JP2024024522A - 位相同期回路及びセンシング装置 - Google Patents

位相同期回路及びセンシング装置 Download PDF

Info

Publication number
JP2024024522A
JP2024024522A JP2022127421A JP2022127421A JP2024024522A JP 2024024522 A JP2024024522 A JP 2024024522A JP 2022127421 A JP2022127421 A JP 2022127421A JP 2022127421 A JP2022127421 A JP 2022127421A JP 2024024522 A JP2024024522 A JP 2024024522A
Authority
JP
Japan
Prior art keywords
signal
phase
frequency
oscillator
resonant element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022127421A
Other languages
English (en)
Inventor
哲朗 板倉
Tetsuro Itakura
大騎 小野
Daiki Ono
桂 増西
Katsura Masunishi
明秀 崔
Akihide Sai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2022127421A priority Critical patent/JP2024024522A/ja
Publication of JP2024024522A publication Critical patent/JP2024024522A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】温度等の環境条件の変化により共振周波数が時間変化しても、追従性よく発振周波数を変化させることができる。【解決手段】位相同期回路は、第1制御信号に応じて周波数を可変させる第1発振器と、所定の共振周波数で共振するとともに、前記共振周波数では前記第1発振器の出力信号の位相を90度ずらした信号を出力する共振素子と、第2制御信号に応じて周波数を可変させる第2発振器と、前記共振素子の出力信号と前記第2発振器の出力信号との第1位相誤差を検出する第1位相検出器と、前記第1位相誤差の少なくとも比例成分を含む第1信号を生成する制御部と、前記第1位相誤差の少なくとも微分成分に比例した第2信号を生成する第1補助信号生成器と、を備え、前記第1制御信号は、前記第1信号に応じた信号であり、前記第2制御信号は、前記第1信号と前記第2信号に応じた信号である。【選択図】図1

