JP2024017630A - 電子内視鏡システムの画像補正方法 - Google Patents

電子内視鏡システムの画像補正方法 Download PDF

Info

Publication number
JP2024017630A
JP2024017630A JP2022120393A JP2022120393A JP2024017630A JP 2024017630 A JP2024017630 A JP 2024017630A JP 2022120393 A JP2022120393 A JP 2022120393A JP 2022120393 A JP2022120393 A JP 2022120393A JP 2024017630 A JP2024017630 A JP 2024017630A
Authority
JP
Japan
Prior art keywords
processor
correction
endoscope
image
pixel value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022120393A
Other languages
English (en)
Inventor
貴雄 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2022120393A priority Critical patent/JP2024017630A/ja
Priority to PCT/JP2023/024657 priority patent/WO2024024411A1/ja
Publication of JP2024017630A publication Critical patent/JP2024017630A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof

Abstract

Figure 2024017630000001
【課題】任意の電子内視鏡と電子内視鏡用プロセッサを組み合わせて使用する場合に、色情報の補正を行う際の処理負荷を軽減する。
【解決手段】本発明の一態様は、電子内視鏡システムにおいて撮像画像を補正する補正方法である。この方法は、基準内視鏡と基準プロセッサとを用いて補正対象プロセッサに対応する第1補正用パラメータを算出するステップと、算出された第1補正用パラメータを補正対象プロセッサに記憶させるステップと、基準内視鏡と基準プロセッサとを用いて補正対象内視鏡に対応する第2補正用パラメータを算出するステップと、算出された第2補正用パラメータを補正対象内視鏡に記憶させるステップと、補正対象内視鏡と補正対象プロセッサが接続された場合に、補正対象プロセッサが、補正対象内視鏡の撮像素子によって撮像された撮像画像に対して、第1補正用パラメータと第2補正用パラメータを用いた補正を行うステップと、を含む。
【選択図】図6

