, and methods for producing them