Description

本実施形態は、位相同期回路及びセンシング装置に関する。
温度等の環境条件により共振素子の共振周波数が変化しても、周波数可変発振器の発振周波数が変化しないように帰還制御を行う位相同期回路が知られている。
しかしながら、温度などの環境条件による共振周波数の変化に追従させて、発振周波数を精度よく変化させるのは現実には困難であり、発振周波数と共振周波数の周波数誤差が生じてしまう。このため、この種の位相同期回路を用いた物理量検出センサでは、発振周波数と共振周波数との周波数誤差により、物理量の検出精度が低下してしまう。
特開2021-97354号公報 米国特許第4951508号公報
そこで、本実施形態では、温度等の環境条件の変化により共振周波数が時間変化しても、追従性よく発振周波数を変化させることができる位相同期回路及びセンシング装置を提供するものである。
本実施形態に係る位相同期回路は、第1制御信号に応じて周波数を可変させる第1発振器と、所定の共振周波数で共振するとともに、前記共振周波数では前記第1発振器の出力信号の位相を90度ずらした信号を出力する共振素子と、第2制御信号に応じて周波数を可変させる第2発振器と、前記共振素子の出力信号と前記第2発振器の出力信号との第1位相誤差を検出する第1位相検出器と、前記第1位相誤差の少なくとも比例成分を含む第1信号を生成する制御部と、前記第1位相誤差の少なくとも微分成分に比例した第2信号を生成する第1補助信号生成器と、を備え、前記第1制御信号は、前記第1信号に応じた信号であり、前記第2制御信号は、前記第1信号と前記第2信号に応じた信号である。
第1の実施形態に係る位相同期回路のブロック図である。 一比較例に係る位相同期回路のブロック図である。 第2の実施形態における位相同期回路のブロック図である。 第2の実施形態において、制御部が比例制御及び積分制御する場合の、位相同期回路のブロック図である。 第3の実施形態における位相同期回路のブロック図である。 第4の実施形態における位相同期回路のブロック図である。 第5の実施形態における位相同期回路のブロック図である。 第6の実施形態における位相同期回路のブロック図である。 第7の実施形態における位相同期回路のブロック図である。 第7の実施形態において、第1位相検出器を乗算器と低域通過フィルタで構成した位相同期回路のブロック図である。 第8の実施形態におけるセンシング装置のブロック図である。 第8の実施形態における第2位相検出器の構成例を示すブロック図である。 第9の実施形態におけるセンシング装置のブロック図である。 第10の実施形態におけるセンシング装置のブロック図である。
以下、図面を参照しながら、本発明の実施形態について説明する。
(第1の実施形態)
図1は第1の実施形態に係る位相同期回路1のブロック図、図2は一比較例に係る位相同期回路100のブロック図である。まず、図2の一比較例に係る位相同期回路100を用いて、位相同期回路の動作原理を説明する。
図2の位相同期回路100は、発振器200と、共振素子300と、位相検出器400と、制御部500とを備えている。
発振器200は、周波数を可変可能な発振信号を生成する。より具体的には、発振器200は、制御部500から出力された第1制御信号に基づいて、発振信号の周波数を制御する。発振器200は、第1制御信号に周波数変換係数Kを乗じた周波数の発振信号を生成する。
発振器200の出力信号(発振信号)は共振素子300に入力される。共振素子300は、所定の共振周波数で共振する。共振素子は、共振周波数で急峻なQ値(Quality Factor)を有し、共振周波数では発振信号から90度位相が遅れた信号を出力する。
発振器200の出力信号の周波数(発振周波数)が共振素子300の共振周波数からずれていると、共振素子300での位相遅れが90度からずれる。本明細書では、このずれ成分を位相誤差と呼び、この位相誤差をラプラス変換した位相誤差信号をθe(s)とする。発振器200の、出力信号の位相をラプラス変換した信号(以下、位相信号)をθ(s)とすると、共振素子300の出力信号の位相をラプラス変換した位相信号は、θ(s)-90°/s+θe(s)となる。
位相検出器400は、発振器200の出力信号の位相と、共振素子300の出力信号の位相との位相差を検出する。発振器200の位相信号θ(s)と、共振素子300の位相信号θ(s)-90°/s+θe(s)との差分を取ると、位相差は、-90°/s+θe(s)となる。発振器200から予め90度位相のずれた発振信号を生成して位相検出器400に入力すると、位相差は、θe(s)となる。
制御部500は、例えば位相検出器400で検出された位相差に応じた比例制御(P制御)及び積分制御(I制御)を行って500第1制御信号を生成する。制御部500は、比例項Pと積分項Iを有するフィルタで構成可能である。制御部500のフィルタは、ラプラス表記ではP+I/sと表すことができる。
発振器200は、制御部500の出力から生成された第1制御信号に周波数変換係数Kを乗じた周波数の発振信号を生成する。周波数変換係数Kは、発振器200に固有の係数である。図2等では、発振器200の出力信号を位相で表現しており、周波数を積分して位相とするために、発振器200をK/sと表現している。
図2より、発振器200の出力信号θ(s)は、位相誤差信号θe(s)、制御部500のフィルタP+I/s、発振器200のK/sを乗じて算出できる。すなわち、発振器200の出力信号θ(s)は、以下の式(1)で表される。
Figure 2024024522000002
発振器200の発振周波数は、位相θ(s)を微分すればよいので、ラプラス表記ではsを乗じてsθ(s)と表すことができる。共振素子の共振周波数ωr(t)は環境の時間変化に応じて変化する。共振周波数ωr(t)は、ラプラス表記ではωr(s)と表すことができる。
発振器200の発振周波数が共振素子300の共振周波数に近い場合、共振素子300の共振周波数付近での位相特性は線形近似することができる。共振素子300の共振周波数での位相の傾きをaとすると、位相誤差θe(s)は、発振器200の発振周波数と共振素子300の共振周波数の差sθ(s)-ωr(s)に、係数aを乗じた値で表すことができる。すなわち、位相誤差θe(s)は、以下の式(2)で表される。
Figure 2024024522000003
式(1)、(2)より、発振器200の出力信号θ(s)は、以下の式(3)で表される。
Figure 2024024522000004
式(3)より、発振器200の発振周波数と共振素子300の共振周波数の周波数誤差sθ(s)-ωr(s)は、以下の式(4)で表される。
Figure 2024024522000005
このように、共振素子300の共振周波数が時間に応じて変化すると、発振器200の発振周波数は、共振周波数の変化に追随できず、式(4)に示す周波数誤差が生じることがわかる。
そこで、図1の位相同期回路1は、式(4)に示す周波数誤差をゼロにすることを特徴とする。位相同期回路1は、第1発振器21と、第2発振器22と、共振素子3と、第1位相検出器41と、制御部5と、第1補助信号生成器61とを備えている。
第1発振器21は、図2の発振器200と同様に、制御部5の出力から生成された第1制御信号に応じて周波数を可変させる。具体的には、第1発振器21は、第1制御信号に固有の周波数変換係数(第1変換係数)K1を乗じた周波数の発振信号を生成する。
第2発振器22は、後述の第2制御信号に応じて周波数を可変させる。具体的には、第2発振器22は、第2制御信号に固有の周波数変換係数(第2変換係数)K2を乗じた周波数の発振信号を生成する。
共振素子3は、図2の共振素子300と同様に、所定の共振周波数で共振するとともに、共振周波数では第1発振器21の出力信号の位相を90度ずらした信号を出力する。
第1位相検出器41は、例えば加算器から構成される。第1位相検出器41は、共振素子3の出力信号の位相と、第2発振器22の出力信号の位相との位相差(第1位相誤差)を検出する。第1位相検出器41は、制御部5及び第1補助信号生成器61に第1位相誤差信号を入力する。