Description

本発明は、生体組織の撮像画像を取得して処理するように構成された電子内視鏡システムにおける画像補正方法に関する。
人体内部の生体組織の観察や治療に電子内視鏡システムが使用されている。電子内視鏡システムは、生体組織を撮像素子で撮像して撮像画像をプロセッサに伝送する電子内視鏡(電子スコープ)と、照明光を出射するとともに撮像画像の信号を信号処理して表示用画像を作成するプロセッサ(電子内視鏡用プロセッサ)を備える。
電子内視鏡(電子スコープ)に備わる撮像素子と、プロセッサに備わる光源とは、それぞれ分光特性に個体差があるため、電子スコープとプロセッサを接続した場合に、表示される生体組織の画像の色情報にばらつきが生ずる。このようなプロセッサと内視鏡の個体間の色情報の誤差(機差)を補正することが従来から提案されている。
例えば特許文献1には、プロセッサと内視鏡の機差を補正するために、プロセッサにおいて照明光として予め定めた標準光の分光特性と実際の照明光の分光特性との違いに相当する色度の補正、及び、内視鏡の撮像素子が有するカラーフィルタの分光特性に応じて撮像信号を基準となる所定の色調に合わせる補正を画像信号に施すための色度補正テーブルを作成することが記載されている。
特許第5544219号公報
しかし、特許文献1に記載された補正方法は、色度補正テーブルを作成するために、複数の分光特性の各々を基準となる分光特性に変換するための変換係数を算出し、各変換係数の積を求めるために、大量の少数の演算(例えば浮動小数点演算)が必要となるとともに、各分光特性のデータを記憶するために大容量のメモリが必要となる。つまり、特許文献1に記載された補正方法は、プロセッサと内視鏡の個体間の色情報の誤差を補正する際に処理負荷が膨大であることが問題である。
そこで、本発明は、任意の電子内視鏡と電子内視鏡用プロセッサを組み合わせて使用する場合に、色情報の補正を行う際の処理負荷を軽減することを目的とする。
本発明の一態様は、生体組織を撮像素子で撮像する電子内視鏡と、前記撮像素子による撮像画像を信号処理して表示用画像を作成する電子内視鏡用プロセッサと、が接続される電子内視鏡システムにおいて、撮像画像を補正する補正方法である。
この補正方法は、
補正の基準となる電子内視鏡である基準内視鏡と、補正の基準となる電子内視鏡用プロセッサである基準プロセッサと、を用いて、補正対象の電子内視鏡用プロセッサである補正対象プロセッサに対応する第1補正用パラメータを算出するステップと、
算出された前記第1補正用パラメータを前記補正対象プロセッサに記憶させるステップと、
前記基準内視鏡と、前記基準プロセッサと、を用いて、補正対象の電子内視鏡である補正対象内視鏡に対応する第2補正用パラメータを算出するステップと、
算出された前記第2補正用パラメータを前記補正対象内視鏡に記憶させるステップと、
前記補正対象内視鏡と前記補正対象プロセッサが接続された場合に、前記補正対象プロセッサが、前記補正対象内視鏡の撮像素子によって撮像された撮像画像に対して、前記第1補正用パラメータと前記第2補正用パラメータを用いた補正を行うステップと、を含む。
前記第1補正用パラメータを算出するステップは、
前記基準内視鏡と前記補正対象プロセッサを接続して所定の色指標を撮像したときに得られる撮像画像の画素値である第1画素値、及び、
前記基準内視鏡と前記基準プロセッサを接続して前記色指標を撮像したときに得られる撮像画像の画素値である第2画素値、に基づいて、
前記第1補正用パラメータとして、前記第1画素値を前記第2画素値に変換するパラメータを算出することを含んでもよい。
前記第2補正用パラメータを算出するステップは、
前記補正対象内視鏡と前記基準プロセッサを接続して所定の色指標を撮像したときに得られる撮像画像の画素値である第3画素値、及び、
前記基準内視鏡と前記基準プロセッサを接続して前記色指標を撮像したときに得られる撮像画像の画素値である第4画素値、に基づいて、
前記第2補正用パラメータとして、前記第3画素値を前記第4画素値に変換するパラメータを算出することを含んでもよい。
前記補正方法は、
前記第1画素値から得られる特徴量である第1特徴量、及び、前記第2画素値から得られる特徴量である第2特徴量を特定し、前記第1特徴量を前記第2特徴量に変換する第1特徴量補正パラメータを算出するステップと、
前記第3画素値から得られる特徴量である第3特徴量、及び、前記第4画素値から得られる特徴量である第4特徴量を特定し、前記第3特徴量を前記第4特徴量に変換する第2特徴量補正パラメータを算出するステップと、
前記補正対象内視鏡と前記補正対象プロセッサが接続された場合に、前記補正対象プロセッサが、前記補正対象内視鏡の撮像素子によって撮像された撮像画像の画素値から得られる特徴量に対して、前記第1特徴量補正パラメータと前記第2特徴量補正パラメータを用いた補正を行うステップと、をさらに含んでもよい。
前記色指標を、撮像画像の画素値から得られる特徴量に応じて複数の色指標の中から決定してもよい。
上述の内視鏡システムによれば、任意の電子内視鏡と電子内視鏡用プロセッサを組み合わせて使用する場合に、色情報の補正を行う際の処理負荷を軽減できる。
一実施形態の内視鏡システムの概略的なシステム構成を示す図である。 一実施形態の内視鏡システムの主な構成を示すブロック図である。 一実施形態の電子内視鏡システムの画像補正方法の各工程を示す図である。 一実施形態の電子内視鏡システムにおいてプロセッサ行列を算出する工程を説明する図である。 一実施形態の電子内視鏡システムにおいてスコープ行列を算出する工程を説明する図である。 一実施形態の電子内視鏡システムにおいて診断時の画像処理を示すフローチャートである。 別の実施形態の電子内視鏡システムにおいてプロセッサ行列を算出する工程を説明する図である。 別の実施形態の電子内視鏡システムにおいてスコープ行列を算出する工程を説明する図である。
(1)第1の実施形態