制御部5は、第1位相誤差信号の少なくとも比例成分を含む第1信号を生成する。第1制御信号は、第1信号に応じた信号である。
第1補助信号生成器61は、第1位相誤差信号の少なくとも微分成分に比例した第2信号を生成する。
第2制御信号は、第1信号と第2信号に応じた信号である。第2制御信号は、例えば第1位相補正器71で生成される。第1位相補正器71は、第2発振器22の入力ノードと、制御部5の出力ノード及び第1補助信号生成器61の出力ノードとの間に挿入される。第1位相補正器71は、第1信号と第2信号とを合成して第2制御信号を生成する。
第1発振器21及び第2発振器22の出力信号は、理想的には共振素子3の出力信号から90度位相のずれた発振信号である。第1発振器21の出力信号の位相をθ1(s)とすると、式(2)と同様に、第1発振器21と共振素子3の位相差は、-90°/s+a(sθ1(s)-ωr(s))と表現できる。すなわち、共振素子3の位相信号は、θ1(s)-90°/s+a(sθ1(s)-ωr(s))となる。なお、係数aは、共振素子3の共振周波数での位相の傾きを示している。
第1位相検出器41の出力である第1位相誤差θe1(s)は、共振素子3の位相信号と第2発振器22の位相信号の位相差である。第2発振器22の位相信号をθ2(s)とし、第2発振器22から予め90度位相のずれた発振信号を生成して第1位相検出器41に入力すると、第1位相検出器41の出力である第1位相誤差θe1(s)は、以下の式(5)で表される。
Figure 2024024522000006
制御部5の伝達関数をF(s)とすると、第1発振器21の位相信号θ1(s)は以下の式(6)で表される。
Figure 2024024522000007
第1補助信号生成器61の伝達関数をA(s)で表すと、第1位相補正器71から出力される第2制御信号はF(s)+A(s)で表すことができる。これにより、第2発振器22の位相信号θ2(s)は以下の式(7)で表される。
Figure 2024024522000008
式(5)、(6)、(7)より第1発振器21の発振周波数sθ1(s)は以下の式(8)で表される。
Figure 2024024522000009
ここで、F(s)(K2―K1)+A(s)K2=-sの関係が成り立つように第1補助信号生成器61の伝達関数A(s)を式(9)のように設定する。式(9)の伝達関数A(s)を式(8)に適用すると、式(10)の結果が得られる。式(10)からわかるように、第1発振器21の発振周波数sθ1(s)を共振素子3の共振周波数ωr(s)に追従させることができる。
Figure 2024024522000010
Figure 2024024522000011
このように、図1に示す位相同期回路1は、第2発振器22と第1補助信号生成器61を設けることにより、温度等の環境によって共振素子3の共振周波数が変動しても、その変動に追従性よく第1発振器21の発振周波数を変化させることができる。特に、本実施形態によれば、環境情報などを外部から入力することなく、発振周波数を共振周波数に精度よく追従させることができる。具体的には、第1補助信号生成器61の伝達関数A(s)を式(9)のように設定することで、第1発振器21の発振周波数を、共振周波数に追従させることができる。
また、式(9)に示す通り、第1補助信号生成器61の特性は、制御部5の伝達関数F(s)と、第1発振器21及び第2発振器22の周波数変換係数K1、K2から決定される。このため、第1補助信号生成器61の特性は、共振素子3の特性、又は温度特性などの環境情報によらず、設定することができる。
(第2の実施形態)
第1発振器21の周波数変換係数K1と、第2発振器22の周波数変換係数K2を略一致させてもよい。図3は、第2の実施形態における位相同期回路1aのブロック図である。図3においては、K1=K2=K0としている。これにより、式(9)に示した第1補助信号生成器61の伝達関数A(s)は、式(11)のように表すことができる。
Figure 2024024522000012
式(11)に示すように、第1補助信号生成器61の伝達関数A(s)は、制御部5の伝達関数F(s)によらず、微分特性のみに簡略化することができる。
第2の実施形態において、制御部5の伝達関数F(s)は、任意に設定できる。図4は、第2の実施形態において、制御部5が比例制御及び積分制御する場合の、位相同期回路1bのブロック図である。例えば、制御部5の伝達関数F(s)は、図4に示すように第1位相検出器41で検出された第1位相誤差に応じた比例制御(P制御とも呼ぶ)及び積分制御(I制御とも呼ぶ)で実現できる。よって、制御部5は、比例項Pと積分項Iを有するフィルタで構成可能である。
このように、第2の実施形態では、第1発振器21及び第2発振器22の周波数変換係数K1、K2を略一致させている。これにより、第1補助信号生成器61の伝達関数A(s)は、式(11)に示すように、制御部5の伝達関数F(s)に依存しなくなる。よって、位相同期回路1a、1bは、制御部5の伝達関数F(s)に依存せず、第1発振器21の発振周波数を共振周波数に追従させることができる。
(第3の実施形態)
第1補助信号生成器61以外に1つ以上の補助信号生成器を設けてもよい。例えば、第1位相検出器41で検出された第1位相誤差信号を入力する第2補助信号生成器をさらに備え、第2補助信号生成器の出力と制御部5の出力の和から第1発振器21の第1制御信号を生成するようにしても良い。
図5は、第3の実施形態における位相同期回路1cのブロック図である。位相同期回路1cは、図1の位相同期回路1の構成に加え、第2補助信号生成器62及び第2位相補正器72を備えている。
第2補助信号生成器62は、第1位相検出器41に第1位相誤差信号を入力される。第2補助信号生成器62は、第1位相誤差信号の少なくとも微分成分に比例した第3信号を生成する。
第2位相補正器72は、第1発振器21と、制御部5及び第2補助信号生成器62との間に挿入される。第2位相補正器72は、第1信号と第3信号とを合成して第1制御信号を生成する。
第2補助信号生成器62の伝達関数をB(s)とすると、第3の実施形態における第1発振器21の位相信号θ1(s)は、以下の式(12)で表される。
Figure 2024024522000013
式(5)、(7)、(12)よりsθ1(s)は以下の式(13)で表される。
Figure 2024024522000014
式(13)より、A(s)K2-B(s)K1=-s+F(s)(K1-K2)の関係が成り立つように、第1補助信号生成器61の伝達関数A(s)及び第2補助信号生成器62の伝達関数B(s)を設定することができる。これにより、位相同期回路1cにおいても式(10)の関係が成立し、第1発振器21の発振周波数を共振周波数に追従させることができる。
第1発振器21の周波数変換係数K1と、第2発振器22の周波変換係数K2を、K1=K2=K0とすることができる。これにより、制御部5の伝達関数F(s)によらず、第1補助信号生成器61の伝達関数A(s)と第2補助信号生成器62の伝達関数B(s)の差を、式(14)に示すように簡略化できる。
Figure 2024024522000015
このように、第1補助信号生成器61以外に1つ以上の補助信号生成器は設けた場合においても、第1の実施形態と同様に、第1発振器21の発振周波数を共振周波数に追従させることができる。また、第2の実施形態と同様に、第1発振器21及び第2発振器22の周波数変換係数K1、K2を略一致させることで、第1補助信号生成器61の伝達関数A(s)及び第2補助信号生成器62の伝達関数B(s)が制御部5の伝達関数F(s)に依存しなくなる。
(第4の実施形態)
第1の実施形態において、第1位相検出器41は加算器で構成されているが、第1位相検出器41の構成は、加算器に限定されない。例えば、第1位相検出器41は、乗算器と、低域通過フィルタとで構成されていてもよい。
図6は、第4の実施形態における位相同期回路1dのブロック図である。図6の第1位相検出器41aは、乗算器42と、低域通過フィルタ43とを有する。