以下、一実施形態の電子内視鏡システム、及び、その画像補正方法について図面を参照しながら詳細に説明する。
先ず、一実施形態の電子内視鏡システム1について、図1及び図2を参照して説明する。図1は、一実施形態の内視鏡システム1の概略的なシステム構成を示す図である。図2は、一実施形態の内視鏡システム1の主な構成を示すブロック図である。
図1に示されるように、電子内視鏡システム1は、医療用に特化されたシステムであり、電子スコープ10(電子内視鏡の一例)、プロセッサ20(電子内視鏡用プロセッサの一例)、及び、モニタ30を備えている。
図1に示すように、電子スコープ10の先端には、可撓性を有し、人体内部に挿入するための挿入部120が設けられている。挿入部120の先端近傍には、挿入部120の基端に連結された手元操作部122からの遠隔操作に応じて屈曲する屈曲部104が設けられている。屈曲部104の屈曲機構は、一般的な内視鏡に組み込まれている周知の機構である。屈曲構造は、手元操作部122に設けられた湾曲操作ノブの回転操作に連動した操作ワイヤの牽引によって屈曲部104を屈曲させるものである。屈曲部104の先端には、固体撮像素子(以降、撮像素子という)14(図2参照)を備えた先端部102が連結している。湾曲操作ノブの回転操作による屈曲部104の屈曲動作に応じて先端部102の向きが変わることにより、電子スコープ10による撮影領域が移動する。
電子スコープ10のコネクタ部10cから先端部102にかけての略全長に渡って、LCB(Light Carrying Bundle)11(図2参照)が配置されている。LCB11は、光ファイバ束であり、光源装置25から供給された照射光を電子スコープ10の先端部102まで導光する。
プロセッサ20は、電子スコープ10の撮像素子14が被写体を撮像することで得られる被写体の撮像画像の映像信号を信号処理してモニタ30(図2参照)に供給する装置である。
図1に示すように、プロセッサ20には、電子スコープ10と接続するためのコネクタ部20cが設けられている。電子スコープ10の基端にはプロセッサ20のコネクタ部20cと接続するためのコネクタ部10cが設けられている。コネクタ部10cとコネクタ部20cが機械的に接続されることにより、電子スコープ10とプロセッサ20とが電気的に接続され、光源装置25と電子スコープ10が光学的に接続される。
情報処理装置40は、コンピュータ装置、タブレット端末、スマートフォン等、所定の演算処理が可能な装置であり、ケーブル200を介してプロセッサ20と電気的に接続可能である。
情報処理装置40は、電子スコープ10及び/又はプロセッサ20に対して画像補正のためのパラメータを算出し、算出したパラメータを電子スコープ10及び/又はプロセッサ20に記録する。図1に示す例では、情報処理装置40は電子スコープ10と直接的に有線により接続されていないが、電子スコープ10とプロセッサ20が電気的に接続されている場合には、プロセッサ20を介して電子スコープ10にパラメータを書き込むことができる。なお、情報処理装置40と電子スコープ10及びプロセッサ20の各々とが無線通信可能であれば、情報処理装置40は、ケーブル200を使用せずに、パラメータを電子スコープ10及びプロセッサ20の各々に書き込んでもよい。
一実施形態では、後述するように、情報処理装置40は、パラメータとしてプロセッサ行列及びスコープ行列を算出し、プロセッサ行列をプロセッサ20の行列記憶部28に書き込み、スコープ行列を電子スコープ10の行列記憶部16に書き込むように構成されている。
プロセッサ行列及び/又はスコープ行列を算出して書き込むタイミングは限定しないが、例えば、電子スコープ10及びプロセッサ20の製造後の出荷前のタイミングが好ましい。
図2を参照すると、プロセッサ20は、システムコントローラ21、画像入力処理部22、画像メモリ23、画像出力処理部24、光源装置25、操作パネル26、色補正演算部27、行列記憶部28、及び、集光レンズ29を備える。
電子スコープ10は、LCB11、配光レンズ12、対物レンズ13、撮像素子14、ドライバ信号処理回路15、及び、行列記憶部16を備える。
システムコントローラ21は、各種プログラムを実行し、電子内視鏡システム1全体を統合的に制御する。また、システムコントローラ21は、操作パネル26に接続されている。システムコントローラ21は、操作パネル26に入力される術者からの指示に応じて、電子内視鏡システム1の各動作及び各動作のためのパラメータを変更する。システムコントローラ21は、各部の動作のタイミングを調整するクロックパルスを電子内視鏡システム1内の各回路に出力する。
光源装置25は、体腔内の生体組織等の被写体を照明するための照明光Lを出射する。照明光Lは、白色光、擬似白色光、あるいは特殊光を含む。一実施形態によれば、光源装置25は、白色光あるいは擬似白色光を照明光Lとして常時射出するモードと、白色光あるいは擬似白色光と、特殊光が交互に照明光Lとして射出するモードの一方を選択し、選択したモードに基づいて、白色光、擬似白色光、あるいは特殊光を射出することが好ましい。白色光は、可視光帯域においてフラットな分光強度分布を有する光であり、擬似白色光は、分光強度分布はフラットではなく、複数の波長帯域の光が混色された光である。特殊光は、可視光帯域の中の青色あるいは緑色等の狭い波長帯域の光である。青色あるいは緑色の波長帯域の光は、生体組織中の特定の部分を強調して観察する時に用いられる。光源装置25から出射した照明光Lは、集光レンズ29によりLCB11の入射端面に集光されて電子スコープ10のLCB11内に入射される。
なお、図2に示す例では、光源装置25がプロセッサ20に内蔵されているが、光源装置25がプロセッサ20とは別体で構成されてもよい。
LCB11内に入射された照明光Lは、電子スコープ10のLCB11内を伝播する。LCB11内を伝播した照明光Lは、電子スコープ10の先端部102に配置されたLCB11の射出端面から射出され、配光レンズ12を介して被写体に照射される。配光レンズ12からの照明光Lによって照明された被写体からの戻り光は、対物レンズ13を介して撮像素子14の受光面上で光学像を結ぶ。
撮像素子14は、ベイヤ型画素配置を有する単板式カラーCCD(Charge Coupled Device)イメージセンサである。撮像素子14は、受光面上の各画素で結像した光学像を光量に応じた電荷として蓄積して、R(Red)、G(Green)、B(Blue)の画像信号を生成して出力する。なお、撮像素子14は、CCDイメージセンサに限らず、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやその他の種類の撮像装置に置き換えられてもよい。撮像素子14はまた、補色系フィルタを搭載したものであってもよい。
電子スコープ10のドライバ信号処理回路15には、システムコントローラ21からクロックパルスを供給される。ドライバ信号処理回路15は、システムコントローラ21から供給されるクロックパルスに従って、撮像素子14をプロセッサ20側で処理される映像のフレームレートに同期したタイミングで駆動制御する。フレームレートは、例えば、1/30秒である。ドライバ信号処理回路15は、撮像素子14から入力される画像信号に対してA/D変換を含む所定の処理を施してプロセッサ20の画像入力処理部22に出力する。
画像入力処理部22は、入力された画像信号に対してデモザイク処理、マトリックス演算等の所定の信号処理を施す。画像入力処理部22は、所定のノイズ低減処理を行ってもよい。
画像メモリ23は、画像入力処理部22によって処理された画像信号(画像)をバッファリングするためのメモリである。
画像出力処理部24は、画像メモリ23内の画像を逐次処理してモニタ表示用の画面データを生成し、生成されたモニタ表示用の画面データを所定のビデオフォーマット信号に変換する。変換されたビデオフォーマット信号は、モニタ30に出力される。これにより、被写体の画像がモニタ30の表示画面に表示される。
プロセッサ20の行列記憶部28、及び、電子スコープ10の行列記憶部16は、例えばSSD(Solid State Drive)等の不揮発性メモリであり、それぞれプロセッサ行列、及び、スコープ行列を記憶する。前述したように、プロセッサ行列、及び、スコープ行列は、情報処理装置40によって書き込まれる。
プロセッサ20の色補正演算部27は、画像メモリ23にバッファされた画像を対象として、プロセッサ行列及びスコープ行列を基に色補正演算を行う。システムコントローラ21は、色補正演算部27による演算後の画像を画像メモリ23に上書きする。したがって、画像出力処理部24によって生成されるモニタ表示用の画像データは、色補正が行われた後の画像に基づいている。
次に、図3~図6を参照して、一実施形態の電子内視鏡システムの画像補正方法について説明する。
図3は、一実施形態の電子内視鏡システムの画像補正方法の各工程を示す図である。図3に示すように、この画像補正方法は、工程S1~S5を含む。
工程S1,S2は、補正対象であるプロセッサに対して行われる工程であり、例えばプロセッサの製造後の出荷前に行われる。
工程S3,S4は、補正対象である電子スコープに対して行われる工程であり、例えば電子スコープの製造後の出荷前に行われる。
工程S5は、診断時においてフレーム単位の各画像に対して行われる工程である。
(工程S1)
工程S1は、補正の基準となる電子スコープである基準電子スコープ10_Refと、補正の基準となるプロセッサである基準プロセッサ20_Refと、を用いて、補正対象のプロセッサである補正対象プロセッサ20_Tarに対応するプロセッサ行列(第1補正用パラメータの一例)を算出する工程である。
基準電子スコープ10_Refとは、色補正の目標とするマスタとなる電子スコープ10である。例えば、一般に電子スコープに備わる撮像素子には分光特性に個体差があるが、基準電子スコープ10_Refは、分光特性が中央値である撮像素子14が備わっている電子スコープ10である。
基準プロセッサ20_Refとは、色補正の目標とするマスタとなるプロセッサ20である。例えば、一般にプロセッサに備わる光源装置の照明光には分光特性に個体差があるが、基準プロセッサ20_Refは、照明光の分光特性が中央値である光源装置25が備わっているプロセッサ20である。
図4に、工程S1における手順を概念的に示す。
先ず、基準電子スコープ10_Refと補正対象プロセッサ20_Tarを接続し、さらに図4に示していない情報処理装置40を補正対象プロセッサ20_Tarに接続する。基準電子スコープ10_Refの先端部は、基準となる色指標RCに向けられる。色指標RCは、補正の際の基準となる色が表示された指標である。色指標RCに表示される色は、被写体に応じて適宜決定されるが、生体組織を撮影する場合には患部の色に合わせて赤味が強い色であることが好ましい。それぞれ異なる色を含む複数の色指標RCを用いてもよい。
工程S1では、基準電子スコープ10_Refと補正対象プロセッサ20_Tarの組合せにより得られた色指標RCの撮像画像IMG1を、情報処理装置40に取り込む。
次いで、同様にして、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せにより得られた色指標RCの撮像画像IMG2を、情報処理装置40に取り込む。
情報処理装置40は、撮像画像IMG1を撮像画像IMG2に合わせ込むためのプロセッサ行列M1を算出する。プロセッサ行列M1を算出するに際して、撮像画像IMG1内の特定の画素の画素値(RGBの値;第1画素値の一例)を、撮像画像IMG2内の対応する画素の画素値(第2画素値の一例)に変換するための行列を求めてもよいし、各撮像画像の対応する範囲内の画素同士の平均的な画素値(RGBの平均値)を変換するための行列を求めてもよい。
(工程S2)