乗算器42は、共振素子3の出力信号と第2発振器22の出力信号の乗算結果を出力する。低域通過フィルタ43は、乗算器42の出力信号のうち、所定の遮断周波数より低い周波数成分を抽出する。
第1発振器21の位相は、共振周波数で共振している共振素子3の位相に対して、90度の位相遅れと、位相誤差θE(t)が生じる。位相誤差θE(t)は、共振素子3の共振周波数付近では線形近似できる。すなわち、係数a、第1発振器21の出力周波数θ1 (t)、及び共振素子3の共振周波数ωr(t)を用いて以下の式(15)で表すことができる。
Figure 2024024522000016
第1発振器21の出力信号がcosθ(t)の場合、共振素子3の出力信号ωは、以下の式(16)で表される。
Figure 2024024522000017
第2発振器22の出力信号cosθ(t)と共振素子3ωの出力信号とを乗算器42で乗じると、以下の式(17)で表される信号が生成される。
Figure 2024024522000018
Figure 2024024522000019
乗算器42の出力信号を低域通過フィルタ43に入力すると、以下の式(18)に示す第1位相検出器41aの出力信号θe1(t)が得られる。
Figure 2024024522000020
式(18)に示す第1位相検出器41aの出力信号θe1(s)を2倍し、ラプラス変換したものが、式(5)に示す第1位相誤差θe1(s)に対応する。
このように、第4の実施形態では、第1位相検出器41aを乗算器42と低域通過フィルタ43とで構成する。この場合においても、加算器で構成した第1位相検出器41を用いる場合と同様に、環境情報などを外部から入力することなく、発振周波数を共振周波数に精度よく追従させることができる。
(第5の実施形態)
第5の実施形態では、第1位相検出器41に、互いに90度位相の異なる、第1発振信号及び第2発振信号と共振素子3の出力信号との位相差を検出させてもよい。
図7は第5の実施形態における位相同期回路1eのブロック図である。図7の第1位相検出器41bは、乗算器42と、低域通過フィルタ43と、位相差演算部44とを有する。
第2発振器22は、互いに位相の異なる第1発振信号及び第2発振信号を生成する。乗算器42は、第1発振信号と共振素子3の出力信号とを乗算した第1乗算信号Iを生成するとともに、第2発振信号と共振素子3の出力信号とを乗算した第2乗算信号Qを生成する。位相差演算部44は、低域通過フィルタ43の出力信号のうち、上記第1乗算信号Iの低域成分信号と、第2乗算信号Qの低域成分信号との位相差を検出する。
図7の第1発振器21はcosθ1(t)で表される発振信号を共振素子3に供給する。また、第1位相検出器41b内の乗算器42は、共振素子3の出力信号に、第2発振器22から供給される第1発振信号及び第2発振信号(2sinθ2(t), -2cosθ2(t))のそれぞれを乗じて、第1乗算信号Iと第2乗算信号Qを生成する。第1乗算信号Iと第2乗算信号Qは、共振素子3の出力信号ωを用いて、以下の式(19)、(20)で表すことができる。なお、共振素子3の出力信号ωは第4の実施形態と同様に、式(16)で表すことができる。
Figure 2024024522000021
Figure 2024024522000022
第1位相検出器41b内の低域通過フィルタ43は、第1乗算信号Iに含まれる低域成分信号ILと、第2乗算信号Qに含まれる低域成分信号QLを抽出する。低域成分信号IL、QLは、式(18)のθe1(t)を用いて、以下の式(21)、(22)で表すことができる。
Figure 2024024522000023
Figure 2024024522000024
位相差演算部44は、式(23)に示すように、IQ平面における低域成分信号ILと低域成分信号QLの為す角度∠ILLにより位相差を演算する。
Figure 2024024522000025
式(23)に示すように、位相差演算部44から、第1位相検出器41bの出力信号θe1(t)を出力することができる。
このように、第2発振器22が互いに90度位相の異なる第1発振信号及び第2発振信号を第1位相検出器41bに供給する場合においても、乗算器42、低域通過フィルタ43、及び位相差演算部44を用いることにより、第1位相検出器41bから第1~第4の実施形態と同様に、環境情報などを外部から入力することなく、発振周波数を共振周波数に精度よく追従させることができる。
(第6の実施形態)
第1~5の実施形態における位相同期回路1、1a、1b、1c、1d、1eでは、各回路素子をアナログ回路で構成している。第6の実施形態においては、回路素子の一部をデジタル回路で構成する。制御に用いる各信号をデジタル信号とすることにより、温度等の環境による影響に対する耐性を高めることができる。
図8は第6の実施形態における位相同期回路1fのブロック図である。位相同期回路1fは、DA(Digital to Analog)変換器81とAD(Analog to Digital)変換器82を備えている。図8の第1発振器21、第2発振器22、第1位相検出器41、制御部5、及び第1補助信号生成器61は、デジタル回路で構成され、共振素子3はアナログ回路で構成される。
DA変換器81は、第1発振器21の出力ノードと共振素子3の入力ノードの間に挿入されている。DA変換器81は、第1発振器21の出力信号をアナログ信号に変換し、共振素子3に入力する。
AD変換器82は、共振素子3の出力ノードと第1位相検出器41の入力ノードの間に挿入されている。DA変換器81は、共振素子3の出力信号をデジタル信号に変換し、第1位相検出器41に入力する。
位相同期回路1fは、第1発振器21、第2発振器22をデジタル回路で構成するため、温度や電源電圧などの環境情報により周波数変換係数K1、K2が変動しなくなる。よって、環境の変化により共振素子3の共振周波数が時間とともに変化しても、第1発振器21の発振周波数を共振周波数に追従性よく変化させることができる。
このように、第6の実施形態における位相同期回路1fは、DA変換器81とAD変換器82を備え、第1発振器21、第2発振器22、第1位相検出器41、制御部5、及び第1補助信号生成器61をデジタル回路としている。これにより、温度等の環境によって共振素子3の共振周波数が変動しても、その変動に追従性よく第1発振器21の発振周波数を変化させることができる。
(第7の実施形態)
第1補助信号生成器61は、様々な構成をとることができる。例えば、第1補助信号生成器61の微分特性は、高域通過フィルタ又は帯域通過フィルタで模擬してもよい。
図9Aは、第7の実施形態における位相同期回路1gのブロック図である。図9Aの第1補助信号生成器61aは、フィルタ63を含む。
フィルタ63は、例えば高域通過フィルタである。フィルタ63は、第1位相検出器41により、第1位相誤差信号を入力される。フィルタ63は、第1位相誤差θe1(s)のうち、所定の遮断周波数よりも低い周波数では、周波数に対して出力が増加する特性を示す。フィルタ63は、遮断周波数より低い周波数では微分特性を示すため、高域通過フィルタで微分特性を模擬することができる。フィルタ63の高域通過特性の遮断周波数より低い特性を使うことにより、第1補助信号生成器61aにおいても第1補助信号生成器61の微分特性を実現できる。これにより、温度等の環境によって共振素子3の共振周波数が変動しても、その変動に追従性よく第1発振器21の発振周波数を変化させることができる。フィルタ63には、帯域通過フィルタを用いてもよい。帯域通過フィルタの場合も、低域側の遮断周波数より低い周波数では微分特性を模擬できる。
図9Bは、第7の実施形態における位相同期回路1hにおいて、第4の実施形態と同様に、乗算器42と、低域通過フィルタ43とで構成する第1位相検出器41aを用いた例である。この場合において、フィルタ63は、低域通過フィルタ43よりも高い遮断周波数を有する。
このように、第7の実施形態では、フィルタ63を高域通過フィルタ又は帯域通過フィルタで構成することにより、第1位相検出器41で検出された第1位相誤差θe1(s)に含まれる高域の雑音成分が第1補助信号生成器61aにおいて増幅されることを防ぐことができる。