工程S2は、工程S1で算出されたプロセッサ行列を補正対象プロセッサ20_Tarの行列記憶部28に記憶させる工程である。
工程S2では、情報処理装置40は、工程S1で算出したプロセッサ行列M1を補正対象プロセッサ20_Tarに送信する。
工程S1,S2は、典型的には、プロセッサ20の製造現場において、プロセッサ20の出荷前に行われる。すなわち、プロセッサ20の製造現場に基準電子スコープ10_Ref及び基準プロセッサ20_Refを少なくとも1台ずつ用意しておき、生産される複数のプロセッサ20を1つずつ順次補正対象プロセッサ20_Tarとし、各プロセッサ20に対して個別にプロセッサ行列M1を算出して格納する。なお、図4で、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せによって撮像画像IMG2を取得することは1回行なえばよく、逐次行う必要はない。
(工程S3)
工程S3は、基準電子スコープ10_Refと、基準プロセッサ20_Refと、を用いて、補正対象の電子スコープである補正対象スコープ10_Tarに対応するスコープ行列(第2補正用パラメータの一例)を算出する工程である。
図5に、工程S3における手順を概念的に示す。
先ず、補正対象スコープ10_Tarと基準プロセッサ20_Refを接続し、さらに図5に示していない情報処理装置40を基準プロセッサ20_Refに接続する。補正対象スコープ10_Tarの先端部は、基準となる色指標RCに向けられる。
工程S3では、補正対象スコープ10_Tarと基準プロセッサ20_Refの組合せにより得られた色指標RCの撮像画像IMG3を、情報処理装置40に取り込む。
次いで、同様にして、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せにより得られた色指標RCの撮像画像IMG4を、情報処理装置40に取り込む。
情報処理装置40は、撮像画像IMG3を撮像画像IMG4に合わせ込むためのスコープ行列M2を算出する。スコープ行列M2を算出するに際して、撮像画像IMG3内の特定の画素の画素値(第3画素値の一例)を、撮像画像IMG4内の対応する画素の画素値(第4画素値の一例)に変換するための行列を求めてもよいし、各撮像画像の対応する範囲内の画素同士の平均的な画素値(RGBの平均値)を変換するための行列を求めてもよい。
(工程S4)
工程S4は、工程S3で算出されたスコープ行列を補正対象スコープ10_Tarの行列記憶部16に記憶させる工程である。
工程S4では、情報処理装置40は、工程S3で算出したスコープ行列M2を、基準プロセッサ20_Refを介して補正対象スコープ10_Tarに送信する。
工程S3,S4は、典型的には、電子スコープ10の製造現場において、電子スコープ10の出荷前に行われる。すなわち、電子スコープ10の製造現場に基準電子スコープ10_Ref及び基準プロセッサ20_Refを少なくとも1台ずつ用意しておき、生産される複数の電子スコープ10を1つずつ順次補正対象スコープ10_Tarとし、各電子スコープ10に対して個別にスコープ行列M2を算出して格納する。なお、図5で、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せによって撮像画像IMG4を取得することは1回行なえばよく、逐次行う必要はない。
工程S1,S2においてそれぞれ使用される基準電子スコープ10_Ref、基準プロセッサ20_Refと、工程S3,S4においてそれぞれ使用される基準電子スコープ10_Ref、基準プロセッサ20_Refとは同一でなくてもよい。工程S1,S2がプロセッサ20の製造現場で行われ、工程S3,S4が電子スコープ10の製造現場で行われる場合には、それぞれ異なる基準装置(基準電子スコープ10_Ref,基準プロセッサ20_Ref)を用いた方が好都合である。その場合でも共通の色指標RCを使用する限り、算出されるプロセッサ行列M1及びスコープ行列M2の変動はほとんどない。
(工程S5)
工程S5は、補正対象スコープ10_Tarと補正対象プロセッサ20_Tarが接続された場合に、補正対象プロセッサ20_Tarが、補正対象スコープ10_Tarの撮像素子14によって撮像された撮像画像に対して、プロセッサ行列M1とスコープ行列M2を用いた補正を行う工程である。
工程S5は、工程S1~S4とは異なり、プロセッサ行列M1が格納されたプロセッサ20と、スコープ行列M2が格納された電子スコープ10と、を接続させた電子内視鏡システム1を使用して医療現場で診断を行うときに実行される。
工程S5においてプロセッサ20によって実行される処理のフローチャートを図6に示す。
先ず、プロセッサ20は、電子スコープ10から現在のフレームの画像を取得し、所定の画像処理を行って画像メモリ23に一時的に格納する(ステップS10)。プロセッサ20は、行列記憶部28からプロセッサ行列M1を読み出し(ステップS12)、電子スコープ10の行列記憶部16からスコープ行列M2を読み出す(ステップS14)。
次いで、プロセッサ20は、ステップS10で画像メモリ23に格納した画像に対して色補正演算を行う(ステップS16)。具体的には、プロセッサ20は、画像の各画素の画素値を、プロセッサ行列M1とスコープ行列M2の積となる行列(M1・M2)により変換した画素値を求める。プロセッサ20は、各画素の画素値を変換した画像に対して画像出力処理を実行する(ステップS18)。画像出力処理では、画像に基づいてモニタ表示用の画面データ画像が生成され、生成されたモニタ表示用の画面データが所定のビデオフォーマット信号に変換されてモニタ30に出力される。
以上説明したように、一実施形態の電子内視鏡システムの画像補正方法では、組み合わされる電子スコープ10とプロセッサ20にはそれぞれ診断前に予め最適化されたスコープ行列とプロセッサ行列が格納されており、診断時には、スコープ行列とプロセッサ行列を用いて色情報の補正を行うことができる。そのため、従来のシステムのような色情報の補正を行う際の処理負荷が、大幅に軽減される。電子スコープ10とプロセッサ20はそれぞれスコープ行列とプロセッサ行列を記憶すればよく、メモリの容量も少なくて済む。
上述した電子内視鏡システムの画像補正方法では、被写体に応じた色指標RCの分光反射率の特性が反映された状態でプロセッサ行列とスコープ行列が決定されるため、各フレームの画像の画素値(R値、G値、B値)に対して被写体の特性に応じた補正を行うことができる。例えば、患部の色に合わせた赤味の強い色が表示された色指標RCの撮像画像を基に各行列が決定される場合には、診断時には、被写体(患者の患部)の分光反射率の特性に応じた補正を行うことができる。
上述した電子内視鏡システムの画像補正方法では、電子スコープとプロセッサに予め最適化されたプロセッサ行列とスコープ行列が格納されているため、診断時に電子スコープとプロセッサの組合せを考慮する必要がない。すなわち、診断時に任意の電子スコープとプロセッサの組み合わせたとしても撮像画像に対して最適な補正を行うことができる。
(2)第2の実施形態
以下、第2の実施形態について説明する。
第2の実施形態では、画像だけではなく画像の特徴量も含めた形でプロセッサ行列及びスコープ行列を算出し、そのプロセッサ行列及びスコープ行列に基づいて画像補正を行う点で、第1の実施形態と異なる。
以下、第1の実施形態で説明した画像補正方法(図5)と異なる点に注目して説明する。本実施形態の画像補正方法の工程S1~S5は、以下のとおりである。
図7に、工程S1において、図4に対して特徴量をも含めたプロセッサ行列M1aを算出するときの手順を概念的に示す。
図7を参照すると、工程S1では、補正対象プロセッサ20_Tarは、基準電子スコープ10_Refと補正対象プロセッサ20_Tarの組合せにより得られる色指標RCの撮像画像IMG1の特定の画素の画素値(第1画素値の一例)から、特徴量FTR1(第1特徴量の一例)を特定する。
基準プロセッサ20_Refは、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せにより得られる色指標RCの撮像画像IMG2において、対応する画素の画素値(第2画素値の一例)から、特徴量FTR2(第2特徴量の一例)を特定する。
そして、情報処理装置40は、撮像画像IMG1を撮像画像IMG2に変換するパラメータに加え、特徴量FTR1を特徴量FTR2に変換するパラメータ(第1特徴量補正パラメータの一例)も含むプロセッサ行列M1aを算出する。
工程S2では、プロセッサ行列M1aを補正対象プロセッサ20_Tarに格納する。
図8に、工程S3において、図5に対して特徴量をも含めたスコープ行列M2aを算出するときの手順を概念的に示す。
図8を参照すると、工程S3では、基準プロセッサ20_Refは、補正対象スコープ10_Tarと基準プロセッサ20_Refの組合せに得られる色指標RCの撮像画像IMG3の特定の画素の画素値(第3画素値の一例)から、特徴量FTR3(第3特徴量の一例)を特定する。
基準プロセッサ20_Refは、基準電子スコープ10_Refと基準プロセッサ20_Refの組合せにより得られる色指標RCの撮像画像IMG4において、対応する画素の画素値(第4画素値の一例)から、特徴量FTR4(第4特徴量の一例)を特定する。
そして、情報処理装置40は、撮像画像IMG3を撮像画像IMG4に変換するパラメータに加え、特徴量FTR3を特徴量FTR4に変換するパラメータ(第2特徴量補正パラメータの一例)も含むスコープ行列M2aを算出する。
工程S4では、スコープ行列M2aを補正対象スコープ10_Tarに格納する。
工程S5では、補正対象スコープ10_Tarと補正対象プロセッサ20_Tarが接続された場合に、補正対象プロセッサ20_Tarが、補正対象スコープ10_Tarの撮像素子14によって撮像された撮像画像に対して、プロセッサ行列M1aとスコープ行列M2aを用いた補正を行う。それによって、補正対象プロセッサ20_Tarにより、補正対象スコープ10_Tarの撮像素子14によって撮像された撮像画像の画素値から得られる特徴量に対しても補正が行われる。
工程S1,S3において特徴量の算出方法は、適宜、定義可能である。例えば、被写体である患者の炎症部位の炎症の程度を表す値として、対応する画素同士の画素値の比率(例えば、G値とR値の比率)を特徴量とすることができる。
本実施形態では、プロセッサ行列及びスコープ行列にそれぞれ特徴量を補正するためのパラメータが含まれているため、診断時に得られる各フレームの画像に対して色補正演算を実行することで、容易に特徴量の補正を行うことができる。
なお、本実施形態では、工程S1,S3において使用される色指標RCを、撮像画像の画素値から得られる特徴量に応じて複数の色指標の中から決定することが好ましい。被写体の色合いが撮像画像の特徴量により明確に反映されるように色指標を選択することで、算出されるプロセッサ行列M1aとスコープ行列M2aを、特徴量の補正を行う上でより適切な値とすることができる。例えば、上述したように、画素のG値とR値の比率を特徴量とする場合には、この特徴量によって被写体の赤味の程度が明確に反映されるように、複数の色指標の中から赤色又は赤味を含む色が表示された色指標を選択することが好ましい。
1…電子内視鏡システム
10…電子スコープ
11…LCB
12…配光レンズ
13…対物レンズ
14…固体撮像素子
15…ドライバ信号処理回路
16…行列記憶部
102…先端部
104…屈曲部
120…挿入部
122…手元操作部
20…電子内視鏡用プロセッサ
21…システムコントローラ
22…画像入力処理部
23…画像メモリ
24…画像出力処理部
25…光源装置
26…操作パネル
27…色補正演算部
28…行列記憶部
29…集光レンズ
30…モニタ
40…情報処理装置
RC…色指標