(第8の実施形態)
第1~第7の実施形態による位相同期回路1、1a、1b、1c、1d、1e、1f、1g、1hは、物理量を検出するセンシング装置に内蔵することができる。物理量とは、例えば、角度、加速度、ガス濃度などの種々のセンサの検知対象信号である。センシング装置は、共振素子3の出力信号に基づいて物理量を検出してもよいし、第1発振器21の出力信号、又は第1制御信号に基づいて物理量を検出してもよい。
図10Aは、第8の実施形態におけるセンシング装置10のブロック図である。図10Aのセンシング装置10は、位相同期回路1fと、物理量演算部9を備えている。物理量演算部9は、第2位相検出器91と、演算部92を有する。
図10Aのセンシング装置10は、例えば角度センサであってもよい。例えば、位相同期回路1内の共振素子3がMEMS共振素子の場合には、角度センサに適用可能である。
第8の実施形態における共振素子3は、二次元方向に所定の共振周波数で振動して、x方向(第1方向)の変位信号と、y方向(第2方向)の変位信号とを出力する。
図10Bは、第2位相検出器91の構成例を示すブロック図である。第2位相検出器91は、乗算器93と、低域通過フィルタ94を有する。
第2位相検出器91は、第1発振器21の出力信号と、共振素子3の出力信号の位相差を検出するために用いられる。具体的には、第2位相検出器91は、第1発振器21の出力信号と共振素子3のx方向の変位信号とを乗じた信号の低周波成分及び、第1発振器21の出力信号と共振素子3のy方向の変位信号とを乗じた信号の低周波成分を、第2位相誤差として検出する。
演算部92は、第2位相検出器91で検出された第2位相誤差に基づいて物理量の演算を行う。第8の実施形態においては、物理量として、例えば角度の演算を行う。
MEMS共振素子は、マス(錘)を楕円形状に振動させるものであり、楕円の長軸をd、短軸をqとしている。MEMS共振素子のx方向の変位信号は式(24)で表され、y方向の変位信号は式(25)で表される。
Figure 2024024522000026
Figure 2024024522000027
Figure 2024024522000028
Figure 2024024522000029
ここで、θe2(t)は第2位相検出器91の出力θe2(t)である。第2位相検出器91の出力θe2(t)をラプラス変換したものがθe2(s)であり、以下の様に求まる。
Figure 2024024522000030
第2位相検出器91内の乗算器93は、共振素子3から入力されるx方向の変位信号及びy方向の変位信号と、第1発振器21から入力される発振信号(2sinθ1(t), -2cosθ1(t))とを乗じて、以下の式(26)、(27)に示すIx信号及びQx信号と、式(28)、(29)に示すIy信号及びQy信号とを生成する。
Figure 2024024522000031
Figure 2024024522000032
Figure 2024024522000033
Figure 2024024522000034
第2位相検出器91内の低域通過フィルタ94は、Ix信号、Qx信号、Iy信号、Qy信号の低周波成分IxL、QxL、IyL、QyLを抽出する。低域通過フィルタ94の出力信号IxL、QxL、IyL、QyLは、演算部92に入力される。演算部92は、以下の式(30)に基づいて角度θA(t)を求める。
Figure 2024024522000035
図10Aでは、第5の実施形態で示した位相同期回路1fを、センシング装置10に適用する例を示している。位相同期回路1fは、DA変換器81とAD変換器82を備える。これにより、第1発振器21、第2発振器22、第1位相検出器41、制御部5、第1補助信号生成器61、第1位相補正器71、物理量演算部9は、いずれもデジタル回路で構成できる。一方、共振素子3はアナログ回路で構成される。
DA変換器81は、物理量演算部9と共振素子3の間に挿入され、第1発振器21の出力信号をアナログ信号に変換する。AD変換器82は、共振素子3と物理量演算部9の間に挿入され、共振素子3の出力信号をデジタル信号に変換する。
第1発振器21、第2発振器22、第1位相検出器41、制御部5、第1補助信号生成器61、第1位相補正器71をデジタル回路で構成することにより、温度や電源電圧などによる第1発振器21、第2発振器22の周波数変換係数K1、K2の変動を抑制できる。よって、温度や電源電圧等の環境の変化により共振素子3の共振周波数が時間変化しても、共振素子3の共振周波数に精度よく追従させて第1発振器21の発振周波数を可変させることができる。
また、物理量演算部9をデジタル回路で構成できるため、アナログ回路で構成する場合と比べて、温度や電源電圧等の環境の影響を受けなくなり、より正確に物理量を検出できる。
なお、DA変換器81とAD変換器82は、センシング装置10から配置を省略することもできる。また、センシング装置10には、位相同期回路1fのほか、位相同期回路1、1a、1b、1c、1d、1e、1g、1hのいずれかを適用してもよく、あるいはこれらの位相同期回路の回路素子を適宜組み合わせて適用してもよい。
このように、センシング装置10に位相同期回路1、1a、1b、1c、1d、1e、1f、1g、1hを適用できる。位相同期回路1、1a、1b、1c、1d、1e、1f、1g、1hは、環境情報の時間変化により共振素子3の共振周波数が時間とともに変化しても、第1発振器21の発振周波数を共振素子3の共振周波数に精度よく追従させることができる。これにより、センシング装置10の物理量(例えば、角度)の検出精度の低下を抑制することができる。
(第9の実施形態)
センシング装置10は、様々な構成をとることができる。例えば、センシング装置10の構成を変更し、異なるセンサに適用してもよい。
図11は、第9の実施形態におけるセンシング装置10aのブロック図である。センシング装置10aは、位相同期回路1と、物理量演算部9aを備えている。物理量演算部9aは、周波数検出器96と、周波数誤差検出器97と、演算部92を有する。第8の実施形態と同様に、図11のDA変換器81とAD変換器82は、配置を省略してもよい。
センシング装置10aは、例えば加速度センサであってもよい。例えば、位相同期回路1内の共振素子3がMEMS共振素子の場合には、加速度センサに適用可能である。
周波数検出器96は、第1発振器21の発振周波数を検出する。周波数誤差検出器97は、周波数検出器96で検出された発振周波数と所定の基準周波数との周波数誤差を演算する。基準周波数は、例えば共振素子3の加速度をゼロとしたときの第1発振器21の発振周波数である。
演算部92は、周波数誤差検出器97で演算された周波数誤差に基づいて、物理量を検出する。具体的には、演算部92は、周波数誤差検出器97で演算された周波数誤差を共振素子3の加速度係数KAで割ることにより、加速度を求める。加速度係数KAは、MEMS共振素子に固有の値である。
センシング装置10aは、例えばガスセンサであってもよい。すなわち、共振素子3が、ガスに反応する膜がついているMEMS共振素子では、ガスに反応して共振素子3の質量や応力が変わり共振周波数が変化する。よって、ガスセンサに適用可能である。
周波数誤差検出器97は、周波数検出器96で検出された共振周波数に追従している第1発振器21の発振周波数と基準周波数との周波数誤差を演算する。基準周波数は、所定のガス濃度時の共振素子3の共振周波数である。演算部92は、周波数誤差検出器97で演算された周波数誤差を共振素子3のガス濃度係数KGで割ることにより、ガス濃度を求める。ガス濃度係数KGは、MEMS共振素子に固有の値である。
このように、第9の実施形態におけるセンシング装置10aは、例えば加速度センサ又はガスセンサに適用できる。センシング装置10aは、環境変化により共振素子3の共振周波数が時間により変化しても、第1発振器21の発振周波数が共振周波数に精度よく追随して変化するため、より正確に加速度(ガス濃度)を検出することができる。
(第10の実施形態)
第9の実施形態におけるセンシング装置10aは、第1発振器21の出力信号を、物理量演算部9aに入力して、第1発振器21の発振周波数と共振素子3の共振周波数との周波数誤差を演算している。周波数誤差の演算には、第1発振器21の第1制御信号を用いてもよい。
図12は第10の実施形態におけるセンシング装置10bのブロック図である。センシング装置10bは、位相同期回路1と、物理量演算部9bを備えている。物理量演算部9bは、周波数倍数器98と、周波数誤差検出器97と、演算部92を有する。第8の実施形態と同様に、図12のDA変換器81とAD変換器82は、配置を省略してもよい。
周波数倍数器98は、第1制御信号に周波数変換係数K1を乗じる。これにより、周波数倍数器98は、第1発振器21と同じ発振周波数の周波数を表す周波数信号を生成できる。つまり、周波数倍数器98は、図11の周波数検出器96の機能を有しており、第1制御信号に周波数変換係数K1を乗じて得られる第1発振器21の発振信号の周波数を出力する。
周波数誤差検出器97は、周波数倍数器98の出力信号と所定の基準周波数との周波数誤差を演算する。演算部92は、周波数誤差検出器97で演算された周波数誤差に基づいて、物理量を検出する。
センシング装置10bは、例えば加速度センサであってもよい。その場合、加速度を演算する物理量演算部9b内の周波数誤差検出器97及び演算部92の処理動作は、物理量演算部9a内の周波数誤差検出器97及び演算部92の処理動作と同様である。また、センシング装置10bは、センシング装置10aと同様にガスセンサとして用いることもできる。
このように、センシング装置10a、10bは、第1発振器21の出力信号に基づいて、加速度(ガス濃度)を検出することができるし、第1発振器21の第1制御信号に基づいて、加速度(ガス濃度)を検出することもできる。
どちらの場合においても、温度等の環境条件の変化により共振素子3の共振周波数が時間変化しても、追従性よく第1発振器21の発振周波数を変化させることができるため、より正確に加速度(ガス濃度)を検出することができる。
なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
[付記]
[項目1]
第1制御信号に応じて周波数を可変させる第1発振器と、
所定の共振周波数で共振するとともに、前記共振周波数では前記第1発振器の出力信号の位相を90度ずらした信号を出力する共振素子と、
第2制御信号に応じて周波数を可変させる第2発振器と、
前記共振素子の出力信号と前記第2発振器の出力信号との第1位相誤差を検出する第1位相検出器と、
前記第1位相誤差の少なくとも比例成分を含む第1信号を生成する制御部と、
前記第1位相誤差の少なくとも微分成分に比例した第2信号を生成する第1補助信号生成器と、を備え、
前記第1制御信号は、前記第1信号に応じた信号であり、
前記第2制御信号は、前記第1信号と前記第2信号に応じた信号である、
位相同期回路。
[項目2]
前記第1信号と前記第2信号とを合成して前記第2制御信号を生成する第1位相補正器をさらに備える、
項目1に記載の位相同期回路。
[項目3]
前記第1発振器が前記第1制御信号から前記第1発振器の出力信号に変換する第1変換係数は、前記第2発振器が前記第2制御信号から前記第2発振器の出力信号に変換する第2変換係数に等しい、
項目1又は2に記載の位相同期回路。
[項目4]
前記第1位相検出器は、前記第1位相誤差を検出する加算器を有する、
項目1~3のいずれか一項に記載の位相同期回路。
[項目5]
前記第1位相検出器は、前記共振素子の出力信号と前記第2発振器の出力信号との乗算を行う乗算器と、
前記乗算器の出力信号の低域周波数成分を前記第1位相誤差として抽出する低域通過フィルタと、を有する、
項目1~3のいずれか一項に記載の位相同期回路。
[項目6]
前記第2発振器は、互いに位相の異なる第1発振信号及び第2発振信号を出力し、
前記乗算器は、前記共振素子の出力信号と前記第1発振信号とを乗算した第1乗算信号を生成するとともに、前記共振素子の出力信号と前記第2発振信号とを乗算した第2乗算信号を生成し、
前記低域通過フィルタは、前記第1乗算信号の低域成分信号と前記第2乗算信号の低域成分信号とを抽出し、
前記第1位相検出器は、前記第1乗算信号の低域成分信号と前記第2乗算信号の低域成分信号との位相差を検出する位相差演算部をさらに有する、
項目5に記載の位相同期回路。
[項目7]
前記第1補助信号生成器は、高域通過フィルタ又は帯域通過フィルタを有する、
項目1~6のいずれか一項に記載の位相同期回路。
[項目8]
前記第1位相誤差の少なくとも微分成分に比例した第3信号を生成する第2補助信号生成器と、
前記第1信号と前記第3信号とを合成して前記第1制御信号を生成する第2位相補正器と、をさらに備える、
項目1~4のいずれか一項に記載の位相同期回路。
[項目9]
前記第1発振器と前記共振素子との間に挿入され、前記第1発振器の出力信号をアナログ信号に変換するDA変換器と、
前記共振素子と前記第1位相検出器の間に挿入され、前記共振素子の出力信号をデジタル信号に変換するAD変換器と、をさらに備える、
項目1~8のいずれか一項に記載の位相同期回路。
[項目10]
前記共振素子は、前記共振周波数で振動するMEMS(Micro Electro Mechanical Systems)共振素子である、
項目1~9のいずれか一項に記載の位相同期回路。
[項目11]
項目1~10のいずれか一項に記載の位相同期回路と、
前記共振素子の出力信号、前記第1発振器の出力信号、又は前記第1制御信号の少なくとも一つに基づいて物理量を演算する物理量演算部と、を備える、
センシング装置。
[項目12]
前記共振素子は、二次元方向に前記共振周波数で振動して、第1方向の変位信号と、第2方向の変位信号とを出力し、
前記物理量演算部は、
前記第1発振器の出力信号と前記第1方向の変位信号とを乗じた信号の低周波成分及び、前記第1発振器の出力信号と前記第2方向の変位信号とを乗じた信号の低周波成分を、第2位相誤差として検出する第2位相検出器と、
前記第2位相検出器で検出された前記第2位相誤差に基づいて前記物理量の演算を行う演算部と、を備え、
前記物理量は、角度を含む、
項目11に記載のセンシング装置。
[項目13]
前記物理量演算部は、前記第1発振器の出力信号の周波数を検出する周波数検出器と、
前記周波数検出器で検出された周波数と、所定の基準周波数との周波数誤差を検出する周波数誤差検出器と、
前記周波数誤差に基づいて、前記物理量を検出する演算部と、を備える、
項目11に記載のセンシング装置。
[項目14]
前記第1発振器は、前記第1制御信号を、前記第1発振器の出力信号に変換する第1変換係数を有し、
前記物理量演算部は、
前記第1発振器の前記第1変換係数を前記第1制御信号に乗じる周波数倍数器と、
前記周波数倍数器の出力信号と、所定の基準周波数との周波数誤差を検出する周波数誤差検出器と、前記周波数誤差に基づいて、前記物理量を検出する演算部と、を有する、
項目11に記載のセンシング装置。
[項目15]
前記共振素子は、固有の加速度係数を有し、
前記演算部は、前記周波数誤差を前記加速度係数で割ることにより、加速度を検出する、
項目13又は14に記載のセンシング装置。
[項目16]
前記共振素子は、固有のガス濃度係数を有し、
前記演算部は、前記周波数誤差を前記ガス濃度係数で割ることにより、ガス濃度を検出する、
項目13又は14に記載のセンシング装置。
1、1a、1b、1c、1d、1e、1f、1g、1h、100 位相同期回路、200 発振器、3、300 共振素子、400 位相検出器、5、500 制御部、9、9a、9b 物理量演算部、10、10a、10b センシング装置、21 第1発振器、22 第2発振器、41、41a、41b 第1位相検出器、42、93 乗算器、43、94 低域通過フィルタ、44 位相差演算部、61、61a 第1補助信号生成器、62 第2補助信号生成器、63 フィルタ、71 第1位相補正器、72 第2位相補正器、81 DA変換器、82 AD変換器、91 第2位相検出器、92 演算部、96 周波数検出器、97 周波数誤差検出器、98 周波数倍数器