Claims (4)

  1. 生体組織を撮像素子で撮像する電子内視鏡と、前記撮像素子による撮像画像を信号処理して表示用画像を作成する電子内視鏡用プロセッサと、が接続される電子内視鏡システムにおいて、撮像画像を補正する補正方法であって、
    補正の基準となる電子内視鏡である基準内視鏡と、補正の基準となる電子内視鏡用プロセッサである基準プロセッサと、を用いて、補正対象の電子内視鏡用プロセッサである補正対象プロセッサに対応する第1補正用パラメータを算出するステップと、
    算出された前記第1補正用パラメータを前記補正対象プロセッサに記憶させるステップと、
    前記基準内視鏡と、前記基準プロセッサと、を用いて、補正対象の電子内視鏡である補正対象内視鏡に対応する第2補正用パラメータを算出するステップと、
    算出された前記第2補正用パラメータを前記補正対象内視鏡に記憶させるステップと、
    前記補正対象内視鏡と前記補正対象プロセッサが接続された場合に、前記補正対象プロセッサが、前記補正対象内視鏡の撮像素子によって撮像された撮像画像に対して、前記第1補正用パラメータと前記第2補正用パラメータを用いた補正を行うステップと、を含む、
    電子内視鏡システムの画像補正方法。
  2. 前記第1補正用パラメータを算出するステップは、
    前記基準内視鏡と前記補正対象プロセッサを接続して所定の色指標を撮像したときに得られる撮像画像の画素値である第1画素値、及び、
    前記基準内視鏡と前記基準プロセッサを接続して前記色指標を撮像したときに得られる撮像画像の画素値である第2画素値、に基づいて、
    前記第1補正用パラメータとして、前記第1画素値を前記第2画素値に変換するパラメータを算出することを含み、
    前記第2補正用パラメータを算出するステップは、
    前記補正対象内視鏡と前記基準プロセッサを接続して所定の色指標を撮像したときに得られる撮像画像の画素値である第3画素値、及び、
    前記基準内視鏡と前記基準プロセッサを接続して前記色指標を撮像したときに得られる撮像画像の画素値である第4画素値、に基づいて、
    前記第2補正用パラメータとして、前記第3画素値を前記第4画素値に変換するパラメータを算出することを含む、
    請求項1に記載された電子内視鏡システムの画像補正方法。
  3. 前記第1画素値から得られる特徴量である第1特徴量、及び、前記第2画素値から得られる特徴量である第2特徴量を特定し、前記第1特徴量を前記第2特徴量に変換する第1特徴量補正パラメータを算出するステップと、
    前記第3画素値から得られる特徴量である第3特徴量、及び、前記第4画素値から得られる特徴量である第4特徴量を特定し、前記第3特徴量を前記第4特徴量に変換する第2特徴量補正パラメータを算出するステップと、
    前記補正対象内視鏡と前記補正対象プロセッサが接続された場合に、前記補正対象プロセッサが、前記補正対象内視鏡の撮像素子によって撮像された撮像画像の画素値から得られる特徴量に対して、前記第1特徴量補正パラメータと前記第2特徴量補正パラメータを用いた補正を行うステップと、をさらに含む、
    請求項2に記載された電子内視鏡システムの画像補正方法。
  4. 前記色指標を、撮像画像の画素値から得られる特徴量に応じて複数の色指標の中から決定する、
    請求項3に記載された電子内視鏡システムの画像補正方法。
JP2022120393A 2022-07-28 2022-07-28 電子内視鏡システムの画像補正方法 Pending JP2024017630A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022120393A JP2024017630A (ja) 2022-07-28 2022-07-28 電子内視鏡システムの画像補正方法
PCT/JP2023/024657 WO2024024411A1 (ja) 2022-07-28 2023-07-03 電子内視鏡システムの画像補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022120393A JP2024017630A (ja) 2022-07-28 2022-07-28 電子内視鏡システムの画像補正方法

Publications (1)

Publication Number Publication Date
JP2024017630A true JP2024017630A (ja) 2024-02-08

Family

ID=89706105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022120393A Pending JP2024017630A (ja) 2022-07-28 2022-07-28 電子内視鏡システムの画像補正方法

Country Status (2)

Country Link
JP (1) JP2024017630A (ja)
WO (1) WO2024024411A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451802B2 (ja) * 2011-04-01 2014-03-26 富士フイルム株式会社 電子内視鏡システム及び電子内視鏡システムの校正方法
JP5379930B1 (ja) * 2012-03-06 2013-12-25 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP6159817B2 (ja) * 2013-10-28 2017-07-05 富士フイルム株式会社 キャリブレーション方法及び内視鏡システム
JP2018023497A (ja) * 2016-08-09 2018-02-15 Hoya株式会社 色補正用治具及び電子内視鏡システム
CN109310305B (zh) * 2016-09-02 2022-03-11 Hoya株式会社 内窥镜系统及特征量计算方法
JP6320592B2 (ja) * 2017-03-21 2018-05-09 富士フイルム株式会社 内視鏡システム
JP7130038B2 (ja) * 2018-06-12 2022-09-02 富士フイルム株式会社 内視鏡画像処理装置、内視鏡画像処理装置の作動方法、内視鏡画像処理プログラム及び記憶媒体
CN112638232A (zh) * 2018-09-06 2021-04-09 奥林巴斯株式会社 光源控制装置、内窥镜系统和调光控制方法
US10986321B1 (en) * 2019-12-10 2021-04-20 Arthrex, Inc. Method and device for color correction of two or more self-illuminated camera systems
JP7455716B2 (ja) * 2020-09-25 2024-03-26 Hoya株式会社 内視鏡用プロセッサ及び内視鏡システム

Also Published As

Publication number Publication date
WO2024024411A1 (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
US7123756B2 (en) Method and apparatus for standardized fluorescence image generation
JP6067264B2 (ja) 画像処理装置及び内視鏡装置
US9788710B2 (en) Endoscope system and light source device
US10159404B2 (en) Endoscope apparatus
EP2724661B1 (en) Device for short wavelength visible reflectance endoscopy using broadband illumination
US11045079B2 (en) Endoscope device, image processing apparatus, image processing method, and program
US10357204B2 (en) Endoscope system and operating method thereof
US10765295B2 (en) Image processing apparatus for detecting motion between two generated motion detection images based on images captured at different times, method for operating such image processing apparatus, computer-readable recording medium, and endoscope device
US20170251915A1 (en) Endoscope apparatus
JP2016015995A (ja) 電子内視鏡システム及び電子内視鏡用プロセッサ
US9509964B2 (en) Endoscope system and light source device
JP3884265B2 (ja) 内視鏡装置
US11039739B2 (en) Endoscope system
JP2017060806A (ja) 画像処理装置及び内視鏡装置
JP4716801B2 (ja) 内視鏡撮像システム
JP6245710B2 (ja) 内視鏡システム及びその作動方法
JP2003111716A (ja) 標準光源、補正係数算出方法および装置並びに蛍光画像生成方法および装置
WO2024024411A1 (ja) 電子内視鏡システムの画像補正方法
JP2003018467A (ja) 電荷増倍型固体電子撮像装置およびその制御方法
JP7224963B2 (ja) 医療用制御装置及び医療用観察システム
JP6071508B2 (ja) 電子内視鏡システム
JP6242474B2 (ja) 内視鏡用プロセッサ及び電子内視鏡システム
US11963668B2 (en) Endoscope system, processing apparatus, and color enhancement method
JP6175538B2 (ja) 内視鏡システム
JP2001145599A (ja) 内視鏡用画像処理方法及び内視鏡用画像処理装置