Claims (16)

  1. 第1制御信号に応じて周波数を可変させる第1発振器と、
    所定の共振周波数で共振するとともに、前記共振周波数では前記第1発振器の出力信号の位相を90度ずらした信号を出力する共振素子と、
    第2制御信号に応じて周波数を可変させる第2発振器と、
    前記共振素子の出力信号と前記第2発振器の出力信号との第1位相誤差を検出する第1位相検出器と、
    前記第1位相誤差の少なくとも比例成分を含む第1信号を生成する制御部と、
    前記第1位相誤差の少なくとも微分成分に比例した第2信号を生成する第1補助信号生成器と、を備え、
    前記第1制御信号は、前記第1信号に応じた信号であり、
    前記第2制御信号は、前記第1信号と前記第2信号に応じた信号である、
    位相同期回路。
  2. 前記第1信号と前記第2信号とを合成して前記第2制御信号を生成する第1位相補正器をさらに備える、
    請求項1に記載の位相同期回路。
  3. 前記第1発振器が前記第1制御信号から前記第1発振器の出力信号に変換する第1変換係数は、前記第2発振器が前記第2制御信号から前記第2発振器の出力信号に変換する第2変換係数に等しい、
    請求項1に記載の位相同期回路。
  4. 前記第1位相検出器は、前記第1位相誤差を検出する加算器を有する、
    請求項1に記載の位相同期回路。
  5. 前記第1位相検出器は、前記共振素子の出力信号と前記第2発振器の出力信号との乗算を行う乗算器と、
    前記乗算器の出力信号の低域周波数成分を前記第1位相誤差として抽出する低域通過フィルタと、を有する、
    請求項1に記載の位相同期回路。
  6. 前記第2発振器は、互いに位相の異なる第1発振信号及び第2発振信号を出力し、
    前記乗算器は、前記共振素子の出力信号と前記第1発振信号とを乗算した第1乗算信号を生成するとともに、前記共振素子の出力信号と前記第2発振信号とを乗算した第2乗算信号を生成し、
    前記低域通過フィルタは、前記第1乗算信号の低域成分信号と前記第2乗算信号の低域成分信号とを抽出し、
    前記第1位相検出器は、前記第1乗算信号の低域成分信号と前記第2乗算信号の低域成分信号との位相差を検出する位相差演算部をさらに有する、
    請求項5に記載の位相同期回路。
  7. 前記第1補助信号生成器は、高域通過フィルタ又は帯域通過フィルタを有する、
    請求項1に記載の位相同期回路。
  8. 前記第1位相誤差の少なくとも微分成分に比例した第3信号を生成する第2補助信号生成器と、
    前記第1信号と前記第3信号とを合成して前記第1制御信号を生成する第2位相補正器と、をさらに備える、
    請求項1に記載の位相同期回路。
  9. 前記第1発振器と前記共振素子との間に挿入され、前記第1発振器の出力信号をアナログ信号に変換するDA変換器と、
    前記共振素子と前記第1位相検出器の間に挿入され、前記共振素子の出力信号をデジタル信号に変換するAD変換器と、をさらに備える、
    請求項1に記載の位相同期回路。
  10. 前記共振素子は、前記共振周波数で振動するMEMS(Micro Electro Mechanical Systems)共振素子である、
    請求項1に記載の位相同期回路。
  11. 請求項1に記載の位相同期回路と、
    前記共振素子の出力信号、前記第1発振器の出力信号、又は前記第1制御信号の少なくとも一つに基づいて物理量を演算する物理量演算部と、を備える、
    センシング装置。
  12. 前記共振素子は、二次元方向に前記共振周波数で振動して、第1方向の変位信号と、第2方向の変位信号とを出力し、
    前記物理量演算部は、
    前記第1発振器の出力信号と前記第1方向の変位信号とを乗じた信号の低周波成分及び、前記第1発振器の出力信号と前記第2方向の変位信号とを乗じた信号の低周波成分を、第2位相誤差として検出する第2位相検出器と、
    前記第2位相検出器で検出された前記第2位相誤差に基づいて前記物理量の演算を行う演算部と、を備え、
    前記物理量は、角度を含む、
    請求項11に記載のセンシング装置。
  13. 前記物理量演算部は、前記第1発振器の出力信号の周波数を検出する周波数検出器と、
    前記周波数検出器で検出された周波数と、所定の基準周波数との周波数誤差を検出する周波数誤差検出器と、
    前記周波数誤差に基づいて、前記物理量を検出する演算部と、を備える、
    請求項11に記載のセンシング装置。
  14. 前記第1発振器は、前記第1制御信号を、前記第1発振器の出力信号に変換する第1変換係数を有し、
    前記物理量演算部は、
    前記第1発振器の前記第1変換係数を前記第1制御信号に乗じる周波数倍数器と、
    前記周波数倍数器の出力信号と、所定の基準周波数との周波数誤差を検出する周波数誤差検出器と、前記周波数誤差に基づいて、前記物理量を検出する演算部と、を有する、
    請求項11に記載のセンシング装置。
  15. 前記共振素子は、固有の加速度係数を有し、
    前記演算部は、前記周波数誤差を前記加速度係数で割ることにより、加速度を検出する、
    請求項14に記載のセンシング装置。
  16. 前記共振素子は、固有のガス濃度係数を有し、
    前記演算部は、前記周波数誤差を前記ガス濃度係数で割ることにより、ガス濃度を検出する、
    請求項14に記載のセンシング装置。
JP2022127421A 2022-08-09 2022-08-09 位相同期回路及びセンシング装置 Pending JP2024024522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022127421A JP2024024522A (ja) 2022-08-09 2022-08-09 位相同期回路及びセンシング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022127421A JP2024024522A (ja) 2022-08-09 2022-08-09 位相同期回路及びセンシング装置

Publications (1)

Publication Number Publication Date
JP2024024522A true JP2024024522A (ja) 2024-02-22

Family

ID=89940015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022127421A Pending JP2024024522A (ja) 2022-08-09 2022-08-09 位相同期回路及びセンシング装置

Country Status (1)

Country Link
JP (1) JP2024024522A (ja)

Similar Documents

Publication Publication Date Title
US9869553B2 (en) Frequency readout gyroscope
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
KR102048393B1 (ko) 정밀한 직각 위상 변이기
US20230125664A1 (en) Phase locked loop and sensing device
JP6641712B2 (ja) 回路装置、電子機器及び移動体
ZA200508808B (en) Operating method for a coriolis gyroscope and evaluation/adjustment electronic system and pulse modulator suitable therefor
US10018468B2 (en) Physical-quantity detection circuit, physical-quantity sensor, and electronic device
WO2005103618A1 (ja) ジャイロ装置
JP4576441B2 (ja) 角速度センサ
Pandit et al. Closed-loop characterization of noise and stability in a mode-localized resonant MEMS sensor
CN112747730B (zh) 一种微机械陀螺的基于自激驱动的非线性控制系统和方法
TW201740084A (zh) 用於處理信號的方法與裝置
CN111551162A (zh) 一种用于常压封装mems陀螺仪解调相角补偿的系统和方法
US20130173196A1 (en) Physical quantity sensor
JP2024024522A (ja) 位相同期回路及びセンシング装置
JP2012159429A (ja) 音叉振動型角速度センサ
JP5227977B2 (ja) 角速度センサ
JP2023114822A (ja) 共振周波数検出器及びセンシング装置
CN113959424B (zh) 一种微机械陀螺的正交实时校正方法、设备及相关组件
TWI449323B (zh) 頻率產生器的校正電路及其補償電路
JP2005003530A (ja) 位相検出器
RU2316731C1 (ru) Способ подстройки резонансной частоты подвеса подвижной массы микромеханического гироскопа с глубокой обратной связью по скорости перемещения подвижной массы по оси вторичных колебаний и микромеханический гироскоп
Chang et al. Design and performance analysis of PLL based self oscillation loop in vibrating gyroscope
JP2013205266A (ja) 複合センサ
JP6995403B2 (ja) 非同期fraおよび同期検波器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240905